JPS63137137A - Sintered steel excellent in machinability - Google Patents

Sintered steel excellent in machinability

Info

Publication number
JPS63137137A
JPS63137137A JP28070086A JP28070086A JPS63137137A JP S63137137 A JPS63137137 A JP S63137137A JP 28070086 A JP28070086 A JP 28070086A JP 28070086 A JP28070086 A JP 28070086A JP S63137137 A JPS63137137 A JP S63137137A
Authority
JP
Japan
Prior art keywords
graphite powder
powder
sintered steel
machinability
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28070086A
Other languages
Japanese (ja)
Inventor
Takeo Omura
大村 武雄
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28070086A priority Critical patent/JPS63137137A/en
Publication of JPS63137137A publication Critical patent/JPS63137137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a sintered steel having superior machinability, by adding a graphite powder, to the surface of which a part or all of respectively prescribed percentages of fluorides of alkaline earths is allowed to adhere, to an iron powder as raw material, by mixing the above, and by sintering the resulting mixture so as to minimize dimensional change and deterioration in mechanical strength. CONSTITUTION:A part or all of the fluorides of alkaline earths having >=1,200 deg.C melting point (four kinds of MgF2, CaF2, SrF2, and BaF2) is previously added to the graphite powder to undergo mixing. Then, the graphite powder after the above treatment is added to the iron powder as raw material to undergo mixing and the resulting mixture is sintered, so that desired sintered steel excellent in machinability can be obtained. It is necessary to regulate the additive quantity of the above fluorides of alkaline earths to the graphite powder to 0.1-1.2wt% based on the iron powder as raw material. Moreover, it is desirable that grain size of the above fluoride is regulated to <=44mum, preferably <=10mum, for the purpose of adhesion to the graphite powder.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、弗化物を添加した鉄粉末を用いた粉末加工に
よる切削性の優れた焼結鋼の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing sintered steel with excellent machinability by powder processing using iron powder added with fluoride.

〈従来の技術〉 従来から粉末冶金法によって製造される焼結機械部品は
成形・焼結により所要の寸法・形状に製造され、切削な
どの機械加工を行なうのはまれであった。近年、焼結機
械部品の高精度化や複雑形状化による形状上の制約等か
らやむを得ず切削する焼結部品が増加してきた。一般に
焼結鋼は、残存する空孔のため断続切削になること、お
よび熱伝導性に劣ることから、その切削性は溶装鋼に比
較して極めて劣っている。この欠点を改善するため溶製
鋼で有用な快削元素Pb、Bi 、S 、Se、Te。
<Prior Art> Conventionally, sintered machine parts manufactured by powder metallurgy have been manufactured into desired dimensions and shapes by molding and sintering, and machining such as cutting has rarely been performed. In recent years, there has been an increase in the number of sintered parts that must be cut due to shape constraints due to higher precision and more complex shapes of sintered machine parts. In general, sintered steel has extremely poor machinability compared to welded steel because it requires interrupted cutting due to remaining pores and has poor thermal conductivity. To improve this drawback, free-cutting elements Pb, Bi, S, Se, and Te are useful in molten steel.

MnS、  BaS、CaS  、  Ba5O,、C
a5Oa等を鉄15)に合金化して添加する方法あるい
は混合添加する方法が検討された(特公昭46−395
64号、特公昭52−16684号参照)。
MnS, BaS, CaS, Ba5O,,C
A method of alloying and adding a5Oa etc. to iron 15) or a method of adding it in a mixed manner was investigated (Japanese Patent Publication No. 46-395).
64, Special Publication No. 52-16684).

しかし、例えばpbは融点が約330℃と極端に低く、
しかも鉄中に合金せず焼結鋼に均一に分散させることが
困難である。また、S、Se、Teを鉄粉中に固溶させ
た7トマイズ鉄粉があるが、S、Se。
However, for example, PB has an extremely low melting point of about 330°C.
Furthermore, it does not alloy in iron and is difficult to uniformly disperse in sintered steel. In addition, there is 7tomized iron powder in which S, Se, and Te are dissolved in iron powder, but S, Se.

Teは焼結鋼のマトリックスを脆化させてノツチ効果に
より切削性を改善させるので焼結鋼の場合強度低下が著
しい、また、特にSの場合には焼結中発生したMzSが
焼結炉耐火物および発熱体をt員傷させるので好ましく
ない、その他ではijl: I)にBad。
Te embrittles the matrix of sintered steel and improves machinability through the notch effect, resulting in a significant decrease in strength in the case of sintered steel.In addition, especially in the case of S, MzS generated during sintering increases the refractoriness of the sintering furnace. It is undesirable because it damages objects and heating elements. In other cases, it is bad for I).

