JPS6313671A - Overhead one-side welding method - Google Patents

Overhead one-side welding method

Info

Publication number
JPS6313671A
JPS6313671A JP15854786A JP15854786A JPS6313671A JP S6313671 A JPS6313671 A JP S6313671A JP 15854786 A JP15854786 A JP 15854786A JP 15854786 A JP15854786 A JP 15854786A JP S6313671 A JPS6313671 A JP S6313671A
Authority
JP
Japan
Prior art keywords
welding
wire
flux
range
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15854786A
Other languages
Japanese (ja)
Other versions
JPH055582B2 (en
Inventor
Katsuhiko Otake
大竹 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15854786A priority Critical patent/JPS6313671A/en
Publication of JPS6313671A publication Critical patent/JPS6313671A/en
Publication of JPH055582B2 publication Critical patent/JPH055582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To form a stable penetration bead even by the overhead welding with large variation of a groove by using a wire contg. 10-30% flux to specify a push angle, the number of times of short-circuits and a weaving direction and perform the welding. CONSTITUTION:At the time of the overhead one-side welding, the wire containing the 10-30% flux of the wire weight which contains >=50wt% slagging agents is used and the push angle A1 of the wire is made in a range of 20-50 deg. and the number of times of short-circuits is made in a range of 15-50times/sec. Furthermore, the weaving is performed in the right and left directions of the groove and in a two-dimensional plane in the direction of the plate thickness of base metal. In this way, an arc is generated stably and a heat gain becomes proper and the head of the surface and the rear is formed satisfactorily. As a result, even in case of the overhang welding with the large gap variation of a block, etc., of the bottom of a ship, the satisfactory penetration bead can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラックス太りワイヤを使用する上向片面溶接
方法に関し、詳細には開先変動が犬ぎくても安定した裏
波ビードを形成することができる上向片面溶接方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an upward single-sided welding method using a thickened flux wire, and more specifically, to forming a stable Uranami bead even if the groove fluctuates sharply. The present invention relates to an upward single-sided welding method that allows for upward single-sided welding.

[従来の技術] 造船における船底の溶接や橋梁における大ブロックの建
造等に当たっては、上向姿勢で行なわなければならない
溶接箇所にしばしば遭遇する。
[Prior Art] When welding the bottom of a ship in shipbuilding or constructing a large block for a bridge, welding points that must be performed in an upward position are often encountered.

ところか上向姿勢の溶接では溶接金属の溶は落ちが発生
し易く溶接の中断を余儀なくされることが多い。従って
溶接欠陥を生じる危険があり、溶接箇所の裏面側から下
向姿勢で溶接(補修溶接を含む)を実施することになる
ので挟隘部に入りこんでの溶接作業となり、余分な工程
や工数が増えてしまう。
However, when welding in an upward position, the weld metal tends to drip, often forcing welding to be interrupted. Therefore, there is a risk of welding defects occurring, and since welding (including repair welding) must be performed from the back side of the welded area in a downward position, welding work must be performed by entering the narrow area, which requires extra steps and man-hours. It will increase.

そこで上向片面溶接においても良好な溶接継手を得るこ
とのできる方法について色々の工夫及び提案がなされて
はいるものの、実用面において完壁と考えられるものは
未だ知られていない。
Therefore, although various ideas and proposals have been made regarding methods for obtaining a good welded joint even in upward single-sided welding, there is still no known method that can be considered perfect in practical terms.

その原因の1つとしては母材の開先形状が一定でないこ
とを挙げることができる。即ち母材間のギャップか小さ
過ぎると裏波ビードが形成されず、反対にギャップが大
き過ぎると裏波ビートにへこみが生したり或は表ビート
に凸部が生し、次層での融合不良を引ぎ起こしたり又は
溶は落ち等の不都合を引き起こすので、開先ルート幅は
溶接線全長に亘って可及的均等なものにしなければなら
ない。そこで例えは特開昭48−56543号では、開
先幅の変動を打消し得る様な幅に調整された薄鋼板をギ
ャップ内に挿入りるという試みがなされているが、この
様な条イ?1を満足する薄鋼板を形成することは実用」
二はとノVと不可能である。
One of the reasons for this is that the groove shape of the base material is not constant. In other words, if the gap between the base materials is too small, the uranami bead will not be formed, and on the other hand, if the gap is too large, the uranami bead will be dented or a convex portion will be formed on the front bead, which will prevent fusion in the next layer. The groove root width must be made as uniform as possible over the entire length of the weld line to avoid problems such as failure or melt drop. For example, in Japanese Patent Application Laid-open No. 48-56543, an attempt was made to insert a thin steel plate into the gap whose width was adjusted to cancel out the variation in the groove width. ? It is practical to form a thin steel plate that satisfies 1.
The second one is impossible.

