JPS6313534A - Bias voltage control circuit - Google Patents

Bias voltage control circuit

Info

Publication number
JPS6313534A
JPS6313534A JP61157192A JP15719286A JPS6313534A JP S6313534 A JPS6313534 A JP S6313534A JP 61157192 A JP61157192 A JP 61157192A JP 15719286 A JP15719286 A JP 15719286A JP S6313534 A JPS6313534 A JP S6313534A
Authority
JP
Japan
Prior art keywords
bias voltage
apd
voltage
circuit
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61157192A
Other languages
Japanese (ja)
Inventor
Takao Nakai
孝夫 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61157192A priority Critical patent/JPS6313534A/en
Publication of JPS6313534A publication Critical patent/JPS6313534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To improve the maximum light receiving sensitivity by constituting a negative feedback circuit so that a bias voltage fed to a photodetector is always at a prescribed level or above. CONSTITUTION:The bias voltage of an avalanche photodiode (APD) 1 is divided by resistors 11, 12 and a divided bias voltage is given to a comparison amplifier 13 via a resistor 14 and compared with a reference voltage (e) and the result is amplified. The amplified signal is given to a DC/DC conversion circuit 3 via transistor (TR) 15 in wired OR connection to the emitter of a TR 5 for a gain control voltage input. In increasing the optical input power and an APD current, since the output impedance of the DC/DC conversion circuit 3 is not sufficiently low, the APD bias voltage tends to go down, but the input point (c) of the circuit 3 is increased for its level to increase the voltage at an output point (d) by a negative feedback, then the effect of the output impedance of the DC/DC conversion circuit 3 is reduced to keep the APD bias voltage constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バイアス電圧制御回路に関し、特に出力イン
ピーダンスの影響を低減し、光受信部の最大受光感度の
高いバイアス電圧制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bias voltage control circuit, and particularly to a bias voltage control circuit that reduces the influence of output impedance and provides a high maximum light reception sensitivity of an optical receiver.

〔従来の技術〕[Conventional technology]

従来、第3図に示すとおり、この種の光受信器のアバラ
ンシェホトダイオード責以下、 APDと略す)バイア
ス電圧制御回路は、  DC/DC変換回路3を有し、
  APDIで受信した微弱な信号をできるだけ犬きく
、シかも雑音はできるだけ小さくするだめの最適な電流
増倍率が得られるように、振幅検出回路りで検出した利
得制御電圧をb端子に入力し、APDバイアス電圧を制
御している。さらに光受信器は強い光を受信した場合も
動作するようにダイナミックレンジを大きくするように
々っている。つまり2強い光を受信した場合、利得制御
電圧は低くなるが。
Conventionally, as shown in FIG. 3, the avalanche photodiode (hereinafter abbreviated as APD) bias voltage control circuit of this type of optical receiver has a DC/DC conversion circuit 3,
The gain control voltage detected by the amplitude detection circuit is input to the b terminal, and the gain control voltage detected by the amplitude detection circuit is input to the b terminal to obtain the optimal current multiplication factor that makes the weak signal received by the APDI as strong as possible and minimizes the noise. Controls bias voltage. Furthermore, optical receivers are designed to have a wide dynamic range so that they can operate even when receiving strong light. In other words, if strong light is received, the gain control voltage will be lower.

APD 1を動作させるために最低限必要々バイアスミ
圧を得るために、抵抗器7.可変抵抗器8゜ダイオード
6.9のクラ71回路により、 DC/DC変換回路へ
の入力端子C電位が下がりすぎ々いようにクランプされ
、ある程度APDバイアス電圧も下がり過ぎないように
なっていた。
In order to obtain the minimum necessary bias pressure to operate APD 1, resistor 7. The Cura 71 circuit of variable resistor 8° diode 6.9 clamps the input terminal C potential to the DC/DC conversion circuit to prevent it from dropping too much, and also prevents the APD bias voltage from dropping too much.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」二連した従来のAPDバイアス電圧制御回路は、受光
素子APDIからの信号はできるだけ大きり、シかも雑
音はできるだけ小さくするような最適電流増倍率が得ら
れるバイアス電圧を供給している。
The conventional dual APD bias voltage control circuit supplies a bias voltage that provides an optimal current multiplication factor that maximizes the signal from the light receiving element APDI and minimizes noise.

