JPS63137565A - Production of porous heat radiator - Google Patents

Production of porous heat radiator

Info

Publication number
JPS63137565A
JPS63137565A JP61285279A JP28527986A JPS63137565A JP S63137565 A JPS63137565 A JP S63137565A JP 61285279 A JP61285279 A JP 61285279A JP 28527986 A JP28527986 A JP 28527986A JP S63137565 A JPS63137565 A JP S63137565A
Authority
JP
Japan
Prior art keywords
porous
resin
porous heat
model
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61285279A
Other languages
Japanese (ja)
Inventor
Ryohei Ishikawa
石川 遼平
Toru Miyashita
宮下 亨
Katsumi Kunihiro
国弘 克己
Takahiro Itou
伊藤 貴宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP61285279A priority Critical patent/JPS63137565A/en
Publication of JPS63137565A publication Critical patent/JPS63137565A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a porous heat radiator having high heat radiating power and mechanical strength by filling a flowable molding material into a pattern formed by adhering a solid resin to a porous resin having spaces of a specific rate or above and curing the material, then consuming the pattern by heating and pouring a molten metal into such casting mold. CONSTITUTION:The porous resin foam made of a commercially marketed polyurethane resin, etc., having about >=50% void is adhered by an adhesive agent consisting of chloroprene, etc., to the solid resin plate such as commercially marketed paraffin wax plate or polymethyl methacrylate plate to form the pattern. Such pattern is put into a vessel and a mixture prepd. by adding water to a mixture composed of gypsum for casting and heavy calcium carbonate for industrial purposes in poured into the vessel. The vessel is then oscillated to pack the mixture tightly into the pattern and thereafter, the mixture is cured. The resin is consumed by heating to form the pattern. The molten metal of aluminum or the like is poured into such pattern to form the metallic plate 1 with the porous metal part 2. This heat radiator is integrated with the porous metal heat radiating part 2 and the metal plate 1. The non-defective article having the high heat radiation performance and mechanical strength is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放熱体の製造方法に関する。より詳細には、本
発明は、熱交換器あるいは電子素子の冷却等に用いられ
る放熱体の新規な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a heat sink. More specifically, the present invention relates to a novel method for manufacturing a heat radiator used for cooling heat exchangers or electronic devices.

従来の技術 一般に、放熱体は各種形状のフィン(突起)や溝を具備
して比表面積を高め、より広い伝熱面積で発熱体と冷却
媒体とを熱的に接続するように構成されている。このた
め、例えば熱交換器、ヒートポンプ、ヒートパイプ等の
各種のフィンチューブでは、伝熱壁の表面に切削加工や
プレス加工を施してフィンや溝を形成したり、あるいは
フィンを溶接やろう付によって取りつけたりする。また
、電子回路等の放熱器(ヒートシンク)では、押し出し
成形、ダイカスト鋳造やプレス加工等によって製造され
るアルミニウム製放熱材が広く利用されている。
Conventional technology In general, a heat sink is configured to have fins (protrusions) and grooves of various shapes to increase the specific surface area and thermally connect the heat generating body and the cooling medium with a wider heat transfer area. . For this reason, for example, in various finned tubes such as heat exchangers, heat pumps, and heat pipes, fins and grooves are formed by cutting or pressing the surface of the heat transfer wall, or the fins are welded or brazed. I'll install it. Further, in heat sinks for electronic circuits and the like, aluminum heat dissipating materials manufactured by extrusion molding, die casting, press working, etc. are widely used.

発明が解決しようとする問題点 このような構成の放熱体は、製造工程の自動化等の点で
は有利なので、比較的低コストのものが作製できるが、
伝熱面積は平面投影面積のせいぜい10倍程度で放熱容
量が小さく、また、一般に重量も大きい。、これは、装
置の小型化・軽量化を目指す現在の各種電子機器の趨勢
にそぐわないものである。
Problems to be Solved by the Invention A heat sink having such a configuration is advantageous in terms of automation of the manufacturing process, so it can be manufactured at a relatively low cost.
The heat transfer area is at most about 10 times the planar projected area, so the heat dissipation capacity is small, and the weight is generally large. This is contrary to the current trend of various electronic devices, which aim to make devices smaller and lighter.