[発明が解決しようとする問題点] また立向姿勢や」二面姿勢の溶接では、表ビードの凸形
化を防止する溶接方法とし゛Cソリッドワイヤを用いた
短絡移行(ショートアーク)溶接が採用されることがあ
る。短絡移行ではアーク電圧を低くして溶融金属を接触
させることにより安定径行させるのであるが、ソリッド
ワイヤを使用する場合の実質的なアーク電圧は16〜2
3V程度の比較的狭い範囲であり、この範囲を外れると
アークが不安定となっ゛C安定溶接の連続実施が困難と
なる。
[Problems to be Solved by the Invention] In addition, for welding in a vertical position or a two-sided position, short-circuit transition (short arc) welding using a C solid wire is adopted as a welding method to prevent the surface bead from becoming convex. may be done. In short-circuit transition, the arc voltage is lowered to bring the molten metal into contact and stabilize the trajectory, but when using a solid wire, the actual arc voltage is 16 to 2.
This is a relatively narrow range of about 3V, and outside this range the arc becomes unstable and it becomes difficult to perform continuous stable welding.

また短絡回数は約70〜130回と比較的多く、短絡回
数が少なくなると表ビードか凸形となったり溶は落ちを
発生する。このようにソリッドワイヤを用いた短絡移行
での溶接条件幅は非常に狭い。さらに上向姿勢の片面溶
接においても母材の許容ギャップ範囲が狭い(実質上4
±1 mm)という限定が緩和される訳ではない。従っ
てソリッドワイヤを用いて短絡移行を行なう上記改良方
法であっても母材間のギャップが一定しない上向溶接に
は不向きであり、実用性に乏しいものであった。
Further, the number of short circuits is relatively high, about 70 to 130 times, and when the number of short circuits decreases, the surface bead becomes convex or melt drop occurs. As described above, the range of welding conditions for short-circuit transition using solid wire is extremely narrow. Furthermore, even in single-sided welding in an upward position, the allowable gap range for the base metal is narrow (practically 4
±1 mm) is not relaxed. Therefore, even the above-mentioned improved method of performing short-circuit transition using a solid wire is unsuitable for upward welding where the gap between the base materials is not constant, and has poor practicality.

そこで本発明者はギャップ変動を伴なう開先であっても
上向姿勢で安定して連続m接を行なうことのできる方法
を提供すべく種々研究を積み重ねた結果、本発明を完成
させるに至った。
Therefore, the present inventor has conducted various researches to provide a method that can perform continuous m-welding stably in an upward position even on a groove with gap fluctuation, and as a result, he has completed the present invention. It's arrived.

[問題点を解決するための手段] 上記目的を達成し得た本発明方法は、50重量%以上が
造滓剤であるフラックスをワイヤ全重量に対して10〜
30%含有させたフラックス入りワイヤを用い、該ワイ
ヤの後退角度を20〜50度の範囲に設定しつつ、短絡
回数を15〜50回/秒の範囲で上向溶接する点を要旨
とするものである。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, uses flux of which 50% by weight or more is a slag-forming agent in an amount of 10% to 10% by weight based on the total weight of the wire.
The gist is to use a flux-cored wire containing 30%, set the receding angle of the wire in the range of 20 to 50 degrees, and perform upward welding at a short circuit frequency of 15 to 50 times/second. It is.

[作用] 本発明はフラックス入りワイヤを用いて上向溶接する方
法であり、ワイヤ重量に対するフラックスの充填割合は
10〜30%(重量%の意味、以下同じ)の範囲とする
。即ちフラックスが10%未満であるとソリッドワイヤ
の溶接特性と類似した性質を呈し、前項で述べた様な不
具合点が解消されず、逆に30%を超えるとワーCヤの
強度不足による送給不良が発生し、アーク不安定となっ
て表ビード形状も不良となる。
[Function] The present invention is a method of upward welding using a flux-cored wire, and the filling ratio of flux to the weight of the wire is in the range of 10 to 30% (the meaning of % by weight, the same applies hereinafter). In other words, if the flux is less than 10%, the welding characteristics will be similar to that of solid wire, and the problems mentioned in the previous section will not be resolved, while if it exceeds 30%, the wire will not be fed due to insufficient strength. A defect occurs, the arc becomes unstable, and the surface bead shape also becomes defective.

