JPS63134845A - Exhaust gas recirculation control device - Google Patents

Exhaust gas recirculation control device

Info

Publication number
JPS63134845A
JPS63134845A JP61280652A JP28065286A JPS63134845A JP S63134845 A JPS63134845 A JP S63134845A JP 61280652 A JP61280652 A JP 61280652A JP 28065286 A JP28065286 A JP 28065286A JP S63134845 A JPS63134845 A JP S63134845A
Authority
JP
Japan
Prior art keywords
cylinder
crank angle
exhaust gas
egr
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280652A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takimoto
滝本 敏幸
Soichi Matsushita
宗一 松下
Kunihiko Sato
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61280652A priority Critical patent/JPS63134845A/en
Publication of JPS63134845A publication Critical patent/JPS63134845A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To measure an EGR-rate with high accuracy by calculating a gas quantity introduced into a cylinder based on the pressure in the cylinder during compression stroke which is not influenced by combustion and using this gas quantity and an intake air quantity. CONSTITUTION:Detection values sensored by an air flowmeter 33 of mass measuring type such as a hot-wire type, a cylinder's inside pressure sensor 61 installed on the cylinder-head, No.1 crank angle sensor 65, No.2 crank angle sensor 66, an intake air temperature sensor 78, etc. are inputted to a control circuit 60. In the compression stroke, the control circuit 10 receives the detection values from a cylinder's inside pressure sensor 61, for example, at two points where one crank angle corresponds to the closing time of an intake valve 20 at the initial stage of the compression stroke and the other crank angle is equal to about 40 deg. BTDC, and calculates a gas quantity introduced into the cylinder. After determining an EGR-rate based on an intake air quantity and a calculated gas quantity, the control circuit controls the opening of an EGR valve 43 to obtain the desired EGR-rate depending on the operating conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、°筒内圧力から排気ガス再循環率を検出す
る内燃機関の排気ガス再循環装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas recirculation device for an internal combustion engine that detects an exhaust gas recirculation rate from cylinder pressure.

〔従来の技術〕[Conventional technology]

内燃機関の排気ガス再循環(EGR)装置において排気
ガス再循環率(EGR率)を検出するため筒内圧力を検
出するものが提案されている。例えば、特開昭56−1
59556号参照。この従来技術によれば、圧縮行程中
の筒内圧力と、膨張行程中の筒内圧力を検出し、両者の
比からEGR率を算出している。このタイプのEGR検
出装置は、排気ガスのデポジットの影響を受けることな
く正確なEGR率を知ることができる利点がある。
2. Description of the Related Art In an exhaust gas recirculation (EGR) device for an internal combustion engine, a device that detects cylinder pressure in order to detect an exhaust gas recirculation rate (EGR rate) has been proposed. For example, JP-A-56-1
See No. 59556. According to this prior art, the cylinder pressure during the compression stroke and the cylinder pressure during the expansion stroke are detected, and the EGR rate is calculated from the ratio of the two. This type of EGR detection device has the advantage of being able to accurately determine the EGR rate without being affected by exhaust gas deposits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では、膨張行程中の圧力を使用しているが、こ
れはエンジン回転数や、エンジン冷却水温や、点火時期
の影響を受けるため、正確なEGR率を得ようとすれば
計算に多くの補正係数が必要となり計算が複雑となる。
Conventional technology uses the pressure during the expansion stroke, but this is affected by engine speed, engine coolant temperature, and ignition timing, so obtaining an accurate EGR rate requires a lot of calculations. A correction coefficient is required, which complicates the calculation.

特に、過渡運転時には計算では補正しきれないことから
、誤差が大きくなる。更に、膨張行程前半の圧力は、燃
焼変動の影響により圧力のサイクル間変動が大きいから
、これも誤差要因となる。
In particular, during transient operation, the error cannot be fully corrected by calculation, resulting in a large error. Furthermore, the pressure in the first half of the expansion stroke has large cycle-to-cycle fluctuations due to the influence of combustion fluctuations, which also causes errors.

この発明は、複雑な計算を要することなく、しかも精度
高< EGR率を計測できるように従来技術を改良する
ことを目的とする。
The purpose of the present invention is to improve the conventional technology so that the EGR rate can be measured with high accuracy without requiring complicated calculations.