そこで、複数の材料から一体的に構成される複合型伝熱
材、例えばハニカム材や三次元織物等の3次元的に展開
した複雑な表面形状を有する部材を放熱体として利用す
ることが考えられている。
Therefore, it has been considered to use a composite heat transfer material that is integrally made of multiple materials, such as a honeycomb material or a three-dimensional fabric, which has a complex three-dimensional surface shape, as a heat radiator. ing.

しかしながら、このような放熱材は伝熱壁の表面積こそ
大きいものの、放熱体を構成する部材相互の接続、ある
いは放熱体と発熱体との接続において、相互の接触面積
が小さくなるので接続部分での伝熱抵抗が大きくなって
しまう。このため伝熱面積が大きい割には実質的な放熱
性には優れていない。
However, although such a heat dissipation material has a large surface area of the heat transfer wall, the mutual contact area becomes small when connecting the members constituting the heat dissipation body or between the heat dissipation body and the heating element. Heat transfer resistance increases. Therefore, although the heat transfer area is large, the heat dissipation property is not excellent.

また、金属等により形成される多孔質部材は、その表面
積が500m’/m’〜7500m’/m’と極めて広
く、熱放散体として好ましいかの如くにも考えられるが
、一般に機械的強度が安定していないので冷却すべき部
材に取り付ける際の取り付は方法に制約がある。
In addition, porous members made of metal etc. have an extremely wide surface area of 500 m'/m' to 7,500 m'/m', and may be considered preferable as heat dissipators, but they generally have poor mechanical strength. Since it is not stable, there are restrictions on how it can be attached to the member to be cooled.

そこで本発明の目的は、上記従来技術の問題点を解決、
し、従来熱交換器やヒートシンク等に利用されてきた各
種放熱体よりも放熱性に優れ、且つ取り扱いの容易な新
規な伝熱体の製造方法を提供することにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems of the prior art.
Another object of the present invention is to provide a method for manufacturing a novel heat transfer body that has better heat dissipation properties than various heat dissipation bodies conventionally used in heat exchangers, heat sinks, etc., and is easy to handle.

問題点を解決するための手段 即ち、本発明に従い、内部が流体に対して充分な流通性
を有する多孔型熱放散部と、該多孔型熱放散部と一体に
構成され、冷却すべき部材と相捕的な面を有する中実な
基部とから構成されている多孔型放熱体を製造する方法
であって、前記多孔型熱放散部と同じ形状の多孔質樹脂
と前記基部と同じ形状の樹脂部材とを接合して前記多孔
型放熱体の模型を作製する工程と、鋳型材を該模型に含
浸すると同時に該鋳型材中に埋設する工程と、該鋳型材
中から前記、模型を除去する工程と、該模型を除去され
た該鋳型内の空洞に放熱体材料金属を充填する工程と、
該鋳型を除去する工程とを含むことを特徴とする多孔型
放熱体の製造方法が提供される。
Means for solving the problem, that is, according to the present invention, there is provided a porous heat dissipating section whose interior has sufficient fluid circulation, and a member to be cooled that is integrated with the porous heat dissipating section. A method for manufacturing a porous heat dissipating body comprising a solid base having complementary surfaces, the porous resin having the same shape as the porous heat dissipating part and the resin having the same shape as the base. a step of creating a model of the porous heat sink by joining the members, a step of impregnating the model with a mold material and simultaneously embedding it in the mold material, and a step of removing the model from the mold material. and filling a cavity in the mold from which the model has been removed with heat sink material metal;
There is provided a method for manufacturing a porous heat radiator, the method comprising the step of removing the mold.

作用 本発明に従う放熱体の製造方法は、その放熱体の熱放散
部を多孔質部材によって形成していることをその主要な
特徴のひとつとしている。
Function One of the main features of the method for manufacturing a heat sink according to the present invention is that the heat dissipation portion of the heat sink is formed of a porous member.