Cab、 Ba50a、 またはCa5O,を添加混合
して快削性焼結鋼を得る方法も提案されているが、切削
性は改善されるものの前述したように焼結中にH,Sを
発生すること、および焼結後にBaS 、 CaSが吸
水性を有していて焼結鋼が錆易いという欠点があった。
A method of obtaining free-cutting sintered steel by adding and mixing Cab, Ba50a, or Ca5O has also been proposed, but although the machinability is improved, as mentioned above, H and S are generated during sintering. , and that BaS and CaS have water absorption properties after sintering, resulting in the sintered steel being susceptible to rust.

〈発明が解決しようとする問題点〉 本発明は、溶製鋼で有用な快削元素を添加した焼結鋼に
は前述のような問題点があるので、その“問題点を克服
し、切削性に優れた焼結鋼に関するものである。
<Problems to be Solved by the Invention> Since sintered steel to which free-cutting elements useful in molten steel are added has the above-mentioned problems, the present invention aims to overcome the problems and improve machinability. This relates to sintered steel with excellent properties.

〈商題点を解決するための手段〉 本発明者らは、焼結鋼の快削性向上のため、硫化物系以
外の添加物について検討した結果、切削温度近傍の温度
に融点を存するアルカリ土類金属の弗化物を原料鉄粉に
混合させる゛ことが好結果をもたらすとの知見を得、こ
の知見にもとづいて本発明をなすに至った。
<Means for Solving the Commercial Problems> As a result of studying additives other than sulfide-based additives to improve the free machinability of sintered steel, the present inventors discovered that alkali additives having a melting point near the cutting temperature We have found that mixing earth metal fluorides with raw iron powder brings about good results, and based on this knowledge, we have accomplished the present invention.

本発明は、原料鉄粉に対し、0.1〜1.2重量%に相
当するアルカリ土類弗化物の一部または全量を表面に付
着させた黒鉛粉を、前記原料鉄粉に添加、混合して焼結
する切削性に優れた焼結鋼である。
In the present invention, graphite powder having a part or the entire amount of alkaline earth fluoride adhered to the surface of the raw material iron powder in an amount of 0.1 to 1.2% by weight is added to and mixed with the raw material iron powder. This is a sintered steel with excellent machinability.

すなわち、予め黒鉛粉にアルカリ土類金属の弗化物をそ
の融点によって、一部または全量を表面に付着させた後
鉄粉に添加混合して用いることにより、焼結時の黒鉛粉
と鉄粉との合金化を抑制し、空孔内にわずかのfree
 Cを残存させ、そのfree Cの潤滑性によって焼
結鋼の切削性を向上させ、また同時にアルカリ土類金属
弗化物を焼結鋼に均一分散させ切削性を改善した。
In other words, a part or all of alkaline earth metal fluoride is attached to the surface of graphite powder depending on its melting point, and then added to iron powder and mixed. suppresses alloying of
By allowing C to remain, the machinability of the sintered steel was improved by the lubricity of the free C, and at the same time, the alkaline earth metal fluoride was uniformly dispersed in the sintered steel to improve the machinability.

なお、使用するアルカリ土類金属弗化物の融点が低い時
には、その弗化物全量を予め黒鉛粉に付着させ、逆に融
点が高い時には、その弗化物の一部を黒鉛粉に付着させ
残りを弗化物付着黒鉛粉と一緒に添加混合し、つぎに成
形、焼結して焼結鋼を製造する。このような製造方法に
よって、焼結鋼内の空孔内にわずかに残存しているfr
ee Cの潤滑性と、均一に分散しているアルカリ土類
金属弗化物とによって焼結鋼の切削性の向上が達成でき
た。切削温度近傍の融点を有するアルカリ土類金属弗化
物は、切削時に発生する切削熱によって一部融解し、焼
結鋼の切削抵抗を著しく減少し、焼結鋼の切削性を向上
させる。常温でのこの焼結鋼の機械的強度や寸法変化は
、アルカリ土類金属部、化物の添加、混合によって従来
の焼結鋼に比べて極端に変化することはなかった。
When the melting point of the alkaline earth metal fluoride to be used is low, the entire amount of the fluoride is attached to the graphite powder in advance, whereas when the melting point is high, a part of the fluoride is attached to the graphite powder and the rest is attached to the graphite powder. It is added and mixed together with compound-attached graphite powder, and then molded and sintered to produce sintered steel. Through this manufacturing method, a small amount of fr remaining in the pores in the sintered steel
The lubricity of ee C and the uniformly dispersed alkaline earth metal fluoride made it possible to improve the machinability of sintered steel. Alkaline earth metal fluorides, which have a melting point near the cutting temperature, are partially melted by the cutting heat generated during cutting, significantly reducing the cutting resistance of sintered steel and improving the machinability of sintered steel. The mechanical strength and dimensional changes of this sintered steel at room temperature did not change drastically compared to conventional sintered steel due to the addition and mixing of alkaline earth metal parts and compounds.