またフラックス中の造滓剤はフラックス全体の50%以
上とし、スラグによる表ビードの保持効果を安定的に発
揮せしめる。本発明で用いられる造滓剤は、スラグ形成
を主目的とするものの他、結果的にスラグとして残留す
るものを含み、例えばTiO2、ZrO2,5i02 
、A1203 。
In addition, the slag forming agent in the flux should be at least 50% of the total flux to ensure that the slag retains the surface beads stably. Slag-forming agents used in the present invention include those whose main purpose is to form slag, as well as those that remain as slag, such as TiO2, ZrO2, 5i02
, A1203.

K2O,Na20等が挙げられる。K2O, Na20, etc. are mentioned.

なお以下に記載するフラックス入りワイヤとは上記範囲
のものとする。
Note that the flux-cored wire described below is within the above range.

第1図は水平母材1を上向溶接する場合の説明図である
。このとぎ溶接進行方向(矢印B)に対する垂直線Hと
溶接用ワイヤ4のなす後退角度A1は20〜50度の範
囲に設定する必要があり、後退角度A1が20度未満の
場合にはアーク切れが発生し易く、逆に50度を超える
とアーク状態の監視及びアーク狙いの位置調整が困難と
なって溶接作業に支障をきたし、溶接が不安定となる。
FIG. 1 is an explanatory diagram of upward welding of the horizontal base material 1. The receding angle A1 formed by the welding wire 4 and the perpendicular line H to the direction of welding progress (arrow B) must be set in the range of 20 to 50 degrees, and if the receding angle A1 is less than 20 degrees, the arc will break. On the other hand, if the angle exceeds 50 degrees, it becomes difficult to monitor the arc condition and adjust the arc aiming position, which hinders welding work and makes welding unstable.

尚図中の符号2は溶接金属、3a、3bはスラグ、5は
溶接トーチ、6はライ−バー、7は裏当材を夫々示す。
In the figure, reference numeral 2 represents weld metal, 3a and 3b represent slag, 5 represents a welding torch, 6 represents a liver, and 7 represents a backing material.

フラックス入りワイヤは通常フリーフライト(粒状移行
や噴霧状移行)状態で使用されることが多いが、アーク
電圧を下げることによって短絡移行となり本発明はこの
短絡移行を積極的に利用するものである。いまアーク電
流一定の条件下でアーク電圧を下げると短絡回数は増加
するが、短絡回数か50回/秒J:り多くなると入熱が
不足して母材の溶込みが不−1−分となり安定した溶接
はできない。逆に短絡回数か15回/秒より少ないと入
熱量が多く 119過ぎて裏ビー1−か凹状となり、極
端な場合には熔り落ちを牛しる。
Flux-cored wire is usually used in a free flight state (granular transfer or atomized transfer), but by lowering the arc voltage, short circuit transfer occurs, and the present invention actively utilizes this short circuit transfer. Now, if the arc voltage is lowered under the condition that the arc current is constant, the number of short circuits will increase, but if the number of short circuits increases to 50 times/sec, the heat input will be insufficient and penetration into the base metal will be insufficient. Stable welding is not possible. On the other hand, if the number of short circuits is less than 15 times/second, the amount of heat input will be large.

溶接用ワイヤのウィービングは1υ月間のギャップの大
ぎさに応じ゛〔第4図(a)に示す様に開先左右方向に
振幅さl′C行なうか、図示した梯な直線的ウィービン
グでは溶融金属の溶は落ちが生じ易くなり表ビードが凸
状に、また裏ビードが凹状となる。そこで本発明の好ま
しい実施態様では第4図(b)、(c)に示す様に開先
左右方向及び母材板厚方向を含む2次元面内でウィービ
ングさせることとし、その結果溶融金属の濡れ性が良好
となって溶融金属の溶は落ちか少なくなり、ビート外観
も良好となる。
The weaving of the welding wire depends on the size of the gap for 1υ months. Melting tends to occur and the front bead becomes convex and the back bead becomes concave. Therefore, in a preferred embodiment of the present invention, weaving is carried out in a two-dimensional plane including the left-right direction of the groove and the thickness direction of the base material, as shown in FIGS. 4(b) and 4(c). The properties of the molten metal are improved, the melting of the molten metal is reduced, and the appearance of the beets is also improved.