〔問題点を解決するための手段〕[Means for solving problems]

この発明によれば、第1図において、内燃機関の排気ガ
ス再循環制御装置は内燃機関1の排気管1aから吸気管
1bへの還流排気ガスの流量を所望排気ガス再循環率を
得るため制御するためのの排気ガス再循環装置2と、内
燃機関に導入される吸入空気量を検出する手段3と、内
燃機関の筒内圧力を検出する手段4と、圧縮行程におい
て、筒内圧力が燃料の燃焼の影響を受けないクランク角
度位置を検出する手段5と、前記クランク角度での筒内
圧力より筒内に導入されたガス量を気体状態式より算出
する手段7と、筒内ガス量と吸入空気量とから排気ガス
再循環率を算出する手段8とから構成される。
According to this invention, in FIG. 1, an exhaust gas recirculation control device for an internal combustion engine controls the flow rate of recirculated exhaust gas from an exhaust pipe 1a to an intake pipe 1b of an internal combustion engine 1 to obtain a desired exhaust gas recirculation rate. An exhaust gas recirculation device 2 for detecting the amount of intake air introduced into the internal combustion engine, a means 3 for detecting the amount of intake air introduced into the internal combustion engine, and a means 4 for detecting the in-cylinder pressure of the internal combustion engine. means 5 for detecting a crank angle position that is not affected by combustion; means 7 for calculating the amount of gas introduced into the cylinder from the gas state equation from the cylinder pressure at the crank angle; and means 8 for calculating the exhaust gas recirculation rate from the intake air amount.

〔実施例〕〔Example〕

第2図において、10はシリンダブロック、12はピス
トン、16は燃焼室、18はシリンダヘッド、20は吸
気弁、22は吸気ボート、24は排気弁、26は排気ポ
ートである。吸気ポート22は吸気管28、サージタン
ク30、スロットル弁32、吸入空気量センサ33を介
してエアークリーナ34に接続される。35は燃料イン
ジェクタであり、吸気ポート22に近接した吸気管28
に配置される。排気ポート26は排気マニホルド36に
接続される。38はディストリビュータを示している。
In FIG. 2, 10 is a cylinder block, 12 is a piston, 16 is a combustion chamber, 18 is a cylinder head, 20 is an intake valve, 22 is an intake boat, 24 is an exhaust valve, and 26 is an exhaust port. The intake port 22 is connected to an air cleaner 34 via an intake pipe 28, a surge tank 30, a throttle valve 32, and an intake air amount sensor 33. 35 is a fuel injector, which is connected to the intake pipe 28 near the intake port 22.
will be placed in Exhaust port 26 is connected to exhaust manifold 36. 38 indicates a distributor.

排気マニホルド36と吸気管28とを結ぶ排気ガス再循
環通路(EGR通路)40が設けられ、EGR通路40
上に排気ガス再循環制御弁(EGR弁)42が設置され
る。EGR弁42はEGR通路40を流れる還流排気ガ
ス流量を任意に制御可能に構成される。
An exhaust gas recirculation passage (EGR passage) 40 connecting the exhaust manifold 36 and the intake pipe 28 is provided.
An exhaust gas recirculation control valve (EGR valve) 42 is installed above. The EGR valve 42 is configured to be able to arbitrarily control the flow rate of recirculated exhaust gas flowing through the EGR passage 40.

制御回路60は、この発明に従ったEGR率の検出作動
、及びEGR率の制御作動を行うもので、マイクロコン
ピュータシステムとして構成される。
The control circuit 60 performs an EGR rate detection operation and an EGR rate control operation according to the present invention, and is configured as a microcomputer system.

即ち、制御回路60はマイクロプロセシングユニット(
MPU)60aと、メモリ60bと、入力ポートロ0c
と、出力ポートロ0dと、これらを接続するバス60e
とを基本的な構成要素とする。
That is, the control circuit 60 is a microprocessing unit (
MPU) 60a, memory 60b, input port 0c
, the output port 0d, and the bus 60e that connects them.
and are the basic components.

入力ポートロ0dは種々のセンサに接続され、各運転条
件信号が入力される。吸入空気量センサ33は、例えば
熱線型のように質量型のセンサとして構成され、吸入空
気量Gaに応じた信号を発生する。エアーフローメータ
等の体積流量型のセンサで′も良いが、この場合は質量
への変換の必要がある。筒内圧力センサ61がシリンダ
ヘッドに取付られ、筒内圧力Pを知ることができる。ク
ランク角センサ65,66が、ディストリビュータ38
に設けられ、第1クランク角センサ65は、例えば1”
CA毎のパルス信号を発生し、エンジン回転数を知るこ
とができる。第2のクランク角センサ66は、720”
CA毎のパルス信号を発生し、基準信号となる。吸入空
気温度センサ78が吸気管28に設けられ、吸入空気温
度t、を知ることができる。
The input port 0d is connected to various sensors, and each operating condition signal is input thereto. The intake air amount sensor 33 is configured as a mass type sensor, such as a hot wire type, and generates a signal corresponding to the intake air amount Ga. A volume flow type sensor such as an air flow meter may also be used, but in this case it is necessary to convert it to mass. A cylinder pressure sensor 61 is attached to the cylinder head, and can detect the cylinder pressure P. The crank angle sensors 65 and 66 are connected to the distributor 38
The first crank angle sensor 65 is, for example, 1"
A pulse signal is generated for each CA, and the engine rotation speed can be known. The second crank angle sensor 66 is 720"
A pulse signal is generated for each CA and becomes a reference signal. An intake air temperature sensor 78 is provided in the intake pipe 28 and can detect the intake air temperature t.

この発明のEGR率測定原理は以下の通りである。第3
図は圧縮行程における筒内圧力の変化を示す。上死点(
TDC)の手前で点火され、TDC後成る角度経過した
とき燃焼圧力はピークを呈する。
The EGR rate measurement principle of this invention is as follows. Third
The figure shows the change in cylinder pressure during the compression stroke. Top dead center (
It is ignited before TDC), and the combustion pressure reaches its peak at an angle after TDC.

圧縮行程後半の圧力はエンジン運転条件によって■、■
のように変化する。■は減速等のモータリング時を示す
。ところが、圧縮行程の前半では圧力変化が運転条件で
変化しない領域mがある。この発明では、この領域mに
おいて、筒内圧力Pを測定し、筒内ガスの量を気体状態
式によって算出し、EGR率を計測するものである。即
ち、気体状態式は、 PXV=GRT である。ここに、Pは圧力、■は容積、Gはガス量、R
はガス定数、Tは温度である。従って、成るクランク角
度での圧力計測値をPo、シリンダ容積をvo、温度測
定値をToとすれば、筒内ガス量Gは、 G= (Pa XVo )/ (RXTo )  ・・
・(1)となる。これは、 G= a X (Po /To )       ・・
・+2)と書き直すことができる。もし、筒内圧力セン
サ61が絶対圧力を検出できるものであるのなら、+1
1弐により、即ちクランク角度の一点で筒内圧力を知る
ことによりガス量を知ることができる。
The pressure in the latter half of the compression stroke depends on the engine operating conditions.■,■
It changes like this. ■ indicates motoring during deceleration, etc. However, in the first half of the compression stroke, there is a region m in which the pressure does not change depending on the operating conditions. In this invention, in this region m, the cylinder pressure P is measured, the amount of cylinder gas is calculated using a gas state equation, and the EGR rate is measured. That is, the gas state equation is: PXV=GRT. Here, P is pressure, ■ is volume, G is gas amount, R
is the gas constant and T is the temperature. Therefore, if the pressure measurement value at the crank angle is Po, the cylinder volume is vo, and the temperature measurement value is To, the in-cylinder gas amount G is: G= (Pa x Vo) / (RXTo)...
・It becomes (1). This is G=aX(Po/To)...
・It can be rewritten as +2). If the cylinder pressure sensor 61 can detect absolute pressure, +1
1, that is, by knowing the cylinder pressure at one point of the crank angle, the gas amount can be determined.

また、筒内圧力センサ61が、圧電式等の相対圧力を知
るものでは圧縮行程の2点(第3図の“0”及び“1″
)で筒内圧力を知ることによりガス量を知ることが可能
である。即ち、2点間での断熱変化を仮定すれば、気体
状態式より、P(l X (va /G)に=PI X
 (Vl /G) X・ ・ ・(3) である。ここに、■。、■1は夫々の圧力でのシリンダ
容積であり、Kは空気の比熱である。この式より、 Po   P+  =Po X ((Vo /V+ )
 K=1)・・・(4) となる。この式でに#1.36、■。〉■、であるから
、P、 −P、はPoの圧力を(vo /v+ )”−
1倍だけ増幅したものである。即ち、P、−P、=α×
P0      ・・・(5)となる。(5)式と(2
)式とから、 G= (a/cr) x ((P+  −Pa ) /
To )・・・(6) となる。従って、相対圧センサの場合は二つのクランク
角度位置の筒内圧力を知ることにより、ガス量Gを知る
ことができる。
In addition, if the in-cylinder pressure sensor 61 is a piezoelectric type or other type that knows the relative pressure, two points in the compression stroke ("0" and "1" in Fig. 3) are used.
) It is possible to know the gas amount by knowing the cylinder pressure. That is, assuming an adiabatic change between two points, from the gas state equation, P(l x (va /G) = PI
(Vl/G)X・・・・(3) Here, ■. , ■1 is the cylinder volume at each pressure, and K is the specific heat of air. From this formula, Po P+ = Po X ((Vo /V+)
K=1)...(4) With this formula, #1.36, ■. 〉■, so P, −P, is the pressure of Po (vo /v+)”−
It is amplified by a factor of 1. That is, P,−P,=α×
P0...(5). Equation (5) and (2
) from the equation, G= (a/cr) x ((P+ -Pa)/
To)...(6) Therefore, in the case of a relative pressure sensor, the gas amount G can be determined by knowing the in-cylinder pressure at two crank angle positions.

筒内ガスIG (以下G、と書く)が知られればEGR
率は、 (1−G、/G、)XI 00 によって計算できる。尚、第1図のPoの検出クランク
角度は、圧縮行程の初めがよく、望ましくは吸気弁20
の閉鎖時期とする。またPlの検出クランク角度は、シ
リンダ内ガス量の検出分解能を高める理由から、圧力変
化特性がエンジン運転条件で変化しないmの領域におい
て出来るだけ上死点に近い位置が好ましく、例えば40
°BTDC程度が好ましい。
If the cylinder gas IG (hereinafter referred to as G) is known, EGR
The rate can be calculated by (1-G,/G,)XI 00 . The detected crank angle of Po in FIG. 1 is preferably at the beginning of the compression stroke, and preferably at the beginning of the
The closing period will be the Furthermore, in order to increase the detection resolution of the amount of gas in the cylinder, the detection crank angle of Pl is preferably located as close to the top dead center as possible in the range of m where the pressure change characteristics do not change depending on the engine operating conditions.
°BTDC level is preferable.

以上説明したEGR率測定原理に基づく、制御回路60
によるEGR制御作動について第4図、第5図のフロー
チャートによって説明する。第4図はEGR率計測ルー
チンである。このルーチンは第1クランク角センサ61
により検出される1″のクランク角度毎に実行される。
Control circuit 60 based on the EGR rate measurement principle explained above
The EGR control operation will be explained with reference to the flowcharts shown in FIGS. 4 and 5. FIG. 4 shows an EGR rate measurement routine. This routine is performed by the first crank angle sensor 61.
It is executed every 1'' of crank angle detected by .

ステップ80では圧縮行程における開始直後の第1の設
定位置(第3図の“0”の位置)に相当するクランク角
度か否か判別される。Yesのときはステップ82に進
み、圧力センサ61からの信号のA/D変換処理が実行
され、そのA/D変換値がPoに入れられる。
In step 80, it is determined whether the crank angle corresponds to the first set position (the "0" position in FIG. 3) immediately after the start of the compression stroke. If Yes, the process proceeds to step 82, where A/D conversion processing of the signal from the pressure sensor 61 is executed, and the A/D conversion value is entered into Po.

ステップ80でNoのときはステップ84に進み、第1
の設定位置より上死点側の第2の設定位置(第3図の“
1”の位置)に相当するクランク角度位置か否か判別さ
れる。Yesのときはステップ86に進み、圧力センサ
61からの信号のA/D変換処理が実行され、そのA/
D変換値がPlに入れられる。ステップ88では圧力差
ΔPが算出される。ステップ90では、温度補正前のガ
ス量G0が算出される。ステップ92では、温度センサ
78により検出される現在の吸入空気温度t、より温度
補正係数ftが算出される。toは基準温度である。ス
テップ94では温度補正係数f1から温度補正前のガス
量G0が補正され、補正後のガス量c pが算出される
。ステップ96では現在のEGR率であるEGR,が、
EGRc = (1−G、/G、)X100によって算
出される。
If No in step 80, the process advances to step 84, and the first
The second setting position is closer to the top dead center than the setting position of (“
It is determined whether the crank angle position corresponds to the 1" position). If YES, the process proceeds to step 86, where A/D conversion processing of the signal from the pressure sensor 61 is executed, and the A/D conversion process is executed.
The D conversion value is placed in Pl. In step 88, the pressure difference ΔP is calculated. In step 90, the gas amount G0 before temperature correction is calculated. In step 92, a temperature correction coefficient ft is calculated from the current intake air temperature t detected by the temperature sensor 78. to is the reference temperature. In step 94, the gas amount G0 before temperature correction is corrected from the temperature correction coefficient f1, and the gas amount cp after correction is calculated. In step 96, the current EGR rate, EGR, is
It is calculated by EGRc=(1-G,/G,)X100.

第5図はEGR率制御ルーチンを示す。ステップ100
では目標EGR率であるEGRoが算出される。周知の
ようにEGR,はエンジン回転数と負荷との組合せとし
てデータがメモリ60bに格納されてあり、現在のエン
ジン回転数と負荷とから補間によってEGR,が算出さ
れる。
FIG. 5 shows the EGR rate control routine. step 100
Then, EGRo, which is the target EGR rate, is calculated. As is well known, EGR data is stored in the memory 60b as a combination of engine speed and load, and EGR is calculated by interpolation from the current engine speed and load.

ステップ102では、第4図のステップ96で得られた
実測のEGR率EGRCとステップ100で得られた目
標EGR率EGRoとの偏差Δが算出される。
In step 102, the deviation Δ between the actually measured EGR rate EGRC obtained in step 96 of FIG. 4 and the target EGR rate EGRo obtained in step 100 is calculated.

ステップ104では、EGR弁駆動開度データEGRD
を格納するアドレスの内容が現在値にに×Δを加えたも
のに更新される。ここにkはフィードバックゲインとな
る。ステップ106では、EGR弁駆動信号形成処理が
行われ、ステップ104で算出されるEGRDが得られ
るよう、EGR弁42への駆動信号が形成される。例え
ば、EGRDに相当するデユーティ比を持ったパルス信
号が形成されEGR弁42に印加される。
In step 104, EGR valve drive opening data EGRD
The contents of the address storing is updated to the current value plus ×Δ. Here, k is the feedback gain. In step 106, EGR valve drive signal formation processing is performed, and a drive signal to the EGR valve 42 is formed so as to obtain the EGRD calculated in step 104. For example, a pulse signal having a duty ratio corresponding to EGRD is generated and applied to the EGR valve 42.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、圧縮行程での筒内圧力よりEGR率
を気体法則より検出しているため、エンジン回転数、冷
却水温、点火時期等の影響を受けることなく、簡単で精
度の高いEGR率を得ることができる。
According to this invention, since the EGR rate is detected from the cylinder pressure during the compression stroke using the gas law, the EGR rate can be easily and accurately achieved without being affected by engine speed, cooling water temperature, ignition timing, etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示す図。 第2図はこの発明の実施例の構成を示す図。 第3図は圧縮行程における筒内圧力の変化を示すグラフ
。 第4図、第5図はEGR制御のための制御回路の作動を
説明するフローチャート。 28・・・吸気管 30・・・サージタンク 32・・・スロットル弁 33・・・吸入空気量センサ 36・・・排気マニホルド 40・・・−EGR通路 42・・・EGR弁 61・・・筒内圧センサ
FIG. 1 is a diagram showing the configuration of the present invention. FIG. 2 is a diagram showing the configuration of an embodiment of the invention. FIG. 3 is a graph showing changes in cylinder pressure during the compression stroke. 4 and 5 are flowcharts explaining the operation of the control circuit for EGR control. 28...Intake pipe 30...Surge tank 32...Throttle valve 33...Intake air amount sensor 36...Exhaust manifold 40...-EGR passage 42...EGR valve 61...Cylinder Internal pressure sensor

Claims (1)

【特許請求の範囲】 1、以下の構成要素より成る内燃機関の排気ガス再循環
制御装置、 内燃機関の排気管から吸気管への還流排気ガスの流量を
所望排気ガス再循環率を得るため制御するためのの排気
ガス再循環装置、 内燃機関に導入される吸入空気量を検出する吸入空気量
検出手段、 内燃機関の筒内圧力を検出する筒内圧力検出手段、 筒内圧力が燃焼の影響を受けない圧縮行程における少な
くも一つのクランク角度位置を検出するクランク角度検
出手段、 前記クランク角度位置での筒内圧力より筒内に導入され
たガス量を気体状態式より算出する筒内ガス量算出手段
、 筒内ガス量と、吸入空気量とから排気ガス再循環率を算
出する排気ガス再循環率算出手段。 2、前記クランク角度検出手段は、筒内圧力が燃焼の影
響を受けない圧縮行程における二つのクランク角度位置
を検出し、筒内圧力検出手段は、この二つのクランク角
度での圧力差から筒内ガス量を算出する特許請求の範囲
1、の排気ガス再循環制御装置。
[Claims] 1. An exhaust gas recirculation control device for an internal combustion engine, comprising the following components: Controls the flow rate of recirculated exhaust gas from the exhaust pipe of the internal combustion engine to the intake pipe to obtain a desired exhaust gas recirculation rate. Exhaust gas recirculation device for detecting the effect of combustion; Intake air amount detection means for detecting the amount of intake air introduced into the internal combustion engine; In-cylinder pressure detection means for detecting the cylinder pressure of the internal combustion engine; Crank angle detection means for detecting at least one crank angle position in a compression stroke that is not affected; and a cylinder gas amount that calculates the amount of gas introduced into the cylinder from the cylinder pressure at the crank angle position using a gas state equation. Calculation means, Exhaust gas recirculation rate calculation means for calculating the exhaust gas recirculation rate from the amount of gas in the cylinder and the amount of intake air. 2. The crank angle detecting means detects two crank angle positions in the compression stroke where the cylinder pressure is not affected by combustion, and the cylinder pressure detecting means detects the cylinder internal pressure from the pressure difference between these two crank angles. The exhaust gas recirculation control device according to claim 1, which calculates the amount of gas.
JP61280652A 1986-11-27 1986-11-27 Exhaust gas recirculation control device Pending JPS63134845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280652A JPS63134845A (en) 1986-11-27 1986-11-27 Exhaust gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280652A JPS63134845A (en) 1986-11-27 1986-11-27 Exhaust gas recirculation control device

Publications (1)

Publication Number Publication Date
JPS63134845A true JPS63134845A (en) 1988-06-07

Family

ID=17628040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280652A Pending JPS63134845A (en) 1986-11-27 1986-11-27 Exhaust gas recirculation control device

Country Status (1)

Country Link
JP (1) JPS63134845A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852632A1 (en) * 2003-03-20 2004-09-24 Volkswagen Ag Internal combustion engine regulating and controlling process, involves directly controlling admission of gaseous mixture including recycled exhaust gas and fresh air or recycle rate of exhaust gas in engine
WO2011141994A1 (en) * 2010-05-11 2011-11-17 トヨタ自動車株式会社 Method for specifying egr rate in internal combustion engine, and control device for internal combustion engine
EP2551508A1 (en) * 2010-03-23 2013-01-30 Toyota Jidosha Kabushiki Kaisha Method for determination of egr ratio in internal combustion engine, and device for control of internal combustion engine
JP2016532052A (en) * 2013-08-23 2016-10-13 アカーテース パワー,インク. Control of captured burnt gas fraction for opposed piston engine with uniflow scavenging
JP2017020414A (en) * 2015-07-10 2017-01-26 本田技研工業株式会社 Control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660831A (en) * 1979-10-19 1981-05-26 Nissan Motor Co Ltd Electronic controlled fuel injection device
JPS5723103A (en) * 1980-07-18 1982-02-06 Yokogawa Hokushin Electric Corp Regulator for process control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660831A (en) * 1979-10-19 1981-05-26 Nissan Motor Co Ltd Electronic controlled fuel injection device
JPS5723103A (en) * 1980-07-18 1982-02-06 Yokogawa Hokushin Electric Corp Regulator for process control

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852632A1 (en) * 2003-03-20 2004-09-24 Volkswagen Ag Internal combustion engine regulating and controlling process, involves directly controlling admission of gaseous mixture including recycled exhaust gas and fresh air or recycle rate of exhaust gas in engine
EP2551508A1 (en) * 2010-03-23 2013-01-30 Toyota Jidosha Kabushiki Kaisha Method for determination of egr ratio in internal combustion engine, and device for control of internal combustion engine
EP2551508A4 (en) * 2010-03-23 2014-01-22 Toyota Motor Co Ltd Method for determination of egr ratio in internal combustion engine, and device for control of internal combustion engine
WO2011141994A1 (en) * 2010-05-11 2011-11-17 トヨタ自動車株式会社 Method for specifying egr rate in internal combustion engine, and control device for internal combustion engine
CN102893011A (en) * 2010-05-11 2013-01-23 丰田自动车株式会社 Method for specifying egr rate in internal combustion engine, and control device for internal combustion engine
JP5413506B2 (en) * 2010-05-11 2014-02-12 トヨタ自動車株式会社 Method for specifying EGR rate in internal combustion engine and control device for internal combustion engine
US9399958B2 (en) 2010-05-11 2016-07-26 Toyota Jidosha Kabushiki Kaisha Specifying method of EGR rate in internal combustion engine and control apparatus of internal combustion engine
JP2016532052A (en) * 2013-08-23 2016-10-13 アカーテース パワー,インク. Control of captured burnt gas fraction for opposed piston engine with uniflow scavenging
JP2017020414A (en) * 2015-07-10 2017-01-26 本田技研工業株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6457353B1 (en) Apparatus of diagnosing an internal combustion engine and a method of diagnosing of an internal combustion engine
JPH01253543A (en) Air-fuel ratio control device for engine
US5140850A (en) Process for determining the combustion air mass in the cylinders of an internal combustion engine
US9702787B2 (en) In-cylinder pressure detecting apparatus for internal combustion engine
JP2006509966A (en) Method for monitoring exhaust gas recirculation in internal combustion engines
JP2901613B2 (en) Fuel injection control device for automotive engine
US6571613B1 (en) Method and device for controlling an internal combustion engine
JPH04507290A (en) Measurement error correction method for thermal thin film air gravimeter
JPH0735018A (en) Engine controller
EP0115807B1 (en) Method for discriminating motor/combustion pressures in an i.c.e. combustion chamber
JPH02196153A (en) Ignition timing controller for engine
JPS63134845A (en) Exhaust gas recirculation control device
JP4030166B2 (en) Intake air amount detection device for internal combustion engine
JP3078008B2 (en) Engine fuel control device
KR20230163837A (en) Apparatus for correcting torque model of spark ignition engine and method thereof
JPH01265122A (en) Measuring instrument for suction air of internal combustion engine
JP4172359B2 (en) Control device for internal combustion engine
JPH0735755B2 (en) Output sensitivity correction device for combustion pressure sensor
JPS63140855A (en) Exhaust gas recirculation rate detector
JPH04228855A (en) Output sensitivity correcting method for combustion pressure sensor
JPS60150446A (en) Air-fuel ratio control device of internal-combustion engine
JPS59188042A (en) Controller for internal-combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine
JP2006070828A (en) Intake air quantity measurement device and fuel injection control device for engine
JPH01187346A (en) Output sensitivity compensator for combustion pressure sensor