〈作 用〉 以下に適正弗化物含有率、アルカリ土類金属弗化物、粒
度などについて説明する。
<Function> The appropriate fluoride content, alkaline earth metal fluoride, particle size, etc. will be explained below.

アルカリ土類金属の弗化物が0.1%未満の添加である
と黒鉛粉に付着する弗化物量が少なく通常の1000℃
以上の焼結温度では黒鉛粉全量が鉄粉と反応してセメン
タイト析出を生じ、切削工具への潤滑作用がなくなって
切削工具の摩耗が著しくなる。また、焼結鋼に分散した
弗化物のみだけでは少量すぎて切削性の改善が見られな
い。
When less than 0.1% of alkaline earth metal fluoride is added, the amount of fluoride adhering to graphite powder is small and the temperature at 1000℃ is lower than normal.
At the above sintering temperature, the entire graphite powder reacts with the iron powder to form cementite precipitation, which loses its lubricating effect on the cutting tool and causes significant wear of the cutting tool. Furthermore, if only fluoride is dispersed in sintered steel, the amount is too small to improve the machinability.

一方、1.2%を超えるアルカリ土類金属弗化物の添加
であると、実施例1の第3図に示すように切削抵抗のひ
とつである主分力および切削工具の横逃げ面摩耗量は添
加量とともに直線的に改善されて好ましいのであるが、
第2図に示すように圧縮性が低下するため機械的強度も
極端に低下するので好ましくない。
On the other hand, if more than 1.2% of alkaline earth metal fluoride is added, as shown in FIG. It is preferable that it improves linearly with the amount added, but
As shown in FIG. 2, the compressibility is lowered and the mechanical strength is also extremely lowered, which is not preferable.

ここで本発明におけるアルカリ土類金属弗化物とは、1
200℃以上の融点を有する MgF* 、 CaFz
 。
Here, the alkaline earth metal fluoride in the present invention is 1
MgF*, CaFz with a melting point of 200°C or higher
.

SrF、 、 BaF、の4種類であり、BeF、は低
融点のため本発明から除外する。また、その粒度は黒鉛
粉に付着させるため44μm以下好ましくは10μm以
下がよい、なお、その他使用する鉄粉、黒鉛粉、Cu粉
、ステアリン酸亜鉛等の固体金型潤滑剤は、粉末冶金で
用いる普通の粒度のもので十分であり特に制限はしない
There are four types: SrF, , BaF, and BeF is excluded from the present invention because of its low melting point. In addition, the particle size is preferably 44 μm or less, preferably 10 μm or less in order to adhere to the graphite powder. In addition, other solid mold lubricants such as iron powder, graphite powder, Cu powder, and zinc stearate are used in powder metallurgy. A particle of normal particle size is sufficient and there are no particular restrictions.

つぎに、黒鉛粉表面にアルカリ土類金属の弗化物を付着
させる方法としては、アルカリ土類金属弗化物の粒度を
黒鉛粉粒度の1710程度に細かく粉砕しておき、両者
を市販の混合機あるいは造粒機を用いて表面改質処理す
ることにより、大きな黒鉛粉表面に細かなアルカリ土類
金属弗化物が付着した複合粉を簡単に得ることができる
。必要ならさらに、粉砕機を用いて軽く粉砕してより膜
厚を均−にコーティングすることが可能である。
Next, as a method for attaching the alkaline earth metal fluoride to the surface of the graphite powder, the particle size of the alkaline earth metal fluoride is finely ground to about 1710 the particle size of the graphite powder, and both are mixed using a commercially available mixer or By performing surface modification treatment using a granulator, it is possible to easily obtain a composite powder in which fine alkaline earth metal fluorides are attached to the surface of a large graphite powder. If necessary, it is possible to further coat the film evenly by pulverizing it lightly using a pulverizer.