[実施例] 第1表は母イ45M4tn(厚さ+6mm)をフラック
ス充填割合の異なるワイヤによって上向溶接した場合の
溶接結果を示す。尚溶接条件は下記する通りである。
[Example] Table 1 shows the welding results when 45M4tn (thickness +6 mm) was welded upward using wires with different flux filling ratios. The welding conditions are as follows.

溶接条件 電流 :140〜160A 電圧 ;17〜19V 速度 :6〜9 cvn1分 開先形状:ギャップ6mm、50” V字型開先シール
ドガス:Ar−20%CO2 ワイヤ:YCW−2 裏当材:KL−3 ウィービング条件 振幅W:5〜8ml11 振幅D:2mm フラックス組成:造滓剤60%、鉄粉10%、脱酸剤3
0% この結果フラックスの充填割合が10〜30%の範囲内
であれば表ビード形状及び裏ビード形状は良好な溶接部
が得られることが分かる。
Welding conditions Current: 140-160A Voltage: 17-19V Speed: 6-9 cvn 1 minute Bevel shape: Gap 6mm, 50" V-shaped groove Shielding gas: Ar-20%CO2 Wire: YCW-2 Backing material: KL -3 Weaving condition amplitude W: 5 to 8 ml11 Amplitude D: 2 mm Flux composition: slag forming agent 60%, iron powder 10%, deoxidizer 3
0% The results show that if the flux filling ratio is within the range of 10 to 30%, a welded part with good front bead shape and back bead shape can be obtained.

また第2表は上記と同様の溶接条件下に46いてフラッ
クス充填割合を20%として、該フラックス中の造滓剤
の割合を変化させた場合の上向溶接結果を示す。尚フラ
ックス中の造滓剤以外の組成は脱酸剤を20%とし、残
部を鉄粉とした。
Further, Table 2 shows the results of upward welding under the same welding conditions as above when the flux filling ratio was 20% and the ratio of the slag forming agent in the flux was varied. The composition of the flux other than the slag forming agent was 20% deoxidizing agent and the remainder was iron powder.

この結果フラックス中の造滓剤の割合が50%以上であ
れは表ビート゛のスラグLJ均一にイ」着され、裏ビー
ドの形状も良好とすることかできる。
As a result, if the proportion of the slag forming agent in the flux is 50% or more, the slag LJ of the front bead is uniformly deposited, and the shape of the back bead can be made good.

第3図は基礎実験結果を示すグラフで、ソリッドワイヤ
(0印及び◇印)及びフラックス入りワイヤ(○印と△
印)を用いてIll材5M41B(厚さ12+nm)上
に短絡移行状態で下向溶接したときの短絡回数とアーク
電圧の関係を示す。尚溶接ワイヤは1.2mmφのもの
を使用し、ワイヤ角度は母材に対して直角とし、シール
ドガスとしてC02を用いた。溶接電流は夫々150A
 (0印)。
Figure 3 is a graph showing the results of basic experiments, including solid wire (marked 0 and ◇) and flux-cored wire (marked ○ and △).
The relationship between the number of short circuits and the arc voltage when downward welding is performed on Ill material 5M41B (thickness 12+nm) in a state of short circuit transition using the graph (mark) is shown. The welding wire used was 1.2 mm in diameter, the wire angle was set at right angles to the base metal, and C02 was used as the shielding gas. Welding current is 150A each
(0 mark).

130A(◇印)、160A(○印)、140A(△印
)とした。その結果ソリッドワイヤを用いた場合には、
アーク電圧がおおよそ23V以上となるとアークがふら
つく状態となり安定した溶接かできず、また約16V以
下となるとワイヤを溶融させる熱量が不足してアーク切
れを生じることがあった。
They were 130A (◇), 160A (○), and 140A (△). As a result, when using solid wire,
When the arc voltage exceeds about 23 V, the arc becomes unstable and stable welding cannot be performed, and when the arc voltage falls below about 16 V, there is insufficient heat to melt the wire, resulting in arc breakage.

