JPS63131052A - Optical inspector - Google Patents

Optical inspector

Info

Publication number
JPS63131052A
JPS63131052A JP27742886A JP27742886A JPS63131052A JP S63131052 A JPS63131052 A JP S63131052A JP 27742886 A JP27742886 A JP 27742886A JP 27742886 A JP27742886 A JP 27742886A JP S63131052 A JPS63131052 A JP S63131052A
Authority
JP
Japan
Prior art keywords
light
incident
sample
irradiation
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27742886A
Other languages
Japanese (ja)
Inventor
Tokio Oodo
大戸 時喜雄
Yasushi Zaitsu
財津 靖史
Mutsuhisa Hiraoka
睦久 平岡
Hiroshi Hoshikawa
星川 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27742886A priority Critical patent/JPS63131052A/en
Publication of JPS63131052A publication Critical patent/JPS63131052A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To eliminate the need for a special light-shielded chamber while simplifying the mechanism of an inspector, by making reflected light or scattered light focused with an optical fiber bundle into a photoelectric converter to convert only light with a single wavelength into an electrical signal from among beams of incident light. CONSTITUTION:A parallel beam 12 with a single wavelength lambda incident from a laser oscillator 11 is deflected with a deflector 13 within one plane repeatedly at a specified cycle, made incident into an ftheta lens 14 as light beam 12a to be focused, thus generating a beam spot 4 on the surface 3a of a sample with the formation of an irradiation light 6. A scattered light 7 generated by irradiation of fine particles 16 on the surface 3a with the beam spot 4 is focused with an optical fiber bundle 15 and made incident into a wavelength selection filter 17. The light passing through a filter 17 is made incident into a photoelectric converter 18 to output an electrical signal 19 corresponding to the quantity of light. Then, the scattered light alone of the irradiation light 6 due to the fine particles 16 is incident into the photoelectric converter 18 without the entry of any disturbing light 22 with the wavelength differing from that lambda into the photoelectric converter 18 even when the light 22 is incident into the optical fiber bundle 15. Thus, the inspection of the sample surface 3a can be performed without the effect of the disturbing light 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウェハのような固体試料を光で照射し
、この光の該固体試料による散乱光または反射光を光電
変換機構によって電気信号に変換し℃この電気信号にも
とづt試料表面の凹凸や異物−あるいはぜ料の翰銘擲を
検査する資堂的檜査装置、特に多数の試料に対して順次
自動的(検査を行うプロセスにもインラインで適用する
ことの1きる検査装置く関する。
Detailed Description of the Invention [Industrial Application Field] The present invention irradiates a solid sample such as a semiconductor wafer with light, and converts the light scattered or reflected by the solid sample into an electrical signal using a photoelectric conversion mechanism. Shido's Hinoki inspection equipment, which uses this electrical signal to inspect the sample surface for unevenness, foreign matter, or dirt marks, is especially suitable for automatically (inspecting) a large number of samples sequentially. The present invention relates to an inspection device that can be applied in-line to processes.

〔従来の技術〕[Conventional technology]

試料忙光を照射して該試料の表面状態を検査する場合、
試料表面からの散乱光1反射光のいずれか一方または両
方を同時に検出することがある。
When inspecting the surface condition of a sample by irradiating the sample with light,
One or both of the scattered light and reflected light from the sample surface may be detected simultaneously.

特に散乱光を検出する場合は、8N比を向上させるため
に1通常できるだけ多くの散乱光を集光する機構が採用
される。aK4図は上記の考え方にもとづいて構成され
た光学的検査装置の第1従来例の要部構成図である。図
において、1は平行な光ビーム2を集束して平板状試料
3を垂直に照射するようKした集光レンズ、4は集光レ
ンズIKよりて試料30!!面38に形成されたビーム
スポットである。試料3は、XYステージ5に載置され
In particular, when detecting scattered light, a mechanism is usually employed to collect as much scattered light as possible in order to improve the 8N ratio. Figure aK4 is a block diagram of the main parts of a first conventional example of an optical inspection device constructed based on the above concept. In the figure, 1 is a condenser lens K that focuses a parallel light beam 2 to vertically irradiate a flat sample 3, and 4 is a condenser lens IK that focuses a parallel light beam 2 on a sample 30! ! This is a beam spot formed on the surface 38. The sample 3 is placed on the XY stage 5.