〈実施例〉 (実施例1) 原料粉末として、粒度150μm以下のミルスケール還
元鉄粉、4Ccrm以下のCaFz 、 50p m以
下の天然黒鉛粉、100μm以下の電解Ca粉およびス
テアリン酸亜鉛を用いた。
<Example> (Example 1) As raw material powders, mill-scale reduced iron powder with a particle size of 150 μm or less, CaFz with a particle size of 4 Ccrm or less, natural graphite powder with a particle size of 50 pm or less, electrolytic Ca powder with a particle size of 100 μm or less, and zinc stearate were used.

CaF、は添加量の半分を黒鉛粉に付着させ、残り半分
をCaF!付着黒鉛粉、電解Ca粉として、Fe−3%
Cu −0,9%C−X% CaFzにしさらにステア
リン酸亜鉛を1.0%加えて混合し、成形圧力5t/d
で抗折力、引張強さの試験に用いる試験片および内径2
01−φ外径60■−φのリング試験片を成形した。
Half of the amount of CaF added is attached to graphite powder, and the remaining half is CaF! Fe-3% as adhered graphite powder and electrolytic Ca powder
Cu -0.9%C-X% CaFz was further mixed with 1.0% zinc stearate, and the molding pressure was 5t/d.
Test piece used for transverse rupture strength and tensile strength tests and inner diameter 2
A ring test piece with an outer diameter of 01-φ and 60 cm-φ was molded.

その後、J 11 /win 、 Hz 31 /11
inの雰囲気中にて600℃で30m+n間脱ろう後1
130℃で30a+in間焼結した。切削条件は以下の
通りである。
Then J 11 /win, Hz 31 /11
After dewaxing for 30m+n at 600℃ in an atmosphere of 1
It was sintered at 130°C for 30a+in. The cutting conditions are as follows.

試験片・・・内径20maφ、外径60mmφ、高さ2
00X3個 切込み・・・1.5am 送 リ・・・0.25m■/回転 切削速度−100m /1ain 切削距離・・・224m 切削工具・・・JIS  PIO種 焼結後の抗折力用試験片の長さ方向の寸法変化を第1図
に、引張強さ、伸びを第2図に、切削抵抗のひとつであ
る主分力、切削工具の横逃げ面摩耗量を第3図に示した
。また、第1表には切削切粉を分析した結果を示す。
Test piece: inner diameter 20maφ, outer diameter 60mmφ, height 2
00 Figure 1 shows the dimensional change in the length direction, Figure 2 shows the tensile strength and elongation, and Figure 3 shows the principal component force, which is one of the cutting resistances, and the amount of wear on the flank flank of the cutting tool. Furthermore, Table 1 shows the results of analyzing cutting chips.

第1図から、CaF、の添加量が増加すると寸法変化が
膨張傾向になるが、その差はわずかであることがわかる
From FIG. 1, it can be seen that as the amount of CaF added increases, the dimensional change tends to expand, but the difference is small.

第   1   表 (単位 重量%) 第2図から、CaFz添加量が1.2%を超えると、引
張強さおよび体びが低下するのがわかる。
Table 1 (Unit: Weight %) From FIG. 2, it can be seen that when the amount of CaFz added exceeds 1.2%, the tensile strength and body length decrease.

第3図から、切削抵抗のひとつである主分力が(aFz
の添加量の増加とともにほぼ直線的に低下しており、こ
れは第1表に示すfree Cによる切削工具の潤滑性
のためと焼結鋼中に分散されたCaF2の量が増加した
ためである。また、同様の理由から4!逃げ面摩耗量も
CaF、の増加とともに直線的に低下している。従って
、焼結鋼の機械的強度を保ったままで切削性を改善する
にはCaFlがQ、1〜1.2%の範囲が好ましいこと
がわかる。
From Figure 3, we can see that the principal force, which is one of the cutting forces, is (aFz
It decreases almost linearly as the amount of CaF2 added increases, and this is due to the lubricity of the cutting tool due to free C shown in Table 1 and the increase in the amount of CaF2 dispersed in the sintered steel. Also, for the same reason, 4! The amount of flank wear also decreases linearly as CaF increases. Therefore, it can be seen that in order to improve the machinability of the sintered steel while maintaining its mechanical strength, it is preferable that CaFl is in the range of Q and 1 to 1.2%.