一方フラックス入りワイヤを用いた場合には、上記電流
範囲では高電圧状態でフリーフライトとなって大粒のス
パッタを発生し作業性を悪化させたが、電圧を下げるこ
とによって安定した短絡移行が行なえる様になり、短絡
回数15〜50回/秒において良好な溶接部を得ること
ができた。
On the other hand, when flux-cored wire was used, in the above current range, free flight occurred under high voltage conditions, generating large spatter particles and worsening workability, but by lowering the voltage, stable short-circuit transition could be performed. Thus, a good welded joint could be obtained when the number of short circuits was 15 to 50 times/sec.

第2図は片面上向溶接における短絡回数と許容ギャップ
範囲の関係を示すグラフであり、ソリッドワイヤにおけ
る適正な短絡回数は60〜130回/秒程度と比較的許
容度が広いが母材間の許容ギャップ範囲は4±1mm程
度と非常に狭い。これに対しフラックス入りワイヤでは
短絡回数の許容範囲は15〜50回/秒と狭くなるが逆
に許容ギャップ範囲は3〜12mmと広くなり、大きな
ギャップ変動に対しても適応性が良くなることが分かる
。尚ギャップが3mm以下では裏ビードが出なかったり
、出ても凹状を呈し、さらに1fflII+以下では融
合不良を発生し、逆にギャップが12mmを超えると入
熱増加に対してスラグによるビード保持効果が期待でき
なくなって表ビードが凸状を呈し、ギャップかさらに広
がると溶は落ちを発生する。
Figure 2 is a graph showing the relationship between the number of short circuits and the allowable gap range in single-sided upward welding. The allowable gap range is very narrow, about 4±1 mm. On the other hand, with flux-cored wire, the allowable range of the number of short circuits is narrower at 15 to 50 times/sec, but the allowable gap range is wider at 3 to 12 mm, making it more adaptable to large gap fluctuations. I understand. If the gap is less than 3 mm, the back bead will not come out, or if it does come out, it will have a concave shape, and if it is less than 1fflII+, poor fusion will occur, and if the gap exceeds 12 mm, the slag will have a bead retention effect against the increase in heat input. If expectations are lost and the surface bead becomes convex, and the gap widens further, the melt will drop.

本発明の好ましいウィービングパターンは第4図(b)
、(c)に例示した通りであるが、溶接トーチ5に第1
図の様12後退角度A、が与えられているので、ワイヤ
の移動方向を側面から見ると第1図に示す様になり(但
し溶接台車の矢印B方向への進行を停止させた状態で考
えている)、同図に示す様な傾ぎ角度A、(90−A、
)が与えられる。この傾ぎ角度A2がクレータの傾き角
度A3と同等の場合にはウィービング中のワイヤ突出し
長さの変動が少ない為安定した溶接が可能であり、実用
上はこの傾き角度A2を10〜60度とすることが9丁
ましし)。
A preferred weaving pattern of the present invention is shown in FIG. 4(b).
, as illustrated in (c), the welding torch 5 has the first
Since the receding angle A is given as shown in the figure, the moving direction of the wire is as shown in Fig. 1 when viewed from the side (however, the welding cart is considered with the welding cart stopped moving in the direction of arrow B). ), the inclination angle A as shown in the figure, (90-A,
) is given. When this inclination angle A2 is equivalent to the inclination angle A3 of the crater, stable welding is possible because there is little variation in the wire protrusion length during weaving, and in practical terms, this inclination angle A2 is set to 10 to 60 degrees. (It's better to do that than nine.)

またウィービングの開先左右方向の振幅W[第4図(b
)]は、m材ギャップ+4mmから母材ギャップ間−2
1川の範囲であることが好ましく、振幅Wが小さ過ぎる
と溶接金属がギャップ間にブリッジされないので1υ第
4表面への溶は込みが不十分となって溶接不可能となり
、また逆に犬ぎ過ぎるとアークの不安定を招く。
Also, the amplitude W in the left and right direction of the weaving groove [Fig. 4(b)
)] is from m material gap +4mm to base material gap -2
It is preferable that the amplitude W be within the range of 1 υ. If the amplitude W is too small, the weld metal will not be bridged between the gaps, resulting in insufficient penetration of the weld into the 1υ fourth surface, making it impossible to weld; Too much will cause instability of the arc.