第4図に示すとおり、この最適電流増倍率は最小受光感
度を得るときに決定され、APDI<イアスミ圧は2図
中の線1のようになる。最適電流増倍率を得るだめの利
得制御信号は、第3図のb端子に入力されDC/DC変
換回路3によって必要なバイアス電圧をAPDIに与え
ている。
As shown in FIG. 4, this optimum current multiplication factor is determined when obtaining the minimum light-receiving sensitivity, and APDI<Iasumi pressure is as shown by line 1 in FIG. 2. A gain control signal for obtaining the optimum current multiplication factor is input to the b terminal in FIG. 3, and the DC/DC conversion circuit 3 applies a necessary bias voltage to the APDI.

さらに、光受信器は、ダイナミックレンジを大きくする
ために、APDIO増倍係数だけでなく2等化増幅器2
の利得も同時に変化させるように々っている。つ寸り、
光パワーが強いときも正常に動作させるためにAPD 
1のバイアス電圧及び等化増幅器2の利得は下げるよう
になっている。このときb点に入力される利得制御電圧
は低く々りすぎ、 APDIが必要な応答速度を得るだ
めのバイアス電圧が、 DC/DC変換回路3から得ら
れなく々ってしまうため、第3図に示す従来のバイアス
電圧制御回路では、抵抗器7、可変抵抗器8.ダイオー
ド6.9のクランプ回路によって、利得制御電圧が下が
りすぎても。
Furthermore, in order to increase the dynamic range, the optical receiver uses not only the APDIO multiplication coefficient but also the 2 equalizing amplifier 2.
It is designed to change the gain of both at the same time. One size,
APD for normal operation even when the optical power is strong
The bias voltage of the amplifier 1 and the gain of the equalizing amplifier 2 are lowered. At this time, the gain control voltage input to point b is too low, and the bias voltage needed to obtain the necessary response speed of APDI cannot be obtained from the DC/DC conversion circuit 3. In the conventional bias voltage control circuit shown in FIG. 1, resistor 7, variable resistor 8. Even if the gain control voltage drops too much due to the diode 6.9 clamp circuit.

APD 1が必要な応答速度を得るためのバイアス電圧
が下がらないようになっている。
The bias voltage required for APD 1 to obtain the necessary response speed is not reduced.

しかし、光入力パワーが強くなると、  APDIの光
電流も増大して来る。このとき、 DC/DC変換回路
3の出力点dの出力インピーダンスは充分には小さくな
いため、  APDIの光電流によって起こる電圧降下
が、光入力パワーの弱いときのように無視でき々く々る
。つまりクランプ回路によってDC/DC変換回路3の
入力端子Cは一定以下に下がらないようにしていても、
出力インピーダンスが無視できないためにAPD 1の
充電流増大によりd点の電位が下がりAPD 1が必要
な応答速度を得るためのバイアス電圧が下がってしまい
動作しなく々る。
However, as the optical input power increases, the photocurrent of APDI also increases. At this time, since the output impedance of the output point d of the DC/DC conversion circuit 3 is not small enough, the voltage drop caused by the photocurrent of APDI becomes negligible and dries up, just like when the optical input power is weak. In other words, even if the clamp circuit prevents the input terminal C of the DC/DC conversion circuit 3 from dropping below a certain level,
Since the output impedance cannot be ignored, the potential at point d decreases due to the increase in the charging current of APD 1, and the bias voltage required for APD 1 to obtain the necessary response speed decreases, causing it to no longer operate.

結局、光受信器の最大受光レベルは、主にAPDバイア
ス電圧発生回路の出力インピーダンスによって決定され
てしまうという欠点を有する。
As a result, the maximum light receiving level of the optical receiver is mainly determined by the output impedance of the APD bias voltage generation circuit.

第4図を用いて、光受信パワーとAPDバイアス電圧と
の関係を示す。線1はAPDIの最小受光レベルで最適
電流増倍率を得るAPDバイアス電圧と光入力パワーと
の関係である。APDバイアス電圧9はAPD 1が必
要な応答速度を得るための電圧である。第3図に示す回
路図で、抵抗器7.可変抵抗器8.ダイオード6.9で
構成しているクランプ回路がない場合の最大受光レベル
は、第4図の6の位置になる。このクランプ回路によっ
て、  DC/DC変換回路入力が一定電圧から下がら
ないようにしているため、  APDバイアス電圧は第
4図の線2の電圧を維持するが。
The relationship between optical reception power and APD bias voltage is shown using FIG. Line 1 is the relationship between the APD bias voltage and the optical input power to obtain the optimum current multiplication factor at the minimum light reception level of the APDI. APD bias voltage 9 is a voltage for APD 1 to obtain a necessary response speed. In the circuit diagram shown in FIG. Variable resistor8. The maximum light reception level in the absence of the clamp circuit constituted by the diode 6.9 is at position 6 in FIG. This clamp circuit prevents the DC/DC conversion circuit input from dropping from a constant voltage, so the APD bias voltage maintains the voltage on line 2 in Figure 4.