(実施例2) 実施例1と同粒度のミルスケール還元鉄粉、天然黒鉛粉
、電解Ca粉、MgFz 、 BaFz 、 5rFz
およびステアリン酸亜鉛を用い(Fe残余部−3%Cu
 −0,9%C−0,3%弗化物)+1.0%Zn5t
、に混合した。
(Example 2) Mill scale reduced iron powder with the same particle size as Example 1, natural graphite powder, electrolytic Ca powder, MgFz, BaFz, 5rFz
and zinc stearate (Fe remainder - 3% Cu)
-0,9%C-0,3% fluoride) +1.0%Zn5t
, mixed with.

なお、比較例では弗化物を黒鉛粉に付着しないで用い、
本発明例ではSrF、のみ混合量の半量を黒鉛粉に付着
してから上記組成に混合し、Mgl”、とBaFzは全
量黒鉛粉に付着させてから添加混合し、実施例1と同(
、;試験片を得た。
In addition, in the comparative example, fluoride was used without adhering to graphite powder,
In the example of the present invention, only half of the mixed amount of SrF was attached to the graphite powder and then mixed to the above composition, and the entire amount of Mgl" and BaFz were attached to the graphite powder and then added and mixed.
, ; A test piece was obtained.

寸法変化を第4図に、引張強さ、伸びを第5図に、主分
力、横逃げ面摩耗量を第6図に、第2表には切削切粉分
析値を示す。
Figure 4 shows the dimensional changes, Figure 5 shows the tensile strength and elongation, Figure 6 shows the principal force and side flank wear amount, and Table 2 shows the cutting chip analysis values.

第4図から、黒鉛粉に予め弗化物を付着させない比較例
はいずれも寸法変化が本発明例よりも収縮傾向にある。
As can be seen from FIG. 4, in all the comparative examples in which fluoride was not attached to the graphite powder in advance, the dimensional changes tended to shrink more than in the inventive examples.

これは第2表のfree Cの差による鉄粉と黒鉛粉と
の合金化の違いによるものと思われる。
This seems to be due to the difference in alloying between iron powder and graphite powder due to the difference in free C shown in Table 2.

第5図から、焼結鋼中に均一に弗化物が分散していない
比較例は本発明例よりも引張強さ、伸びが低下するのが
わかる。
From FIG. 5, it can be seen that the comparative example in which fluoride is not uniformly dispersed in the sintered steel has lower tensile strength and elongation than the inventive example.

第6図から比較例が本発明例よりも主分力、横逃げ面摩
耗量が大きいのがわかる。これも第2表のfree C
量の違いによる工具潤滑性の違い、および弗化物が均一
分散していないための両方の理由によるものと思われる
0以上から添加する黒鉛粉には弗化物の一部または全量
をIす着させてから混合するのが必要な条件であること
がわかる。
From FIG. 6, it can be seen that the comparative example has a larger principal force and side flank wear amount than the inventive example. This is also free C in Table 2.
This is thought to be due to both the difference in tool lubricity due to the difference in the amount and the fact that the fluoride is not uniformly dispersed.For graphite powder added from 0 or more, some or all of the fluoride is added to it. It can be seen that the necessary condition is to mix the mixture after mixing.