さらに試料表面3aの全面をビームスポット4が走査す
るようKXYステージ5が構成されている。
Further, a KXY stage 5 is configured so that the beam spot 4 scans the entire surface of the sample surface 3a.

6はビームスポット4を形成する照射光、7は試料表1
i13 aKおけろ照射光6の散乱光で、8は散乱光7
を受光するように配置した受光部である。
6 is the irradiation light that forms the beam spot 4, 7 is the sample table 1
i13 aK Scattered light of irradiation light 6, 8 is scattered light 7
This is a light receiving section arranged to receive light.

I!44図の検査装置では、受光部8の受光結果にもと
づき1図示していない信号処理部を用いて試料表面3a
に対する検査を行うようになっている。
I! The inspection device shown in FIG.
Inspections are now being carried out.

#!5図は光学的検査装置の第2従来例の要部構成図で
ある。図において、9はビームスポット4から出射され
る散乱光7を集光し工受光部8に導くようにした積分球
で、この場合照射光6は積分球9を貫通して試料表面3
aを斜めに照射するよ5に配置され、また積分球9は照
射光6の表面3aKよる反射光lOが積分球9Vc設け
た貫通孔9aから積分球9外へ出射するように構成さ第
1″Cいる。第5図においてもXYステージ5を動かす
ことによって試料表面3aが全面にわたって検査される
ようになっており、この場合積分球9を用いているので
散乱光7の集光効率が第4図の場合よりも良く、この結
果受光部8から出力さiる信号のSN比が@4図の場合
よりも向上する利点がある。
#! FIG. 5 is a block diagram of the main parts of a second conventional example of an optical inspection device. In the figure, reference numeral 9 denotes an integrating sphere that collects the scattered light 7 emitted from the beam spot 4 and guides it to the sample light receiving section 8. In this case, the irradiated light 6 passes through the integrating sphere 9 and reaches the sample surface
The integrating sphere 9 is arranged in such a way that the reflected light lO of the irradiated light 6 from the surface 3aK is emitted to the outside of the integrating sphere 9 through the through hole 9a provided in the integrating sphere 9Vc. In Fig. 5 as well, the entire surface of the sample surface 3a is inspected by moving the XY stage 5, and in this case, since the integrating sphere 9 is used, the light collection efficiency of the scattered light 7 is This is better than the case shown in FIG. 4, and as a result, there is an advantage that the SN ratio of the signal outputted from the light receiving section 8 is improved compared to the case shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

WJ4図及び第5図においては上述のようにして検査が
行われるので、検査装償外からの光(以後この光を外乱
光ということがある。)が受光部8に入射するとこの外
乱光の影響が検査結果に現れ″C1場合によっては誤っ
た検査結果が得ら4ることがある。したがって受光部8
の出力信号を処理する前述の信号処理部において外乱光
の影響を除く必要があるが、外乱光は通常検査装置の置
かれ工いる照明環境等に応じ−C変動する光であるから
、このよっな外乱光の影響を上記信号処理部において除
(ことは一般には困難である。このため第4図及びwJ
S図の検査装置におい1:は1図示した部分を遮光して
外乱光が侵入しないようにした専用室に収納するように
しているので、検査装置が複雑になっているという問題
点があった。
In Figure WJ4 and Figure 5, the inspection is performed as described above, so when light from outside the inspection equipment (hereinafter this light may be referred to as disturbance light) enters the light receiving section 8, this disturbance light is In some cases, an incorrect test result may be obtained. Therefore, the light receiving section 8
It is necessary to remove the influence of ambient light in the aforementioned signal processing unit that processes the output signal of It is generally difficult to remove the influence of external disturbance light in the signal processing section.
In the inspection equipment shown in Figure S, 1: The part shown in Figure 1 is housed in a dedicated room that is shielded from light to prevent disturbance light from entering, so there is a problem in that the inspection equipment is complicated. .

本発明は上述した遮光された専用室ケ不要にすることに
より光学的検査装置の機構を簡単にすることを目的とす
る。
An object of the present invention is to simplify the mechanism of an optical inspection device by eliminating the need for the above-mentioned light-shielded dedicated room.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために1本発明によれば、単波長
の照射光で試料を照射する投光機構と、照射光の試料に
よる反射光または散乱光を集光する集光機構と、集光機
構によって集光された反射光または散乱光が入射されこ
れら入射光を電気信号に変換して出力する光電変換機構
とを備え、前記電気信号にもとづき試料の表面を検査す
るように光学的検査装置を構成したうえ、さらに光電変
換゛・機構は前記入射光のうちの前記単波−長の光のみ
を電気信号に変換するように構成するものとする。
In order to solve the above-mentioned problems, according to the present invention, a light projecting mechanism that irradiates a sample with a single wavelength irradiation light, a light collecting mechanism that collects reflected light or scattered light of the irradiated light by the sample, A photoelectric conversion mechanism receives reflected light or scattered light collected by an optical mechanism, converts the incident light into an electrical signal, and outputs the converted light. In addition to configuring the apparatus, the photoelectric conversion mechanism is further configured to convert only the single wavelength light of the incident light into an electrical signal.

〔作用〕[Effect]

本発明の光学的検査装置では、光電変換機構に外乱光が
入射し工も、この外乱光の波長が照射光の波長と異なる
場合、光電変換機構が外乱光を電気信号に変換すること
はないので、上述の遮光さiた専用室が不要になる。
In the optical inspection device of the present invention, even if disturbance light enters the photoelectric conversion mechanism, if the wavelength of this disturbance light is different from the wavelength of the irradiation light, the photoelectric conversion mechanism will not convert the disturbance light into an electrical signal. Therefore, the above-mentioned light-shielding dedicated room is not required.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の構成図である。 FIG. 1 is a block diagram of a first embodiment of the present invention.

図において11は単波長λの平行な光ビーム12を出射
するレーザ発振器、13はレーザ発振器11によりて入
射させられた光ビーム12を一平面内に所定の周期で繰
り返し偏向させ、このように偏向させた元ビーム12a
をfθレンズ14に入射させるようにした偏向器で、f
θレンズ14は入射さ名る光ビーム12aを集束して照
射光6を形成しこの照射光6によって試料表面3aにビ
ームスポット4を生じさせる機能を有している。偏向器
13とfθレンズとは上述のように構成されているので
、スポット4は試料表面3aを直線状に走査することに
なる。なおfθレンズ14は、スポット4の大きさ及び
スポット4の表面3aを走査する速度が光ビーム12a
の偏向角度によって変化しないようにする機能も有して
いる。またこの場合、照射光6が表面38に垂直な面内
にあるように要部が構成されている。
In the figure, 11 is a laser oscillator that emits a parallel light beam 12 with a single wavelength λ, and 13 is a laser oscillator that repeatedly deflects the incident light beam 12 within one plane at a predetermined period. Original beam 12a
is a deflector that causes f to be incident on the fθ lens 14.
The θ lens 14 has the function of converging the incident light beam 12a to form irradiation light 6, and using this irradiation light 6 to generate a beam spot 4 on the sample surface 3a. Since the deflector 13 and the fθ lens are configured as described above, the spot 4 scans the sample surface 3a in a straight line. Note that the fθ lens 14 has the size of the spot 4 and the speed at which the surface 3a of the spot 4 is scanned by the light beam 12a.
It also has a function to prevent changes depending on the deflection angle. Further, in this case, the main parts are configured so that the irradiated light 6 is in a plane perpendicular to the surface 38.

15はビームスポット4が表面3a上の微粒子16を照
射することによって生じた散乱光7を集光し工波長選択
フィルタ17に入射させるようにした集光機構とL℃の
光ファイバ束で、ファイバ束15の散乱光7が入射する
端面15aは、ビームスポット4が表面3a上に形成す
る走査線にはぼ平行でかつ該走査線の斜め上方に配置さ
れている。フィルタ17はこの場合光ビーム12の波長
λに透過ピークを有する干渉フィルタが用いられている
。18はフィルタ17を透過した光が入射されるように
配置され、入射された光の光11に応じた電気信号19
を出力するようにした光電変換器で、18aはほぼ一様
な分光感度特性を有する変換器18の光電面で、20は
フィルタ17と変換器I8とからなる光電変換機構であ
る。21はレーザ発振器11と偏向器13とレンズ14
とからなる投光機構、24は試料3をのせた試料載置台
で、載置台24は照射光6が走査運動をする面に対して
垂直な方向に試料3を移動させるように構成され1いる
。この移動機構は図示していない。
Reference numeral 15 denotes a condensing mechanism that condenses the scattered light 7 generated when the beam spot 4 irradiates the fine particles 16 on the surface 3a and makes it incident on the engineered wavelength selection filter 17, and a bundle of optical fibers at L°C. The end surface 15a on which the scattered light 7 of the bundle 15 enters is arranged substantially parallel to the scanning line formed by the beam spot 4 on the surface 3a and diagonally above the scanning line. In this case, the filter 17 is an interference filter having a transmission peak at the wavelength λ of the light beam 12. Reference numeral 18 is arranged so that the light transmitted through the filter 17 is incident thereon, and an electric signal 19 corresponding to the light 11 of the incident light is generated.
18a is a photocathode of the converter 18 having substantially uniform spectral sensitivity characteristics, and 20 is a photoelectric conversion mechanism consisting of a filter 17 and a converter I8. 21 is a laser oscillator 11, a deflector 13, and a lens 14
24 is a sample mounting table on which the sample 3 is placed, and the mounting table 24 is configured to move the sample 3 in a direction perpendicular to the plane on which the irradiation light 6 performs a scanning motion. . This moving mechanism is not shown.

第1図においては各部が上述のように構成されているの
で、試料載(ii 3 aの全面が照射光6によって照
射されることになり、波長λとは異なる波長を有する外
乱光22が光ファイバ束15に入射してもこの光が光電
変換器18に入射することはな(、該変換器18には微
粒子t6rcよる照射光6の散乱光7のみが入射される
。故にこのような光学的検査装置によれば外乱光22の
影響を受けることなく試料表面3aO検査が行えること
になり、この場合外乱光22が光7アイバ束151c入
射しないように図示の要部を遮光された専用室に配置す
る必要はない。換言すればこのような専用室は不要であ
る。したがって第1図の構成を有する検査装置は機構の
簡単な検査装置となる。
In FIG. 1, each part is configured as described above, so the entire surface of the sample holder (ii 3 a) is irradiated with the irradiation light 6, and the disturbance light 22 having a wavelength different from the wavelength λ is Even if this light enters the fiber bundle 15, it does not enter the photoelectric converter 18 (only the scattered light 7 of the irradiated light 6 by the fine particles t6rc enters the converter 18. Therefore, such optical According to the standard inspection device, the sample surface 3aO can be inspected without being affected by the disturbance light 22, and in this case, the main part shown in the figure is a dedicated chamber that is shielded from light so that the disturbance light 22 does not enter the light 7 fiber bundle 151c. In other words, there is no need for such a dedicated room.Therefore, the inspection apparatus having the configuration shown in FIG. 1 is an inspection apparatus with a simple mechanism.

第1図においては光電変換機構20を上述のように構成
したが1本発明においCは、光ファイバ束15から出射
された光23が入射されて電気信号19を得る光電変換
機構20に対応する光電変換機構Xを、以下に説明する
ように構成し℃もよい。すなわち、この場合、機構Xを
、第2図にAで示した分光透過率特性を有するガラスフ
ィルタと、第2図にBで示した分光感度特性を有する光
電面を備えた光電子増倍管とで構成して、第1図に示し
た光23がこのガラスフィルタに入射するようにする。
In FIG. 1, the photoelectric conversion mechanism 20 is configured as described above, and in the present invention, C corresponds to the photoelectric conversion mechanism 20 into which the light 23 emitted from the optical fiber bundle 15 is incident and obtains the electrical signal 19. The photoelectric conversion mechanism X may be configured as described below and may be heated at . That is, in this case, mechanism The light 23 shown in FIG. 1 is made incident on this glass filter.

すると、第2図から明らかなように。Then, as is clear from Figure 2.

ガラスフィルタはほぼ760 (nm)以上の光な透過
させ光電子増倍管はほぼ900Cnm)以下の光に対し
℃感度を有するので、光電変換機構Xは760 (:n
m)近傍に透過ピークを有する干渉フィルタ17を備え
た第1図の光電変換機構20と等価になる。故IC7f
50 C口m〕近傍の波長の照射光6を出射する投光機
w21と光7アイバ束15と光電変換機構Xとを用いて
光学的検査装置を構成すると、このような検査装置は波
長7fSOCnm)以外の外乱光の影響を受けないので
、前述の専用室が不要となって機構が簡単になる。
A glass filter transmits light of approximately 760 (nm) or more, and a photomultiplier tube has a sensitivity of approximately 900 (nm) or less to light of approximately 760 (nm) or less, so the photoelectric conversion mechanism
m) It is equivalent to the photoelectric conversion mechanism 20 of FIG. 1, which is equipped with an interference filter 17 having a transmission peak in the vicinity. Late IC7f
50 C mouth m] When an optical inspection device is constructed using a projector w21 that emits irradiation light 6 of a wavelength near the wavelength of 7 fSOC nm, a light 7 eyeball bundle 15, and a photoelectric conversion mechanism ), the mechanism becomes simpler as the dedicated chamber described above is not required.

第3図は本発明の第3実施例の構成図で1本図の第1図
と大きく異なる点は、試料3を照射する照射光6が固定
された光となり1いる点である。
FIG. 3 is a block diagram of a third embodiment of the present invention, and the major difference from FIG. 1 is that the irradiation light 6 that irradiates the sample 3 is fixed light.

すなわち、25は光ビーム12をこのビーム12よりも
太い平行な光ビーム25aに拡大するビームエキスパン
ダ、26は光ビーム25aを集束して試料表面31にビ
ームスポット4を形成する凸レンズで、ビームエキスパ
ンダ25と凸レンズ26とはできるだけ小さいスポット
4を得るために設けられている。27は散乱光7を集光
してフィルタ7を介して充電変換器18に入射させるよ
5にした集光レンズである。この場合、レーザ発振器1
1とビームエキスパンダ25と凸レンズ26とからなる
投光機構28は、萌述したように、空間的に固定された
照射光6を出射するように構成されているが、試料3を
載せる試料台29が回転テーブルと該回転テーブルを直
線状に移動させる一軸ステージとを組み合わせた機構と
なっていて、このためビームスポット4が試料表面3a
を相対的に渦巻き状に走査することになるので、結局試
料表面3aが全面にわたって照射光6で照射されて検査
が行われることになる。
That is, 25 is a beam expander that expands the light beam 12 into a parallel light beam 25a that is thicker than the beam 12, and 26 is a convex lens that focuses the light beam 25a to form a beam spot 4 on the sample surface 31. The panda 25 and the convex lens 26 are provided to obtain a spot 4 as small as possible. Reference numeral 27 denotes a condensing lens 5 that condenses the scattered light 7 and makes it enter the charging converter 18 via the filter 7. In this case, laser oscillator 1
1, a beam expander 25, and a convex lens 26, the light projecting mechanism 28 is configured to emit spatially fixed irradiation light 6, as described above. 29 is a mechanism that combines a rotary table and a uniaxial stage that moves the rotary table linearly, so that the beam spot 4 is aligned with the sample surface 3a.
Since the sample surface 3a is scanned relatively spirally, the entire surface of the sample 3a is irradiated with the irradiation light 6 to be inspected.

第3図の検査装置iは上述のように構成され℃いるので
、この場合も、外乱光22が集光レンズ22に入射して
も、これによって検査結果が影響されることはない。し
たがって第3図の検査装置は、外乱光侵入防止用の専用
室を必要としない、構成の簡単な検査装置となる。
Since the inspection apparatus i shown in FIG. 3 is configured as described above and is kept at a temperature of 0.degree. C., even in this case, even if the disturbance light 22 enters the condenser lens 22, the inspection results will not be affected by this. Therefore, the inspection apparatus shown in FIG. 3 is a simple inspection apparatus that does not require a dedicated chamber for preventing intrusion of disturbance light.

なお本発明においては、上述したように外乱光22の侵
入を防止するための専用室が不要であるから、第1図の
試料台24にベルトコンベアのように多数の試料3を一
方向に順次搬送する搬送機構の機能をも持たせると、第
1図の構成により。
In the present invention, as described above, there is no need for a dedicated chamber for preventing the intrusion of the disturbance light 22, so a large number of samples 3 are sequentially placed in one direction on the sample table 24 in FIG. 1 like a belt conveyor. If it also has the function of a conveying mechanism, the structure shown in FIG. 1 will be used.

試料台24によって逐次搬送される試料3をインライン
で自動的に順次検査する光学的検査装置を。
An optical inspection device that automatically and sequentially inspects samples 3 sequentially conveyed by a sample stage 24 in-line.

第3図のような試料台29を有する場合よりも簡単な機
構で実現できることになる。
This can be realized with a simpler mechanism than when the sample stage 29 as shown in FIG. 3 is used.

上述の各実施例においては散乱光7を用いて検査を行う
ようにしたが1本発明においCは反射光lOを用いて検
査を行うようにすることもできることは説明するまでも
なく明らかである。
In each of the above-mentioned embodiments, the inspection was carried out using the scattered light 7, but it is obvious that in the present invention, it is also possible to carry out the inspection using the reflected light 1O. .

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、単波長の照射光で
試料を照射する投光機構と、照射光の試料による散乱光
または反射光を集光する集光機構と、集光機構によって
集光された散乱光または反射光が入射されこれら入射光
を電気信号に変換して出力する光電変換機構とを備える
ようにして。
As described above, the present invention includes a light projection mechanism that irradiates a sample with single-wavelength irradiation light, a light collection mechanism that collects light scattered or reflected by the sample of the irradiation light, and a light collection mechanism that collects light by the light collection mechanism. and a photoelectric conversion mechanism that receives the scattered light or reflected light, converts the incident light into an electrical signal, and outputs the electrical signal.

前記電気信号にもとづき試料の表面を検査する光学的検
査装置を構成し、さらにこの検査装置において光電変換
機構が前記入射光のうちの前記単波長の光のみを電気信
号に変換するようVC!!I4成した。
An optical inspection device is configured to inspect the surface of a sample based on the electrical signal, and furthermore, a VC! ! I4 completed.

このため本発明においては、光電変換機構に外乱光が入
射してもこの外乱光の波長が照射光の波長と異なる限り
検査結果が影響を受けることはないので、従来検査装置
におい℃必要とした外乱光防止用の専用室が不要になっ
て1機構が簡単になる効果がある。なお、本発明には、
光電変換機構の電気信号l出力する部分に光電子増倍管
な用いた場合、外乱光による該増倍管の光IE面の劣化
を抑制する効果もある。
Therefore, in the present invention, even if disturbance light enters the photoelectric conversion mechanism, the inspection results will not be affected as long as the wavelength of this disturbance light is different from the wavelength of the irradiation light. This has the effect of simplifying one mechanism by eliminating the need for a dedicated chamber for preventing disturbance light. Note that the present invention includes:
When a photomultiplier tube is used in the part of the photoelectric conversion mechanism that outputs the electric signal, it also has the effect of suppressing deterioration of the optical IE surface of the multiplier tube due to disturbance light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図%第3図はそれぞれ本発明の第1実施例。 第3実施例の構成図、第2図は本発明の第2実施例の説
明に係わる分光特性図、第4図及び第5図は異なる従来
の光学的検査装置のいずれも要部構成図である。 3・・・・・・試料、6・・・・・・照射光、7・・・
・・・散乱光、10・・・・・・反射光、15・・・・
・・光ファイバ束、19・・・・・・ 電気信号、  
20・・・・・・光電変換機構、21.28・・・・・
・投光機構、23・・・・・・光。 ′8 2 口 篤  3  図
Figure 1 and Figure 3 each show a first embodiment of the present invention. The configuration diagram of the third embodiment, FIG. 2 is a spectral characteristic diagram related to the explanation of the second embodiment of the present invention, and FIGS. 4 and 5 are configuration diagrams of main parts of different conventional optical inspection devices. be. 3...Sample, 6...Irradiation light, 7...
...Scattered light, 10...Reflected light, 15...
...Optical fiber bundle, 19... Electric signal,
20...Photoelectric conversion mechanism, 21.28...
・Light projection mechanism, 23...Light. '8 2 Atsushi Kuchi 3 Figure

Claims (1)

【特許請求の範囲】[Claims] 単波長の照射光で試料を照射する投光機構と、前記照射
光の前記試料による反射光または散乱光を集光する集光
機構と、前記集光機構によつて集光された前記反射光ま
たは前記散乱光が入射されこれら入射光を電気信号に変
換して出力する光電変換機構とを備え、前記電気信号に
もとづき前記試料の表面を検査するものであつて、前記
光電変換機構は前記入射光のうちの前記単波長の光のみ
を前記電気信号に変換することを特徴とする光学的検査
装置。
a light projection mechanism that irradiates a sample with irradiation light of a single wavelength; a light collection mechanism that collects light reflected or scattered by the sample of the irradiation light; and the reflected light collected by the light collection mechanism. or a photoelectric conversion mechanism that receives the scattered light and converts the incident light into an electrical signal and outputs it, and inspects the surface of the sample based on the electrical signal, wherein the photoelectric conversion mechanism is configured to inspect the surface of the sample based on the electrical signal; An optical inspection device characterized in that only the single-wavelength light of the emitted light is converted into the electrical signal.
JP27742886A 1986-11-20 1986-11-20 Optical inspector Pending JPS63131052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27742886A JPS63131052A (en) 1986-11-20 1986-11-20 Optical inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27742886A JPS63131052A (en) 1986-11-20 1986-11-20 Optical inspector

Publications (1)

Publication Number Publication Date
JPS63131052A true JPS63131052A (en) 1988-06-03

Family

ID=17583422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27742886A Pending JPS63131052A (en) 1986-11-20 1986-11-20 Optical inspector

Country Status (1)

Country Link
JP (1) JPS63131052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530922A2 (en) * 1991-09-04 1993-03-10 International Business Machines Corporation Method and apparatus for object inspection
JP2003012864A (en) * 2001-06-28 2003-01-15 Jsr Corp Method for producing flame-retardant polymer composition and flame-retardant polymer composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530922A2 (en) * 1991-09-04 1993-03-10 International Business Machines Corporation Method and apparatus for object inspection
EP0530922A3 (en) * 1991-09-04 1995-01-25 Ibm
JP2003012864A (en) * 2001-06-28 2003-01-15 Jsr Corp Method for producing flame-retardant polymer composition and flame-retardant polymer composition

Similar Documents

Publication Publication Date Title
JP4030815B2 (en) System and method for simultaneous or sequential multiple perspective sample defect inspection
JP5132982B2 (en) Pattern defect inspection apparatus and method
EP0500293B1 (en) Particle detection method and apparatus
JP4741986B2 (en) Optical inspection method and optical inspection apparatus
US7449691B2 (en) Detecting apparatus and device manufacturing method
JPH0228803B2 (en)
JPS63131052A (en) Optical inspector
JPH05142156A (en) Foreign matter inspecting device
JP2796906B2 (en) Foreign matter inspection device
JP3754164B2 (en) Sample inspection equipment
JPH01143904A (en) Thin film inspecting device
JPH0682373A (en) Inspection of defect
GB2119507A (en) Infrared spectrometer
JPH02183147A (en) Fine foreign matter inspecting device
JPS6321854B2 (en)
JPS63208746A (en) Defect inspecting device
JPS6211135A (en) Apparatus for inspecting surface of transparent specimen plate
JPH0224539A (en) Optical pattern checking method
JPS6335481Y2 (en)
JPS59231405A (en) Detector of surface defect
JPS6256847A (en) Surface inspecting equipment using light beam
JPS5880544A (en) Detector for foreign matter on reticle of exposure device
JP2004347434A (en) Microdefect inspection apparatus and method for manufacturing circuit board
JPS62197751A (en) Defect inspector for object
JPH06222008A (en) Defect inspection system