DC/DC変換回路3の出力インピーダンスが無視でき
ないことにより、APD電流増大(光入力パワー増大)
により、APDバイアス電圧が線3のように降下してし
まい、最大受光レベルが6の位置になってしまう欠点を
有する。
Since the output impedance of the DC/DC conversion circuit 3 cannot be ignored, the APD current increases (optical input power increases)
This has the drawback that the APD bias voltage drops as shown by line 3, and the maximum light reception level is at position 6.

点線5はDC/DC変換回路3の出力インピーダンスが
0のときである。
A dotted line 5 indicates when the output impedance of the DC/DC conversion circuit 3 is zero.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によれば、受光素子と、該受光素子の電気信号を
受ける増幅器と、前記受光素子にバイアス電圧を与える
DC/DC変換回路と、前記増幅器の利得制御電圧を入
力し、前記DC/DC変換回路を制御する第1のトラン
ジスタとを有するバイアス電圧制御回路において、前記
バイアス電圧の分圧電圧と所定の基準電圧とを比較増幅
する比較増幅器と、該比較増幅器の出力を受け、前記第
1のトランジスタにワイヤードOR接続する第2のトラ
ンジスタとを設け、前記受光素子に印加する前記バイア
ス電圧が常に一定レベル以上になるような負帰還回路を
構成したことを特徴とするバイアス電圧制御回路が得ら
れる。
According to the present invention, a light receiving element, an amplifier that receives an electric signal of the light receiving element, a DC/DC conversion circuit that applies a bias voltage to the light receiving element, a gain control voltage of the amplifier is input, and the DC/DC a first transistor for controlling a conversion circuit; a comparison amplifier for comparing and amplifying a divided voltage of the bias voltage with a predetermined reference voltage; A bias voltage control circuit is provided, comprising: a second transistor which is wired OR connected to the transistor, and constitutes a negative feedback circuit such that the bias voltage applied to the light receiving element is always at a certain level or higher. It will be done.

〔実施例〕〔Example〕

次に1本発明について図面を参照して説明する。第1図
は1本発明の一実施例を示す回路図である。まず2等化
増幅器2と振幅検出回路りとから得た利得制御電圧は、
トランジスタ5を介して、  DC/DC変換回路3に
入力される。そしてDC/DC変換回路3は光受信器の
最小受信感度でAPD 1の最適電流増倍率が得られる
バイアス電圧をAPDIに印加している。つまシ、受光
素子APDIからの信号はできるだけ大きく。
Next, one embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the present invention. First, the gain control voltage obtained from the 2 equalization amplifier 2 and the amplitude detection circuit is
It is input to the DC/DC conversion circuit 3 via the transistor 5. The DC/DC conversion circuit 3 applies a bias voltage to the APDI that provides the optimum current multiplication factor of the APD 1 with the minimum reception sensitivity of the optical receiver. The signal from the light receiving element APDI should be as large as possible.

しかも雑音はできるだけ小さくするような一つの負帰還
回路を構成している。このときのAPDバイアス電圧と
光入力パワーとの関係は、第4図の線1のように々る。
Furthermore, a single negative feedback circuit is configured to minimize noise. The relationship between the APD bias voltage and optical input power at this time is as shown by line 1 in FIG.

さらに、光受信器は。Additionally, the optical receiver.

ダイナミックレンジを大きくするために、 APDIO
増倍係数だけでかく9等化増幅器2の利得も同時に変化
させるようになっている。つtb。
To increase the dynamic range, APDIO
Not only the multiplication coefficient but also the gain of the 9-equalizing amplifier 2 is changed at the same time. Tsutb.

光パワーが強いときも正常に動作させるためにAPDバ
イアス電圧及び等化増幅器2の利得は下げるようになっ
ている。このとき、b点に入力される利得制御電圧は低
くなシすぎ、 APDIが必要々応答速度を得るための
バイアス電圧がDC/DC変換回路3から得られ々く々
って、最大受信感度は、第4図に示される16の位置に
なってしまう。尚、第4図の19の位置のAPDバイア
ス電圧は、 APDIが必要な応答速度を維持できる最
低バイアス電圧である。そこで、最大受光感度を向上さ
せるために、 APDIのバイアス電圧を、抵抗器11
.12で分圧し2分圧したバイアス電圧を抵抗器14を
介して、比較増幅器13に入力し基準電圧eと比較増幅
する。このようにして比較増幅した信号は、利得制御電
圧入力のトランジスタ5のエミッタにワイヤードOR接
続するトランジスタ15を介して、DC/DC変換回路
3に入力される。つ−1fi、APDバイアス電圧が一
定電圧(第4図の線2の位置)からAPD電流増加とD
 C/ D C変換回路の出力インピーダンスとのため
に降下しようとすると、  DC/DC変換回路3の入
力点Cの電圧を上げるように負帰還回路を構成し、AP
Dバイアス電圧は降下しないようになる。即ち、光入力
パワーが強くなりAPD電流が増加するとD C/ D
 C変換回路3の出力インピーダンスが充分に低くない
ため、 APDバイアス電圧は下がろうとするが、DC
/DC変換回路3の入力点Cを上げて出力点dの電圧を
上げる負帰還回路によってDC/DC変換回路3の出力
インピーダンスの影響を低減し、 APDバイアス電圧
は一定に保たれる。第4図の線4の位置までDC/DC
変換回路の出力インピーダンスの影響を低減でき、最大
受光感度は、18の位置になり、大幅に改善される。利
得制御電圧入力トランジスタ5と、APDバイアス電圧
を分圧した分圧電圧と基準電圧とを比較増幅した負帰還
信号を入力するトランジスタ15とは、互いのエミッタ
をワイヤードOR接続してDC/DC変換回路3に入力
しているため、 APDバイアス電圧と光入力パワーと
の関係は、第4図太線のように々す、大き々ダイナミッ
クレンジを得ることができる。
In order to operate normally even when the optical power is strong, the APD bias voltage and the gain of the equalizing amplifier 2 are lowered. At this time, the gain control voltage input to point b is too low, and the bias voltage for APDI to obtain the necessary response speed is obtained from the DC/DC conversion circuit 3. , resulting in position 16 shown in FIG. The APD bias voltage at position 19 in FIG. 4 is the lowest bias voltage at which the APDI can maintain the required response speed. Therefore, in order to improve the maximum light receiving sensitivity, the bias voltage of APDI is changed by resistor 11.
.. The bias voltage divided by 12 and divided by 2 is inputted to the comparison amplifier 13 via the resistor 14, and is compared and amplified with the reference voltage e. The signal thus compared and amplified is input to the DC/DC conversion circuit 3 via the transistor 15 which is wired OR connected to the emitter of the transistor 5 for inputting the gain control voltage. -1fi, the APD bias voltage changes from a constant voltage (position of line 2 in Figure 4) to an increase in APD current and D
If the output impedance of the C/DC converter circuit 3 attempts to drop due to the output impedance, a negative feedback circuit is configured to increase the voltage at the input point C of the DC/DC converter circuit 3, and the AP
The D bias voltage will not drop. That is, when the optical input power becomes stronger and the APD current increases, D C/D
Since the output impedance of the C conversion circuit 3 is not low enough, the APD bias voltage tries to decrease, but the DC
The influence of the output impedance of the DC/DC conversion circuit 3 is reduced by a negative feedback circuit that raises the input point C of the DC/DC conversion circuit 3 and the voltage at the output point d, and the APD bias voltage is kept constant. DC/DC to the position of line 4 in Figure 4
The influence of the output impedance of the conversion circuit can be reduced, and the maximum light receiving sensitivity is at position 18, which is significantly improved. The gain control voltage input transistor 5 and the transistor 15 which inputs a negative feedback signal obtained by comparing and amplifying a divided voltage obtained by dividing the APD bias voltage and a reference voltage perform DC/DC conversion by connecting their emitters with a wired OR. Since it is input to the circuit 3, the relationship between the APD bias voltage and the optical input power is as shown by the thick line in FIG. 4, and a large dynamic range can be obtained.

第2図はD C/D C変換回路出力電圧を分圧して負
帰還回路を構成した回路図である。
FIG. 2 is a circuit diagram in which a negative feedback circuit is constructed by dividing the output voltage of the DC/DC conversion circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明はAPDの電気信号を入力
として接続される増幅器の出力信号振幅、つまり、利得
制御電圧を入力するトランジスタと、 APDへの印加
電圧を分圧する抵抗器と分圧されたAPD印加電圧を抵
抗器を介して入力し基準電圧と比較するための比較増幅
器および該増幅器出力を入力するとトランジスタをエミ
ッタどうしのワイヤードOR接続し、さらにDC/DC
変換器の制御入力にも接続することにより、光受信器の
ダイナミックレンジは大きくなり、特にDC/DC変換
器の出力インピーダンスの影響を低減することにより最
大受光感度が大幅に向上する効果がある。
As explained above, one aspect of the present invention is to divide the amplitude of the output signal of an amplifier connected with the electrical signal of the APD as input, that is, to divide the voltage between the transistor that inputs the gain control voltage and the resistor that divides the voltage applied to the APD. A comparator amplifier is used to input the APD applied voltage via a resistor and compare it with a reference voltage, and when the output of the amplifier is input, the emitters of the transistors are wired OR connected, and further DC/DC
By also connecting to the control input of the converter, the dynamic range of the optical receiver is increased, and in particular, by reducing the influence of the output impedance of the DC/DC converter, the maximum light receiving sensitivity is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のバイアス電圧制御回路の実施例を示す
回路図、第2図はI)C70C変換回路出力電圧を分圧
帰還した構成の一実施例を示す回路図、第3図は従来技
術によるバイアス電圧制御回路、第4図はAPDバイア
ス電圧と光入力パワーの関係を示した図である。 1・・・アバランシェホトダイオード(APD)。 2・・・等化増幅器、3・・・DC/DC変換回路、4
・・・抵抗器、5・・・トランジスタ、6・・・ダイオ
ード。 7・・・抵抗器、8・・・可変抵抗器、9・・・ダイオ
ード。 10・・・コンデンサ、  11.12・・・抵抗器、
13・・・比較増幅器、14・・・抵抗器、15・・・
トランジスタ。 D・・・出力信号振幅検出回路、a・・・電圧電源端子
。 b・・・利得制御電圧入力点、C・・・DC/DC変換
回路入力点、d・・・D C/ D C変換回路出力点
、e・・・基準電圧入力端子、線1・・・最小受光感度
でAPDが最適電流増倍率が得られるときの光入力パワ
ーとAPDバイアス電圧の関係、線2・・・従来および
本発明の回路図でAPDバイアス電圧を一定に保とうと
するレベル、線3・・・従来の回路図でのAPDバイア
ス電圧降下レベル、線4・・・本発明の回路図でのAP
Dバイアス電圧降下レベル、線5・・・従来および本発
明の回路図でAPDバイアス電圧を一定に保とうとし、
かつDC/DC変換回路の出力インピーダンスがゼロの
ときのレベル、16・・・利得制御回路のみの場合の最
大受光感度、17・・・従来の回路での最大受光感度。 18・・・本発明の回路での最大受光感度、19・・・
APDが必要々応答速度を得るためのAPDバイ第1図 第2図
Fig. 1 is a circuit diagram showing an embodiment of the bias voltage control circuit of the present invention, Fig. 2 is a circuit diagram showing an embodiment of a configuration in which I) C70C conversion circuit output voltage is divided and fed back, and Fig. 3 is a conventional circuit diagram. Bias voltage control circuit according to technology, FIG. 4 is a diagram showing the relationship between APD bias voltage and optical input power. 1... Avalanche photodiode (APD). 2... Equalization amplifier, 3... DC/DC conversion circuit, 4
...Resistor, 5...Transistor, 6...Diode. 7...Resistor, 8...Variable resistor, 9...Diode. 10... Capacitor, 11.12... Resistor,
13... Comparison amplifier, 14... Resistor, 15...
transistor. D...Output signal amplitude detection circuit, a...Voltage power supply terminal. b...gain control voltage input point, C...DC/DC conversion circuit input point, d...DC/DC conversion circuit output point, e...reference voltage input terminal, line 1... The relationship between the optical input power and the APD bias voltage when the APD can obtain the optimum current multiplication factor with the minimum light receiving sensitivity, line 2...The level at which the APD bias voltage is kept constant in the conventional and inventive circuit diagrams, line 3... APD bias voltage drop level in the conventional circuit diagram, line 4... AP in the circuit diagram of the present invention
D bias voltage drop level, line 5... In the conventional and inventive circuit diagrams, the APD bias voltage is kept constant,
and the level when the output impedance of the DC/DC conversion circuit is zero, 16... the maximum light receiving sensitivity in the case of only the gain control circuit, 17... the maximum light receiving sensitivity in the conventional circuit. 18... Maximum light receiving sensitivity in the circuit of the present invention, 19...
APD bias figure 1 figure 2 to obtain the required response speed of APD

Claims (1)

【特許請求の範囲】[Claims] 1、受光素子と、該受光素子の電気信号を受ける増幅器
と、前記受光素子にバイアス電圧を与えるDC/DC変
換回路と、前記増幅器の利得制御電圧を入力し、前記D
C/DC変換回路を制御する第1のトランジスタとを有
するバイアス電圧制御回路において、前記バイアス電圧
の分圧電圧と所定の基準電圧とを比較増幅する比較増幅
器と、該比較増幅器の出力を受け、前記第1のトランジ
スタにワイヤードOR接続する第2のトランジスタとを
設け、前記受光素子に印加する前記バイアス電圧が常に
一定レベル以上になるような負帰還回路を構成したこと
を特徴とするバイアス電圧制御回路。
1. A light-receiving element, an amplifier that receives an electric signal from the light-receiving element, a DC/DC conversion circuit that applies a bias voltage to the light-receiving element, and a gain control voltage of the amplifier is input, and the D
a first transistor for controlling a C/DC conversion circuit; a comparison amplifier for comparing and amplifying a divided voltage of the bias voltage with a predetermined reference voltage; and receiving an output of the comparison amplifier; Bias voltage control characterized in that a second transistor connected to the first transistor in a wired OR connection is provided, and a negative feedback circuit is configured such that the bias voltage applied to the light receiving element is always at a certain level or higher. circuit.
JP61157192A 1986-07-05 1986-07-05 Bias voltage control circuit Pending JPS6313534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157192A JPS6313534A (en) 1986-07-05 1986-07-05 Bias voltage control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157192A JPS6313534A (en) 1986-07-05 1986-07-05 Bias voltage control circuit

Publications (1)

Publication Number Publication Date
JPS6313534A true JPS6313534A (en) 1988-01-20

Family

ID=15644211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157192A Pending JPS6313534A (en) 1986-07-05 1986-07-05 Bias voltage control circuit

Country Status (1)

Country Link
JP (1) JPS6313534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260918A (en) * 1988-04-11 1989-10-18 Nec Corp Optical reception circuit
JPH04108230A (en) * 1990-08-29 1992-04-09 Nec Corp Optical reception circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711548A (en) * 1980-06-25 1982-01-21 Fujitsu Ltd Optical receiving circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711548A (en) * 1980-06-25 1982-01-21 Fujitsu Ltd Optical receiving circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260918A (en) * 1988-04-11 1989-10-18 Nec Corp Optical reception circuit
JPH04108230A (en) * 1990-08-29 1992-04-09 Nec Corp Optical reception circuit

Similar Documents

Publication Publication Date Title
US4764732A (en) Switchable mode amplifier for wide dynamic range
JP2503837B2 (en) Digital optical receiver circuit and preamplifier circuit in digital optical receiver circuit
US6031219A (en) Bias voltage supply circuit for photoelectric converting element and photodetection circuit
JPH11127039A (en) Optical reception circuit and optical reception method
JP3192295B2 (en) Optical receiver
JPH10276048A (en) Offset compensation circuit
JPS62202635A (en) Optical reception circuit
JPS6313534A (en) Bias voltage control circuit
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
US5087892A (en) Gain stabilizing amplifier
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPH0282804A (en) Preamplifier for optical reception
US4904860A (en) Optical signal detection circuit with constant current sources
JPH087693Y2 (en) APD bias voltage control circuit
JPS6048609A (en) Automatic level adjusting circuit
CA1283463C (en) Switchable mode amplifier for wide dynamic range
JPH0129333B2 (en)
JP2825833B2 (en) Laser diode drive
JPH079450Y2 (en) Optical receiver circuit
JP3518559B2 (en) Light reception signal detection circuit and light reception signal processing device
CN110545083A (en) Trans-impedance amplifier
JPS62217739A (en) Bias voltage control circuit of avalanche photodiode
JPH02164112A (en) Optical receiver
JPS63181536A (en) Optical receiving equipment
JPH03266577A (en) Light reception device