〈発明の効果〉 本発明によると、寸法変化および機械的強度低下を最小
限に抑えて、切削性のよい焼結鋼を容易に製造すること
ができ、この発明は、焼結鋼の利用分野拡大に大いに寄
与する。
<Effects of the Invention> According to the present invention, sintered steel with good machinability can be easily produced while minimizing dimensional changes and decreases in mechanical strength. It will greatly contribute to expansion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1におけるCaF2Nと抗折力用試験
片の長さ方向の寸法変化との関係を示す特性図、第2図
は、実施例1におけるCaF8Iと引張強さ、伸びとの
関係を示す特性図、第3図は、実施例1におけるCaF
t量と切削抵抗の主分力、切削工具の横逃げ面摩耗量と
の関係を示す特性図、第4図は、実施例2における添加
物と抗折力用試験片の長さ方向の寸法変化との関係を示
す特性図、第5図は、実施例2における添加物と引張強
さ、伸びとの関係を示す特性図、第6図は、実施例2に
おける添加物と主分力、 横逃げ面摩耗量との関係を示す特性図である。 特許出願人    川崎製鉄株式会社 第  1  図 0   1.0   20 CaF2M 加量(%) 第2図 (aF2添加量(−) 第  3  図 CaF2添加量(チ) 第  4  図 M9F2    BaF2SrF2 第  5  図
Figure 1 is a characteristic diagram showing the relationship between CaF2N in Example 1 and dimensional change in the longitudinal direction of the transverse rupture strength test piece, and Figure 2 is a characteristic diagram showing the relationship between CaF8I, tensile strength, and elongation in Example 1. A characteristic diagram showing the relationship, FIG. 3, shows the CaF in Example 1.
A characteristic diagram showing the relationship between the amount of t, the principal component of the cutting resistance, and the amount of side flank wear of the cutting tool. Figure 4 shows the longitudinal dimensions of the additive and transverse rupture force test piece in Example 2. FIG. 5 is a characteristic diagram showing the relationship between additives and tensile strength and elongation in Example 2. FIG. 6 is a characteristic diagram showing the relationship between additives and principal component force in Example 2. FIG. 3 is a characteristic diagram showing the relationship with side flank wear amount. Patent applicant Kawasaki Steel Corporation No. 1 Figure 0 1.0 20 CaF2M addition (%) Figure 2 (aF2 addition amount (-)) Figure 3 CaF2 addition amount (h) Figure 4 M9F2 BaF2SrF2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 原料鉄粉に対し、0.1〜1.2重量%に相当するアル
カリ土類弗化物の一部または全量を表面に付着させた黒
鉛粉を、前記原料鉄粉に添加、混合して焼結することを
特徴とする切削性に優れた焼結鋼。
Add graphite powder to the surface of which a part or all of an alkaline earth fluoride equivalent to 0.1 to 1.2% by weight of the raw iron powder is attached, mix and sinter. Sintered steel with excellent machinability.
JP28070086A 1986-11-27 1986-11-27 Sintered steel excellent in machinability Pending JPS63137137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28070086A JPS63137137A (en) 1986-11-27 1986-11-27 Sintered steel excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28070086A JPS63137137A (en) 1986-11-27 1986-11-27 Sintered steel excellent in machinability

Publications (1)

Publication Number Publication Date
JPS63137137A true JPS63137137A (en) 1988-06-09

Family

ID=17628730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28070086A Pending JPS63137137A (en) 1986-11-27 1986-11-27 Sintered steel excellent in machinability

Country Status (1)

Country Link
JP (1) JPS63137137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669142A1 (en) * 1990-11-08 1992-05-15 Doryokuro Kakunenryo Heat-resistant radiological protection material
US5545247A (en) * 1992-05-27 1996-08-13 H ogan as AB Particulate CaF2 and BaF2 agent for improving the machinability of sintered iron-based powder
EP1258537A3 (en) * 2001-05-17 2005-08-03 JFE Steel Corporation Iron-based mixed powder for powder metallurgy and iron-based sintered compact
JP2012052167A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669142A1 (en) * 1990-11-08 1992-05-15 Doryokuro Kakunenryo Heat-resistant radiological protection material
US5545247A (en) * 1992-05-27 1996-08-13 H ogan as AB Particulate CaF2 and BaF2 agent for improving the machinability of sintered iron-based powder
EP1258537A3 (en) * 2001-05-17 2005-08-03 JFE Steel Corporation Iron-based mixed powder for powder metallurgy and iron-based sintered compact
CN100347324C (en) * 2001-05-17 2007-11-07 杰富意钢铁株式会社 Iron-based mixed powder for powder metallurgy, and iron-based sintering brequette
JP2012052167A (en) * 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy

Similar Documents

Publication Publication Date Title
US20190177820A1 (en) Method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
KR100245511B1 (en) Sintered iron-based powder of improving the machinability and article made thereby
CA2520084C (en) Iron-based mixed powder for powder metallurgy and sintered body
US5938814A (en) Iron based powder mixture for powder metallurgy
JP2003514112A (en) Improved metallurgical powder composition and method of making and using the same
CA2383670C (en) Improved metal-based powder compositions containing silicon carbide as an alloying powder
DE2937724A1 (en) POWDER METALLURGICAL STEEL PRODUCT WITH A HIGH CONTENT OF VANADIUM CARBIDE
JP2003500538A (en) Improved method of making powder metallurgy compositions
US5217683A (en) Steel powder composition
JP2725333B2 (en) Powder high speed tool steel
US3705020A (en) Metals having improved machinability and method
JPS63137137A (en) Sintered steel excellent in machinability
US4702772A (en) Sintered alloy
US6296682B1 (en) Iron-based powder blend for use in powder metallurgy
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
US4015947A (en) Production of sintered aluminum alloy articles from particulate premixes
EP0760724B1 (en) IRON BASED POWDER CONTAINING Mo, P AND C
US5118341A (en) Machinable powder metallurgical parts and method
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
EP3978165A1 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JPH07233402A (en) Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact