JPS63133569A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63133569A
JPS63133569A JP28110386A JP28110386A JPS63133569A JP S63133569 A JPS63133569 A JP S63133569A JP 28110386 A JP28110386 A JP 28110386A JP 28110386 A JP28110386 A JP 28110386A JP S63133569 A JPS63133569 A JP S63133569A
Authority
JP
Japan
Prior art keywords
layer
guard ring
polycrystalline silicon
epitaxial layer
schottky diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28110386A
Other languages
Japanese (ja)
Other versions
JPH0671074B2 (en
Inventor
Hiroyuki Shiraki
弘之 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61281103A priority Critical patent/JPH0671074B2/en
Publication of JPS63133569A publication Critical patent/JPS63133569A/en
Publication of JPH0671074B2 publication Critical patent/JPH0671074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the integration without the need to newly form an exclusive wiring part to be connected to other internal elements by a method wherein a polycrystalline silicon layer connected to a guard ring is used an electrode on the side of an anode and as a wiring part to be connected to this electrode for a Schottky diode. CONSTITUTION:After insulating layers 5b of a prescribed pattern have been formed on the surface of an n<-> type epitaxial layer 3 which is partitioned by an insulating layer 5a, polycrystalline silicon layers 1 of a prescribed pattern are formed by a low-pressure chemical vapor growth method and a photolithographic method. Then, a guard ring 2 is formed on the surface of the epitaxial layer 3 which comes into contact with the polycrystalline epitaxial layers 1 by thermal diffusion in an atmosphere of N2. Then, Pt is coated on the surface of the epitaxial layer 3 surrounded by the guard ring 2; this assembly is sintered in the atmosphere of N2 and a PtSi layer 4 is formed. In this way, a Schottky diode is formed by a junction of the n<-> epitaxial layer 3 and the PtSi layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にショットキーダイオー
ドを含む半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device including a Schottky diode.

〔従来の技術〕[Conventional technology]

従来、この種のショットキーダイオードを含む半導体装
置では、このダイオードと他の内部素子とを接続する配
線が、一般に、アルミニウム等の金属層からなっていた
Conventionally, in semiconductor devices including this type of Schottky diode, wiring connecting the diode and other internal elements has generally been made of a metal layer such as aluminum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置は、ショットキーダイオード
を接続する配線、例えばアノード側の配線が、内部素子
との間の接続に用いられる配線用金属層と同じなので、
接続のための専用配線領域を必要とし、これが余分な面
積を占めて、集積度向上の妨げになるという欠点がある
In the conventional semiconductor device described above, the wiring connecting the Schottky diode, for example, the wiring on the anode side, is the same as the wiring metal layer used for connection with internal elements.
A disadvantage is that a dedicated wiring area is required for connection, which occupies extra area and impedes an increase in the degree of integration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、−導電型の半導体層表面に形成
したショットキー接合と該ショットキー接合に接しかつ
周囲を囲む反対導電型のガードリングとを備えたショッ
トキーダイオードを含む半導体装置において、少くとも
前記ガードリングの上に反対導電型の不純物を含有し前
記ガードリング形成用の拡散源を兼ねる多結晶半導体層
からなるアノード電極を設けて成る。
A semiconductor device of the present invention includes a Schottky diode including a Schottky junction formed on the surface of a semiconductor layer of a conductivity type and a guard ring of an opposite conductivity type that is in contact with and surrounds the Schottky junction, An anode electrode made of a polycrystalline semiconductor layer containing impurities of opposite conductivity type and serving as a diffusion source for forming the guard ring is provided at least on the guard ring.

〔実施例〕〔Example〕

この実施例は、素子分離用の絶縁層5aによって仕切ら
れたn−型のエピタキシャル層3の所定の位置表面に接
するp型不純物を含有する多結晶シリコン層1を設け、
多結晶シリコン層1に接するエピタキシャル層3表面に
p型のガードリング2を設け、ガードリンク2によって
囲まれたエピタキシャル層3表面にPtSi層4からな
るショットキー電極を設け、多結晶シリコン層1は、シ
ョットキー電極とガードリング2を介して連なり、アノ
ード電極と他の内部素子とを接続している。
In this embodiment, a polycrystalline silicon layer 1 containing a p-type impurity is provided in contact with the surface of an n-type epitaxial layer 3 at a predetermined position separated by an insulating layer 5a for element isolation.
A p-type guard ring 2 is provided on the surface of the epitaxial layer 3 in contact with the polycrystalline silicon layer 1, a Schottky electrode made of a PtSi layer 4 is provided on the surface of the epitaxial layer 3 surrounded by the guard link 2, and the polycrystalline silicon layer 1 is , are connected to the Schottky electrode via the guard ring 2, and connect the anode electrode and other internal elements.

又、この実施例を製造するには、先ず、絶縁層5aによ
って仕切られた比抵抗1Ω・lのn−型のエピタキシャ
ル層3の表面に所定のパターンの絶縁層5bを形成した
後に、減圧化学気相成長(LPCVD)法、5X10”
個/cs+2.60kVの条件のホウ素原子のイオン注
入及びホトリソグラフィーによって膜厚が350人で層
抵抗ρSが100Ω、/日程度の所定のパターンの多結
晶シリコン層1を形成する。次に、N2雰囲気で100
0℃、10分間の熱拡散を行い、多結晶シリコン層1に
接するエピタキシャル層3表面に深さ0.25μmのガ
ードリンク2を形成する。
In order to manufacture this embodiment, first, an insulating layer 5b having a predetermined pattern is formed on the surface of an n-type epitaxial layer 3 with a specific resistance of 1 Ω·l partitioned by an insulating layer 5a, and then a low pressure chemical treatment is performed. Chemical vapor deposition (LPCVD) method, 5X10”
A polycrystalline silicon layer 1 having a predetermined pattern with a film thickness of 350 Ω/cs and a layer resistance ρS of about 100 Ω/day is formed by ion implantation of boron atoms and photolithography under the conditions of 2.60 kV/cs+2.60 kV. Next, 100% in N2 atmosphere.
Thermal diffusion is performed at 0° C. for 10 minutes to form a guard link 2 with a depth of 0.25 μm on the surface of the epitaxial layer 3 in contact with the polycrystalline silicon layer 1.

次に、ガードリンク1に囲まれたエピタキシャル層3表
面にptを3うO入の厚さに被着し、N2雰囲気で50
0℃、15分間のシンターを行いPtS i層4を形成
する。なお、白金の被着及びシンタ一時には多結晶シリ
コン層1は、その表面を酸化膜で被覆されているため、
多結晶シリコン層1の表面にはPtS i層は形成され
ない。
Next, PT was deposited on the surface of the epitaxial layer 3 surrounded by the guard link 1 to a thickness of 3 O, and
Sintering is performed at 0° C. for 15 minutes to form a PtSi layer 4. Note that during platinum deposition and sintering, the surface of the polycrystalline silicon layer 1 is covered with an oxide film, so
No PtSi layer is formed on the surface of polycrystalline silicon layer 1.

このようにショットキーダイオードはn−エピタキシャ
ル層3とPtS i層4上の接合によって形成される。
A Schottky diode is thus formed by a junction on the n-epitaxial layer 3 and the PtSi layer 4.

又、近来のバイポーラトランジスタは、自己整合技術の
採用により、その電極引き出し部分に多結晶シリコン層
を使用しているが、これ等のトランジスタがnpn型の
場合、ベース引き出し電極はホウ素原子を含む多結晶シ
リコン層であり、一方、ショットキーダイオードのアノ
ード側は、はとんどの場合′ベースに接続して使用され
る。そこで、トランジスタのベース電極とショットキー
ダイオードのアノード側は、ホウ素原子を含む−続きの
多結晶シリコン層によって接続することができる。
In addition, recent bipolar transistors use a polycrystalline silicon layer for the electrode extension part by adopting self-alignment technology, but when these transistors are npn type, the base extraction electrode is made of a polycrystalline silicon layer containing boron atoms. The anode side of the Schottky diode, on the other hand, is most often used connected to the base. The base electrode of the transistor and the anode side of the Schottky diode can then be connected by a subsequent polycrystalline silicon layer containing boron atoms.

従って、ショットキーダイオードのガードリングは、通
常、耐圧の向上を目的として形成されるがこ・本発明の
構造では、耐圧の向上と共にショットキーダイオードの
アノードとしての役割を担っている。
Therefore, the guard ring of the Schottky diode is normally formed for the purpose of improving the withstand voltage, but in the structure of the present invention, it not only improves the withstand voltage but also plays the role of an anode of the Schottky diode.

更に又、アノード電極となる多結晶シリコン層のホウ素
原子の含有率を下げて(例えばイオン注入条件5×10
′4個/C1l 2.60kV、層抵抗5にΩ/口)形
成した多結晶シリコン層を抵抗体として、バイポーラR
AMのショットキー負荷セルを構成するという使用方法
もある。
Furthermore, the content of boron atoms in the polycrystalline silicon layer that will become the anode electrode is lowered (for example, the ion implantation conditions are 5×10
'4 pieces/C1l 2.60kV, layer resistance 5Ω/mouth) The formed polycrystalline silicon layer is used as a resistor, and bipolar R
Another use is to configure an AM Schottky load cell.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ショットキーダイオード
のアノード側の電極及びそれに連なる配線として、ガー
ドリングに接続した多結晶シリコン層を使用することに
より、他の内部素子と接続する為の専用配線を新たに形
成する必要がなく、従って面積効率が良くなり集積度を
向上させることができるという効果がある。
As explained above, the present invention uses a polycrystalline silicon layer connected to a guard ring as the anode side electrode of a Schottky diode and the wiring connected thereto, thereby creating a dedicated wiring for connecting to other internal elements. There is no need to newly form one, and therefore the area efficiency is improved and the degree of integration can be improved.

特に、本発明によってバイポーラR,A Mのショット
キーダイオードの抵抗体及び抵抗体とトランジスタのベ
ースのそれぞれを接続するためのコンタクト領域も不要
となるため、一層集積度を向上させることができるとい
う効果もある。
In particular, the present invention eliminates the need for the resistor of the bipolar R and AM Schottky diodes and the contact regions for connecting the resistor and the base of the transistor, thereby further improving the degree of integration. There is also.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図である。 1・・・多結晶シリコン層、2・・・ガードリング、3
・・・エピタキシャル層、4・・・PtSi層、5a。 5b、5c、 5d−絶縁層。
FIG. 1 is a sectional view of an embodiment of the present invention. 1... Polycrystalline silicon layer, 2... Guard ring, 3
...Epitaxial layer, 4...PtSi layer, 5a. 5b, 5c, 5d - insulating layer.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体層表面に形成したショットキー接合
と該ショットキー接合に接しかつ周囲を囲む反対導電型
のガードリングとを備えたショットキーダイオードを含
む半導体装置において、少くとも前記ガードリングの上
に反対導電型の不純物を含有し前記ガードリング形成用
の拡散源を兼ねる多結晶半導体層からなるアノード電極
を設けたことを特徴とする半導体装置。
In a semiconductor device including a Schottky diode comprising a Schottky junction formed on the surface of a semiconductor layer of one conductivity type and a guard ring of an opposite conductivity type in contact with and surrounding the Schottky junction, at least 1. A semiconductor device comprising an anode electrode made of a polycrystalline semiconductor layer containing impurities of opposite conductivity type and serving as a diffusion source for forming the guard ring.
JP61281103A 1986-11-25 1986-11-25 Semiconductor device Expired - Lifetime JPH0671074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281103A JPH0671074B2 (en) 1986-11-25 1986-11-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281103A JPH0671074B2 (en) 1986-11-25 1986-11-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63133569A true JPS63133569A (en) 1988-06-06
JPH0671074B2 JPH0671074B2 (en) 1994-09-07

Family

ID=17634389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281103A Expired - Lifetime JPH0671074B2 (en) 1986-11-25 1986-11-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0671074B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264475A (en) * 1989-01-25 1990-10-29 Cree Res Inc Silicon carbode schottkey diode and its manufacture
US6573128B1 (en) 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
US7026650B2 (en) 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
US9515135B2 (en) 2003-01-15 2016-12-06 Cree, Inc. Edge termination structures for silicon carbide devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586313A (en) * 1981-07-01 1983-01-13 Matsushita Electric Ind Co Ltd Combustion apparatus for liquid fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586313A (en) * 1981-07-01 1983-01-13 Matsushita Electric Ind Co Ltd Combustion apparatus for liquid fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264475A (en) * 1989-01-25 1990-10-29 Cree Res Inc Silicon carbode schottkey diode and its manufacture
US6573128B1 (en) 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
US6673662B2 (en) 2000-11-28 2004-01-06 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
US7026650B2 (en) 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
US7419877B2 (en) 2003-01-15 2008-09-02 Cree, Inc. Methods of fabricating silicon carbide devices including multiple floating guard ring edge termination
US7842549B2 (en) 2003-01-15 2010-11-30 Cree, Inc. Methods of fabricating silicon carbide devices incorporating multiple floating guard ring edge terminations
US8124480B2 (en) 2003-01-15 2012-02-28 Cree, Inc. Methods of fabricating silicon carbide devices incorporating multiple floating guard ring edge terminations
US9515135B2 (en) 2003-01-15 2016-12-06 Cree, Inc. Edge termination structures for silicon carbide devices

Also Published As

Publication number Publication date
JPH0671074B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPH09199707A (en) High withstand voltage semiconductor device
JPH05145076A (en) Vertical type current semiconductor device utilizing wafer-bonding and manufacture thereof
JPH0673376B2 (en) Bipolar semiconductor device
JPS6322070B2 (en)
JP2605030B2 (en) Quadrature bipolar transistor
JPS63133569A (en) Semiconductor device
US3454846A (en) High frequency transistor having a base region substrate
JP3099917B2 (en) Field effect transistor
US3316128A (en) Semiconductor device
JPH06236989A (en) Inverse n well cathode schottky transistor and manufacture thereof
JPH0254662B2 (en)
JP2668528B2 (en) Method for manufacturing semiconductor device
US3959810A (en) Method for manufacturing a semiconductor device and the same
JPH0555553A (en) Semiconductor integrated circuit
JPS6346990B2 (en)
JPS58107645A (en) Manufacture of semiconductor device
JPH0318738B2 (en)
JPH0437581B2 (en)
JPS5968963A (en) Semiconductor device and manufacture thereof
JPS6347962A (en) Semiconductor device
JPH0376023B2 (en)
JP2002009249A (en) Semiconductor device and its manufacturing method
JPS6230364A (en) Manufacture of mis semiconductor device
JPS62139355A (en) Semiconductor device
JPH0371670A (en) Semiconductor integrated circuit