即ち、多孔質部材は、単純な形状の突起(フィン)ある
いは溝を熱放散部とした従来の放熱体よりも遥かに大き
な比表面積を有している。従って、冷却効率も大きく向
上することが期待される。
That is, the porous member has a much larger specific surface area than a conventional heat dissipating body whose heat dissipating portion is a simple protrusion (fin) or groove. Therefore, it is expected that the cooling efficiency will also be greatly improved.

但し、熱放散部は、これに触れる冷却媒体の流通を妨げ
るものであってはならない。何故ならば、空気、水等の
冷却媒体が熱放散部の内部に滞留した場合は却って熱の
放散が阻害されるからである。
However, the heat dissipation section must not obstruct the flow of the cooling medium that comes into contact with it. This is because if a cooling medium such as air or water stays inside the heat dissipation section, heat dissipation is actually hindered.

熱放散部における流体の流通性は、冷却媒体の粘度、熱
放散部の孔の形状等によって様々に変化するが、本発明
者等は、後述する実施例から考察して、冷却媒体が気体
である場合は多孔質熱放散部が約50%以上の空間率を
有していることが好ましいことを見出した。但し、これ
はひとつの指標であって、本発明を限定するものではな
い。
The flowability of the fluid in the heat dissipation section varies depending on the viscosity of the cooling medium, the shape of the holes in the heat dissipation section, etc., but the inventors have considered from the examples described below that the cooling medium is a gas. It has been found that in some cases it is preferable for the porous heat dissipation portion to have a porosity of about 50% or more. However, this is just one index and does not limit the present invention.

尚、放熱体そのものが熱伝導率の優れた材料で形成され
ていることが好ましいことはいうまでもなく、好ましい
多孔質材料としは、Al、 Cu、 Fe。
It goes without saying that the heat sink itself is preferably made of a material with excellent thermal conductivity, and preferred porous materials include Al, Cu, and Fe.

Ni52n、 Sn、 Mg5Ti、Au、 Ag、 
Pt等の殆どの金属を適用することができる。
Ni52n, Sn, Mg5Ti, Au, Ag,
Most metals such as Pt can be applied.

また、本発明の放熱体製造方法は、中実の基部を一体に
形成することもその主要な特徴である。
Moreover, the main feature of the heat sink manufacturing method of the present invention is that the solid base is integrally formed.

即ち、前述のように、多孔質部材は一般に機械的強度が
不安定であり、冷却すべき部材に、例えばネジ止めする
ことは実際には不可能に近い。これは放熱体として空間
率が増す程甚だしくなる。
That is, as described above, porous members generally have unstable mechanical strength, and it is practically impossible to screw them, for example, to a member to be cooled. This becomes more serious as the space ratio increases as a heat sink.

従って、本発明に従って中実の基部を一体に備えること
が実用的な放熱体として必須の条件である。
Therefore, according to the present invention, it is essential for a practical heat dissipation body to have a solid base integrally.

また、これも前述のように、多孔質部材の場合は、冷却
すべき部材との接触面積を大きくすることが困難なので
、この点からも、冷却すべき部材と相補的な面を備えた
中実の基部を備えることが望ましい。
Also, as mentioned above, in the case of porous members, it is difficult to increase the contact area with the member to be cooled, so from this point of view as well, it is difficult to increase the contact area with the member to be cooled. It is desirable to have a real base.

また、この基部と前述の熱放散部との間の熱伝導を妨げ
ることは、放熱体としての機能を放棄することになる。
Moreover, interfering with heat conduction between the base and the above-mentioned heat dissipation section means abandoning the function as a heat dissipation body.

従って、両者は熱伝導を低下することなく一体に構成さ
れていなければならない。
Therefore, both must be integrally constructed without reducing heat conduction.

そこで、本発明の好ましい態様に従えば、上述のような
特徴を備えた形状の模型を作製し、これを用いて鋳型を
作製し、更にこの鋳型を用いて放熱体材料金属を鋳込む
ことによって、金属性の多孔型放熱体を一体に形成する
ことができる。
Therefore, according to a preferred embodiment of the present invention, a model having the above-mentioned characteristics is created, a mold is created using this, and the metal material for the heat sink is further cast using this mold. , a metal porous heat sink can be integrally formed.

このような本発明に従う方法は、多孔型熱放散部と中実
な基部とが当初より一体に形成されているので、両者の
間の熱伝導は極めて良好であり、また、両者の接着強度
等についても良好な機械的特性が得られる。
In the method according to the present invention, since the porous heat dissipation part and the solid base are integrally formed from the beginning, the heat conduction between the two is extremely good, and the adhesive strength between the two is also improved. Good mechanical properties can also be obtained.

また、模型は、鋳型から加熱あるいは薬品による溶解等
によって取り除くことができ、一方、適切な模型を容易
に作製し得る材料が容易に得られる。即ち、好ましい材
料としては、フェノール樹脂、エポキシ樹脂、ポリエス
テル樹脂、ポリエチレン、ポリ塩化ビニル、PVA、ポ
リスチレン、ポリプロピレン、ポリアクリルニトリル、
ポリアミド、ポリカーボネートあるいはポリウレタン等
を挙げることができる。
Further, the model can be removed from the mold by heating or melting with chemicals, while material from which a suitable model can be easily produced is easily obtained. That is, preferred materials include phenol resin, epoxy resin, polyester resin, polyethylene, polyvinyl chloride, PVA, polystyrene, polypropylene, polyacrylonitrile,
Examples include polyamide, polycarbonate, and polyurethane.

実施例 。Example .

以下、実施例により本発明の詳細な説明するが本発明は
これらに何ら限定されない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 市販の開孔セル構造のポリウレタンフォーム(サイズ1
70 X 70 X 20mm、空間率98%、平均セ
ル数6ケ/インチ)の片面に市販のパラフィンワックス
板(サイズ170 X70 X 6 mm、融点126
℃)をクロロプレン系接着剤により接着して模型を作成
した。
Example 1 Commercially available polyurethane foam with open cell structure (size 1
A commercially available paraffin wax board (size 170 x 70 x 6 mm, melting point 126) was placed on one side of 70 x 70 x 20 mm, void ratio 98%, average number of cells 6 cells/inch).
℃) was glued together using a chloroprene adhesive to create a model.

次いでこのような模型を内径200+nm、深さ230
anの鉄製容器内に入れこれに鋳造材として鋳造川石こ
うおよび工業用重質炭酸カルシウムの混合物に水を加え
たものを流し込み、振動を加えて該模型の間隙を充填し
た後、硬化させた。
Next, such a model was made with an inner diameter of 200+ nm and a depth of 230 nm.
A mixture of cast river gypsum and industrial heavy calcium carbonate with water was poured into it as a casting material, and after vibration was applied to fill the gaps in the model, it was hardened.

その後電気炉中で温度150℃にて12時間加熱してか
ら、さらに温度650℃にて6時間加熱して模型を消失
させて鋳型を得た。
Thereafter, it was heated in an electric furnace at a temperature of 150°C for 12 hours, and then further heated at a temperature of 650°C for 6 hours to eliminate the model and obtain a mold.

次に、真空中でこの鋳型にアルミニウム合金(AC2A
 )を鋳込み冷却した後、鉄製容器から鋳造物を取り出
し、5Nの硝酸中に浸漬して鋳型材を除去し水洗した。
Next, aluminum alloy (AC2A) was placed in this mold in vacuum.
) was cast and cooled, the casting was taken out from the iron container, immersed in 5N nitric acid to remove the mold material, and washed with water.

こうして、第1図に示したような中実金属部分lおよび
多孔性金属部分2を有するヒートシンクを作製した。
In this way, a heat sink having a solid metal portion 1 and a porous metal portion 2 as shown in FIG. 1 was manufactured.

実施例2 市販の開孔セル構造のポリウレタンフォーム(サイズ1
00X 100X 200mm>の片面に市販のPMM
A板(ポリメタクリル酸メチル板、サイズ100×20
0×611II11)をクロロプレン系接着剤を用いて
接着して模型を作成した以外は、実施例1と同様にして
鋳型を作成しアルミニウム合金を鋳込んでから冷却し、
模型と同形状の中実金属部分および多孔性金属部分を有
するヒートシンクを得た。
Example 2 Commercially available polyurethane foam with open cell structure (size 1
Commercially available PMM on one side of 00X 100X 200mm
A plate (polymethyl methacrylate plate, size 100 x 20
A mold was created in the same manner as in Example 1, except that a model was created by adhering 0x611II11) using a chloroprene adhesive, and the aluminum alloy was poured in and cooled.
A heat sink having a solid metal part and a porous metal part having the same shape as the model was obtained.

実施例3 ステンレス容器内(サイズ300 X 200 X 1
5 mm”)に溶融したポリエチレンを入れておき、こ
れに開孔セル構造を有するポリウレタンフォームの一部
を浸漬し、ポリエチレンを冷却して凝固させ、その後容
器内からポリエチレンの付着したポリウレタンフォーム
を取り出して模型を得た以外は、実施例1と同様にして
鋳型を作成しアルミニウム合金を鋳込んでから冷却し模
型と同形状の中実金属部分および多孔性金属部分を有す
るヒートシンクを得た。
Example 3 Inside a stainless steel container (size 300 x 200 x 1
A portion of polyurethane foam with an open cell structure is immersed in the molten polyethylene (5 mm"), and the polyethylene is cooled and solidified. After that, the polyurethane foam with the polyethylene attached is removed from the container. A mold was prepared in the same manner as in Example 1, except that a model was obtained. An aluminum alloy was cast and then cooled to obtain a heat sink having a solid metal part and a porous metal part having the same shape as the model.

実施例4 外径35mm、内径30mm、長さ150mmのアクリ
ルパイプ内に外径33mm、長さ150mmの開孔セル
構造を有する円筒形のポリウレタンフォーム(平均セル
数8ケ/インチ)を装入して模型を作成した。
Example 4 A cylindrical polyurethane foam (average number of cells 8 cells/inch) having an open cell structure with an outer diameter of 33 mm and a length of 150 mm was charged into an acrylic pipe with an outer diameter of 35 mm, an inner diameter of 30 mm, and a length of 150 mm. A model was created.

この模型を用いて実施例1と同様の方法で鋳型を作成し
た後に、真空中でアルミニウム合金(AC4C)l)を
鋳型の前記模型と同形状の空隙内に鋳込んだ。
A mold was created using this model in the same manner as in Example 1, and then an aluminum alloy (AC4C) was cast in vacuum into a void having the same shape as the model.

その後鋳造物と鉄製容器内から取り出し、5Nの硝酸中
に浸漬して鋳型材を除去し、水洗いした所、模型と同形
状のアルミニウム合金製の放熱管が得られた。ここで、
前記以外の発泡樹脂、プラスチック、金属(合金)も利
用可能な事は言うまでもない。また、真空鋳造ではなく
加圧鋳造による方法も当然可能である。なお、本例のよ
うな管内に多孔質金属を有する形状の物はフィルター、
デミスタ−等にも利用可能である。
Thereafter, the cast product and the iron container were taken out, immersed in 5N nitric acid to remove the mold material, and washed with water, yielding an aluminum alloy heat dissipation tube having the same shape as the model. here,
Needless to say, foamed resins, plastics, and metals (alloys) other than those mentioned above can also be used. Naturally, a method using pressure casting instead of vacuum casting is also possible. Note that a tube with a porous metal inside the tube like this example is a filter,
It can also be used as a demister etc.

動作試験 作製例1に示した方法で、多孔性金属部分(サイズ14
5 X75 X44mm、空間率97%、平均セル数6
ケ/インチ)部分と中実金属部分(サイズ145×75
X6mm)からなるアルミニウム製放熱器(重量200
g)を製作した。この放熱器にトランジスタを取り付け
、温度65℃の恒温室内で放熱試験を行った所、強制空
冷の場合360 W 、強制空冷なしの場合90Wの電
力消費があってもトランジスタの表面温度は100℃以
下であった。即ち、本放熱器は自然空冷時には90W1
強制空冷時には360Wの放熱性能を有していたことに
なる。
A porous metal part (size 14
5 x 75 x 44mm, void ratio 97%, average number of cells 6
(inch) part and solid metal part (size 145 x 75
x6mm) aluminum heat sink (weight 200mm)
g) was produced. When a transistor was attached to this heat sink and a heat dissipation test was conducted in a thermostatic chamber at a temperature of 65 degrees Celsius, the surface temperature of the transistor was below 100 degrees Celsius even though the power consumption was 360 W with forced air cooling and 90 W without forced air cooling. Met. In other words, this radiator has a power output of 90W1 during natural air cooling.
This means that it had a heat dissipation performance of 360W during forced air cooling.

また、比較のために、一般にトランジスタ冷却用に用い
られている押し出し成形による市販のアルミニウム製放
熱器(材質A1070、サイズ145X75X50mm
、重量485 g )についても同様の試験を行った。
For comparison, a commercially available extruded aluminum heat sink (material: A1070, size: 145 x 75 x 50 mm), which is generally used for transistor cooling, is also included.
, weight 485 g).

この放熱器はアルミニウム板に75X45X1.5mm
のフィンが等間際で24枚設けられているものである。
This heatsink is made of aluminum plate with dimensions of 75X45X1.5mm.
24 fins are provided at equal distances.

この放熱器を、前述にトランジスタを取り付けて、同様
にトランジスタの動作中の温度を測定して冷却性能を測
定した。この放熱器は、自然空冷時には45W、強制空
冷時には180 Wの放熱性能を示した。
A transistor was attached to this heatsink as described above, and the temperature during operation of the transistor was similarly measured to measure the cooling performance. This radiator exhibited a heat dissipation performance of 45 W during natural air cooling and 180 W during forced air cooling.

このように、本発明に従って作製された放熱器は従来の
ものよりも極めて優れた放熱性能を有している。
As described above, the heat radiator manufactured according to the present invention has extremely superior heat dissipation performance than conventional ones.

発明の効果 以上詳述の如く、本発明に従う放熱体の製造方法によれ
ば、極めて優れた放熱性能を有し、また実用上の取り扱
いも容易な放熱体を有利に製造することができる。
Effects of the Invention As detailed above, according to the method for manufacturing a heat sink according to the present invention, it is possible to advantageously manufacture a heat sink that has extremely excellent heat radiation performance and is easy to handle in practical use.

即ち、加工の容易な樹脂材料によって適切な形状の模型
を作製し、これに基づいて鋳型を形成し、更にこの鋳型
に金属材料を鋳込むことによって、複雑な形状の放熱体
を容易且つ高品質に作製することができる。
In other words, by making a model of an appropriate shape from a resin material that is easy to process, forming a mold based on this model, and then casting a metal material into this mold, a heat sink with a complex shape can be manufactured easily and with high quality. It can be made into

即ち、熱放散体は多孔質部材として形成されるので、放
熱体の比表面積が極めて大きく、冷却媒体に対して効率
よく熱を放散する。一方、中実な基部を備えているので
、冷却すべき部材への取りつけも容易であり、また取り
付は後も機械的に安定している。また、この中実部が被
冷却部材と放熱体との間に介在しているので、被冷却部
材の熱は有効に発熱体に伝導される。
That is, since the heat dissipation body is formed as a porous member, the specific surface area of the heat dissipation body is extremely large, and the heat dissipation body efficiently dissipates heat to the cooling medium. On the other hand, since it has a solid base, it is easy to attach it to the member to be cooled, and the attachment remains mechanically stable. Further, since this solid portion is interposed between the member to be cooled and the heat radiating body, the heat of the member to be cooled is effectively conducted to the heat generating body.

更に、多孔質部材は、その嵩に対して空間率が大きく、
極めて軽量に放熱体を構成できる。従って、本発明に従
う放熱体は、軽量化あるいは小型化の要求される電子製
品に好適に利用することができる。
Furthermore, the porous member has a large void ratio relative to its bulk;
The heat sink can be configured to be extremely lightweight. Therefore, the heat sink according to the present invention can be suitably used in electronic products that require reduction in weight or size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う放熱体の構成を概略的に示す斜
視図である。 〔参照番号〕 1・・中実金属部分 2・・多孔性金属部分
FIG. 1 is a perspective view schematically showing the configuration of a heat sink according to the present invention. [Reference number] 1. Solid metal portion 2. Porous metal portion

Claims (7)

【特許請求の範囲】[Claims] (1)内部が流体に対して充分な流通性を有する多孔型
熱放散部と、該多孔型熱放散部と一体に構成され、冷却
すべき部材と相補的な面を有する中実な基部とから構成
されている多孔型放熱体を製造する方法であって、 前記多孔型熱放散部と同じ形状の多孔質樹脂と前記基部
と同じ形状の樹脂部材とを接合して前記多孔型放熱体の
模型を作製する工程と、 鋳型材を該模型に含浸すると同時に該鋳型材中に埋設す
る工程と、 該鋳型材中から前記模型を除去する工程と、該模型を除
去された該鋳型内の空洞に放熱体材料金属を充填する工
程と、 該鋳型を除去する工程と を含むことを特徴とする多孔型放熱体の製造方法。
(1) A porous heat dissipating section whose interior has sufficient fluid circulation, and a solid base that is integrated with the porous heat dissipating section and has a surface complementary to the member to be cooled. A method for manufacturing a porous heat dissipating body comprising: a porous resin having the same shape as the porous heat dissipating portion and a resin member having the same shape as the base; a step of making a model; a step of impregnating the model with a mold material and simultaneously embedding it in the mold material; a step of removing the model from the mold material; and a step of forming a cavity in the mold from which the model has been removed. 1. A method for manufacturing a porous heat radiator, the method comprising the steps of: filling a heat radiator material metal; and removing the mold.
(2)前記多孔質樹脂が、50%以上の空間率を有する
ことを特徴とする特許請求の範囲第1項に記載の多孔型
放熱体の製造方法。
(2) The method for manufacturing a porous heat radiator according to claim 1, wherein the porous resin has a porosity of 50% or more.
(3)前記放熱体材料金属が、Al、Cu、Fe、Ni
、Zn、Sn、Mg、Ti、Au、Ag、Ptあるいは
それらの合金から形成されていることを特徴とする特許
請求の範囲第1項または第2項に記載の多孔型放熱体の
製造方法。
(3) The heat sink material metal is Al, Cu, Fe, Ni
, Zn, Sn, Mg, Ti, Au, Ag, Pt, or an alloy thereof.
(4)前記模型を、フェノール樹脂、エポキシ樹脂、ポ
リエステル樹脂、ポリエチレン、ポリ塩化ビニル、PV
A、ポリスチレン、ポリプロピレン、ポリアクリルニト
リル、ポリアミド、ポリカーボネートあるいはポリウレ
タンによって形成することを特徴とする特許請求の範囲
第1項乃至第3項のいずれか1項に記載の多孔型放熱体
の製造方法。
(4) The model can be made of phenol resin, epoxy resin, polyester resin, polyethylene, polyvinyl chloride, PV
The method for producing a porous heat sink according to any one of claims 1 to 3, characterized in that the porous heat sink is formed from A, polystyrene, polypropylene, polyacrylonitrile, polyamide, polycarbonate, or polyurethane.
(5)前記模型が開孔セル構造のポリウレタンフォーム
とパラフィンワックス板とを接着剤で接合して形成する
ことを特徴とする特許請求の範囲第1項乃至第3項のい
ずれか1項に記載の多孔型放熱体の製造方法。
(5) The model is formed by bonding a polyurethane foam with an open cell structure and a paraffin wax board with an adhesive, according to any one of claims 1 to 3. A method for manufacturing a porous heat sink.
(6)前記模型が開孔セル構造のポリウレタンフォーム
とポリメタクリル酸メチル板とを接着剤で接合して形成
することを特徴とする特許請求の範囲第1項乃至第3項
のいずれか1項に記載の多孔型放熱体の製造方法。
(6) Any one of claims 1 to 3, wherein the model is formed by bonding a polyurethane foam with an open cell structure and a polymethyl methacrylate plate with an adhesive. A method for manufacturing a porous heat sink as described in .
(7)前記接着剤が、クロロプレン系、ニトリルゴム系
、ブチルゴム系、エポキシ系、ポリウレタン系、ポリエ
ステル系、塩化ビニル系あるいはポリアミド系の接着剤
であることを特徴とする特許請求の範囲第6項あるいは
第7項に記載の多孔型放熱体の製造方法。
(7) Claim 6, characterized in that the adhesive is a chloroprene-based, nitrile rubber-based, butyl rubber-based, epoxy-based, polyurethane-based, polyester-based, vinyl chloride-based, or polyamide-based adhesive. Alternatively, the method for manufacturing a porous heat sink according to item 7.
JP61285279A 1986-11-30 1986-11-30 Production of porous heat radiator Pending JPS63137565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285279A JPS63137565A (en) 1986-11-30 1986-11-30 Production of porous heat radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285279A JPS63137565A (en) 1986-11-30 1986-11-30 Production of porous heat radiator

Publications (1)

Publication Number Publication Date
JPS63137565A true JPS63137565A (en) 1988-06-09

Family

ID=17689455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285279A Pending JPS63137565A (en) 1986-11-30 1986-11-30 Production of porous heat radiator

Country Status (1)

Country Link
JP (1) JPS63137565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452046A (en) * 1990-06-19 1992-02-20 Toyama Pref Gov Manufacture of metal porous body in collapsible mold
JP2001232444A (en) * 2000-01-10 2001-08-28 General Electric Co <Ge> Casting having high heat transfer surface, and mold and pattern for forming the same
CN100464914C (en) * 2007-10-12 2009-03-04 西北有色金属研究院 Metal fiber polyporous material subsequent processing method
JP2014064035A (en) * 2008-06-30 2014-04-10 Alcatel-Lucent Usa Inc Structurally complicated monolithic heat sink design

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452046A (en) * 1990-06-19 1992-02-20 Toyama Pref Gov Manufacture of metal porous body in collapsible mold
JP2001232444A (en) * 2000-01-10 2001-08-28 General Electric Co <Ge> Casting having high heat transfer surface, and mold and pattern for forming the same
CN100464914C (en) * 2007-10-12 2009-03-04 西北有色金属研究院 Metal fiber polyporous material subsequent processing method
JP2014064035A (en) * 2008-06-30 2014-04-10 Alcatel-Lucent Usa Inc Structurally complicated monolithic heat sink design

Similar Documents

Publication Publication Date Title
US4285385A (en) Method for the production of heat exchangers
CN101712115B (en) Method for preparing gradient-structure copper radiating rib for electronic element
US6424529B2 (en) High performance heat exchange assembly
CN109275311B (en) Three-dimensional micro-channel and pulsating flow heat dissipation device
JPS63140753A (en) Production of porous heat radiator
CN108601288B (en) High-power matrix fin enhanced heat exchange phase change heat sink
JP2010067842A (en) Heat sink consisting of combination of graphite-metal complex and aluminum extrusion material
JPH0444602B2 (en)
CN108120333A (en) A kind of flat-plate heat pipe microchannel composite heating radiator and its manufacturing method
WO1999034438A1 (en) Heat sink
WO2003100339A1 (en) Heat exchanger
JPS63137565A (en) Production of porous heat radiator
EP0930480A3 (en) Heat exchanger
JP4458872B2 (en) heatsink
JPS63140783A (en) Manufacture of porous radiant body
CN209257297U (en) A kind of mold of good cooling results
JPS63140292A (en) Porous-type heat radiator
CN203967068U (en) Be applicable to the heat abstractor of heater members
JP2002001511A (en) Method for manufacturing heat sink
JPS6247617B2 (en)
CN115615227B (en) Albizia flower-shaped efficient phase-change heat storage ball
CN219698283U (en) Aluminum alloy section bar with self-radiating cavity
CN100367492C (en) Method for making radiating structure of rectifier
CN211267480U (en) Integrated heat pipe communication radiator
JP7165361B2 (en) heatsink