第5図はウィービングの板厚方向振幅りとビート形状と
の関係を示すグラフである。母材として5M4tB、I
接ワイヤとして前記成分のフラックス入りワイヤYCW
−24、裏当材として固形フラックスタイプのKL−3
、シールドガスとしてCO2を夫々用い、後退角度40
度で上向溶接を行なった。尚開先はギャップ6mmで5
0°のV字形開先とした。図中のO印は裏ビード余盛高
さを示し、Δ印は表ビート中央部高さを示す。
FIG. 5 is a graph showing the relationship between the amplitude of weaving in the thickness direction and the beat shape. 5M4tB, I as base material
Flux-cored wire YCW of the above components as a contact wire
-24, solid flux type KL-3 as backing material
, CO2 is used as the shielding gas, and the receding angle is 40.
Upward welding was performed at 300 degrees. The bevel is 5 with a gap of 6 mm.
A V-shaped groove of 0° was formed. The O mark in the figure indicates the back bead extra height, and the Δ mark indicates the front bead center height.

この結果振幅りがOmn+では、電流、電圧を下げて入
熱を減らしたり、或はウィービングの両端でワイヤの移
動を止めてビードのなじみを向上させても表ビードの凸
状化を防ぐことはできず、逆に振幅りを6mmより大き
くすると溶接初層ののど厚以上の運棒となってアークが
不安定になり、裏ビートが凹状化する。従って振幅りの
適正な範囲は0.5〜B+n+++内に設定されること
が好ましい。
As a result, if the amplitude is Omn+, it is impossible to prevent the surface bead from becoming convex even if you lower the current and voltage to reduce heat input, or stop the wire movement at both ends of the weaving to improve bead conformity. On the other hand, if the amplitude is made larger than 6 mm, the arc becomes unstable due to the throat thickness of the initial welding layer, and the back beat becomes concave. Therefore, it is preferable that the appropriate range of amplitude is set within 0.5 to B+n+++.

短絡回数を15〜50回/秒とするための定電圧特性の
電源としては、サイリスタを用いるものよりはトランジ
スタを用いるもののほうが良い。
As a power supply with constant voltage characteristics for making the number of short circuits 15 to 50 times/second, it is better to use a transistor than a thyristor.

これは、サイリスタ型では短絡時とアーク発生時の平均
電圧しか調整できないのに対し、トランジスタ型ではア
ーク発生時の電圧調整も可能であり、短絡回数を増加す
ることが可能だからである。
This is because the thyristor type can only adjust the average voltage when a short circuit and an arc occurs, whereas the transistor type can also adjust the voltage when an arc occurs, making it possible to increase the number of short circuits.

裏当材につい゛〔は格別の制限はないが、通常使用され
る炭酸ガス溶接用裏当材かもっとも好都合であり、また
材料面に46いてもセラミックタイプ及びフラックスを
成形したタイプのいずれのを適用してもよく、上向溶接
用として特殊なものを準備する必要はない。
There are no particular restrictions on the backing material, but it is most convenient to use the normally used backing material for carbon dioxide gas welding. It is not necessary to prepare anything special for upward welding.

さらにシールドガスについても制限は無いが、例えばC
02やAr−CO2を用いる場合にはフラックスに含有
させる造滓月としてTiO2を50%以上充填したもの
を使用したときに最適の溶接作業性を得ることができる
Furthermore, there are no restrictions on shielding gas, but for example, C
When using 02 or Ar-CO2, optimum welding workability can be obtained when the flux is filled with 50% or more of TiO2 as the slag.

第3表は溶接条(’Iを種々変更して上向溶接したとぎ
の裏・表ビード形状を観察した結果を示す。
Table 3 shows the results of observing the back and front bead shapes of welding strips ('I) that were upwardly welded with various changes.

実験番号l〜16では、10材として5M50A(厚さ
16mm)、 シールドガスとしてAr−20%CO2
,裏当材としてKL−3,ソリッドワイヤとしてYCW
−2,フラックス人すワイヤとしてYFW−34を夫々
用い、50°■字型間先の母材に後退角度30〜40度
で上向溶接を実施した。また実験番号17〜22は母材
やワイヤ等を変更して上向溶接した場合の例を示す。
In experiment numbers 1 to 16, 5M50A (thickness 16 mm) was used as the 10th material, and Ar-20% CO2 was used as the shielding gas.
, KL-3 as backing material, YCW as solid wire
-2. YFW-34 was used as the flux wire, and upward welding was performed on the base metal at the end of the 50° ■ shape at a receding angle of 30 to 40 degrees. Moreover, experiment numbers 17 to 22 show examples in which upward welding was performed by changing the base material, wire, etc.

実験番号1〜5はソリッドワイヤを用いた従来例であり
、短絡回数が70〜130回/秒の範囲内でなりれは良
好なビード形状を得ることはできず、ギャップは4mm
程度でなければ良好なビート形状は得られない。
Experiments Nos. 1 to 5 are conventional examples using solid wire, and if the number of short circuits is within the range of 70 to 130 times/second, it is not possible to obtain a good bead shape, and the gap is 4 mm.
A good bead shape cannot be obtained unless it is of a certain degree.

実験番号6〜8は本発明に対する比較例であり、ギャッ
プが狭ずぎる場合(実験番号6)には裏ビードが凹状に
なり、また短絡回数が少ない場合(実験番号7)にはア
ークが安定せずに裏ビートが凹状になり、短絡回数が多
い場合(実験番号B)には入熱不足となって融合不良が
発生した。
Experiment numbers 6 to 8 are comparative examples for the present invention; when the gap is too narrow (experiment number 6), the back bead becomes concave, and when the number of short circuits is small (experiment number 7), the arc becomes stable. In the case where the back beat became concave and the number of short circuits was large (experiment number B), heat input was insufficient and fusion failure occurred.

実験番号9〜14は本発明実施例であり、良好なビート
形状及び溶接作業性能を示した。
Experiment numbers 9 to 14 are examples of the present invention, and showed good beat shapes and welding work performance.

実験番号15.16はウィービング条件を変更した比較
例であり、振幅D(母材板厚方向の振幅)が高すぎる場
合(実験番号15)にはアークが不安定となってビード
形状は悪く、逆に振幅りかOの場合(実験番号16)に
は振幅Wの両端で停止時間を設定しても表ビードが凸状
を呈した。
Experiment numbers 15 and 16 are comparative examples in which the weaving conditions were changed; when the amplitude D (amplitude in the thickness direction of the base material) is too high (experiment number 15), the arc becomes unstable and the bead shape is poor; Conversely, when the amplitude was O (experiment number 16), the top bead had a convex shape even if the stop time was set at both ends of the amplitude W.

実験番号17は母材を60 HTに変更し、フラックス
入りワイA!も60 HT川に変更した例を示し、実験
番J+18.19は開先角度を変更した例を示すが、い
ずれも良好なビード形状が得られた。また実験番号20
はシールドガスをCO3に変えた例を示し、実験番号2
1は裏当材をFBB−3に変更した例を示し、これらの
例でも良好なビード形状が得られた。
In experiment number 17, the base material was changed to 60 HT, and flux-cored YA! Experiment No. J+18.19 shows an example in which the groove angle was changed, and a good bead shape was obtained in both cases. Also experiment number 20
shows an example in which the shielding gas was changed to CO3, experiment number 2
No. 1 shows examples in which the backing material was changed to FBB-3, and good bead shapes were obtained in these examples as well.

実験番号22はフラックス中の造滓剤をBaF2.Li
F等の弗化物主体のものに変え、ガスシールドを行なわ
ないで1.8 m1llφのセルフシールドアーク溶接
用ワイヤを便用した例であるが、この場合でも良々fな
ビート形状を得ることができた。
In experiment number 22, the slag forming agent in the flux was BaF2. Li
This is an example in which a 1.8 ml φ self-shielded arc welding wire was used instead of a fluoride-based wire such as F, without gas shielding, but even in this case, a good f-shaped bead shape could be obtained. Ta.

[発明の効果] 本発明によりギャップ変動の大台い1υ材であっても安
定して連続的な上向溶接ができる様になり、上向片面溶
接の自動化が推進され、船底ブロックの継手や橋梁等の
大ブロックの継手においても良好な溶接作業性を発揮さ
せることが可能になった。
[Effects of the invention] The present invention makes it possible to stably and continuously perform upward welding even for 1υ materials with large gap fluctuations, promoting automation of upward single-sided welding, and improving joints of bottom blocks and It has become possible to demonstrate good welding workability even in joints of large blocks such as bridges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は上向溶接の例を示す説明図、第2図は短絡回数
と許容ギャップの関係を示すグラフ、第3図はアーク電
圧と短絡回数との関係を示すグラフ、第4図(a)〜(
c)はウィービングの移動軌跡を示す説明図、第5図は
板厚方向の振幅とビード形状の関係を示すグラフである
Fig. 1 is an explanatory diagram showing an example of upward welding, Fig. 2 is a graph showing the relationship between the number of short circuits and the allowable gap, Fig. 3 is a graph showing the relationship between the arc voltage and the number of short circuits, and Fig. 4 (a )~(
c) is an explanatory diagram showing the weaving locus, and FIG. 5 is a graph showing the relationship between the amplitude in the plate thickness direction and the bead shape.

Claims (2)

【特許請求の範囲】[Claims] (1)50重量%以上が造滓剤であるフラックスをワイ
ヤ全重量に対して10〜30%含有させたフラックス入
りワイヤを用い、該ワイヤの後退角度を20〜50度の
範囲に設定しつつ、短絡回数を15〜50回/秒の範囲
で上向溶接することを特徴とする上向片面溶接方法。
(1) Using a flux-cored wire containing 10 to 30% of the total weight of the wire, 50% by weight or more of flux is a slag forming agent, and setting the receding angle of the wire in the range of 20 to 50 degrees. . An upward single-sided welding method, characterized in that upward welding is performed at a short circuit frequency in the range of 15 to 50 times/second.
(2)フラックス入りワイヤを開先左右方向及び母材板
厚方向を含む2次元平面内でウィービングして溶接する
特許請求の範囲第1項に記載の上向片面溶接方法。
(2) The upward single-sided welding method according to claim 1, in which the flux-cored wire is weaved and welded within a two-dimensional plane including the left-right direction of the groove and the thickness direction of the base material.
JP15854786A 1986-07-04 1986-07-04 Overhead one-side welding method Granted JPS6313671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15854786A JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15854786A JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Publications (2)

Publication Number Publication Date
JPS6313671A true JPS6313671A (en) 1988-01-20
JPH055582B2 JPH055582B2 (en) 1993-01-22

Family

ID=15674091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15854786A Granted JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Country Status (1)

Country Link
JP (1) JPS6313671A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074169U (en) * 1993-06-16 1995-01-20 ▲吉▼久 新居 Car rear view device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286939A (en) * 1976-01-16 1977-07-20 Kobe Steel Ltd Overhead position gas shielded one side welding process
JPS606275A (en) * 1983-06-24 1985-01-12 Hitachi Zosen Corp Automatic overhead welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286939A (en) * 1976-01-16 1977-07-20 Kobe Steel Ltd Overhead position gas shielded one side welding process
JPS606275A (en) * 1983-06-24 1985-01-12 Hitachi Zosen Corp Automatic overhead welding method

Also Published As

Publication number Publication date
JPH055582B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4125758A (en) Vertical welding method
US4463243A (en) Welding system
WO2016175155A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
JPS608916B2 (en) Welding method using laser and MIG
CN107921569A (en) Stand to narrow groove gas-shielded arc welding method
JPS5913307B2 (en) Welding method
JP3759114B2 (en) Multi-electrode gas shielded arc welding method
JP2006231359A (en) Welding method and structure welded by the method
CN108290239A (en) Vertical narrow groove gas-shielded arc welding method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JPS6313671A (en) Overhead one-side welding method
JP3525977B2 (en) Downward single-sided gas shielded arc welding method
JP2006075847A (en) Hybrid welding method by laser beam and arc
JP2019000908A (en) Multi-electrode submerged arc welding method and welding apparatus
KR102424484B1 (en) Tandem gas shield arc welding method and welding device
JPH11226735A (en) Gas shield arc welding method
JPS5940549B2 (en) DC TIG welding method
JPS5937156B2 (en) Tatemukijiyoushin Gas Shield Door
JPS61232066A (en) Narrow groove submerged arc welding
JP2749968B2 (en) High current density welding method
JPS6015068A (en) Arc welding method
JPS5942196A (en) Welding method with high energy density
JP3105124B2 (en) Non-consumable nozzle type electroslag welding method
JPH02207971A (en) Gas shielded arc welding method
JPH0215312B2 (en)