JPS63129702A - Three-axis antenna control system - Google Patents

Three-axis antenna control system

Info

Publication number
JPS63129702A
JPS63129702A JP27715686A JP27715686A JPS63129702A JP S63129702 A JPS63129702 A JP S63129702A JP 27715686 A JP27715686 A JP 27715686A JP 27715686 A JP27715686 A JP 27715686A JP S63129702 A JPS63129702 A JP S63129702A
Authority
JP
Japan
Prior art keywords
axis
angle
tracking
command
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27715686A
Other languages
Japanese (ja)
Other versions
JPH0626284B2 (en
Inventor
Makoto Nakayama
誠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27715686A priority Critical patent/JPH0626284B2/en
Priority to EP87107347A priority patent/EP0246635B1/en
Priority to DE3789162T priority patent/DE3789162T2/en
Publication of JPS63129702A publication Critical patent/JPS63129702A/en
Priority to US07/324,951 priority patent/US4994815A/en
Publication of JPH0626284B2 publication Critical patent/JPH0626284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To eliminate the need for connection change in an output of a tracking receiver by applying position control to an angle display of an azimuth axis so as to be coincident with a command angle set by a predetermined relation from angle display information of azimuth axis, elevating axis and orthogonal elevating axis. CONSTITUTION:An angle display signal of each axis is converted into a digital signal by resolver converters 16-18, compared with command angle information from a coordinate conversion circuit 19 or an angle command generating circuit 20 and fed to a tracking mode switch 13 via servo control circuits 21-23. In the self-tracking mode thrown to the position A, the elevating axis (EL axis) and the orthogonal elevating (XEL axis) drive system orthogonal to the EL axis are controlled always by an error signal from the tracking receiver, the azimuth axis (AZ axis) drive system is controlled by command angle information from the angle command generating circuit 20 and the position control where the angle display of the AZ axis is coincident with the command angle of the angle command generating circuit 20 is applied. The angle command generating circuit 20 applies an or bit predicting operation based on the angle display information of each axis and generates the command angle information of the AZ axis from the result of prediction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3軸アンテナ制御方式に関し、特に方位軸、俯
仰軸および直交俯仰軸の3軸を備えt3軸マウントの指
向性アンテナにより、天頂付近を通過する中高度衛星の
追尾全自己追尾モードで行う3軸アンテナ制御方式に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-axis antenna control system, and in particular, the present invention relates to a three-axis antenna control system, and in particular, a directional antenna with a t3-axis mount, which has three axes: an azimuth axis, an elevation axis, and an orthogonal elevation axis, This paper relates to a three-axis antenna control method for tracking medium-altitude satellites passing through the area in full self-tracking mode.

〔従来の技術〕[Conventional technology]

全天指向型のアンテナの支持方法のうち、垂直に設けら
れ友方位軸(AZ軸)のまわりに回転できる方位旋回台
上に水平な俯仰軸(EL軸)1−設け、このBL軸のま
わりに指向性アンテナを水平から天頂まで回転できる工
うに取付けたAZ−ELマウント方式は、構造的に最も
有利でhv広く実用されている。しかしながらこの方式
は、天頂付近を通過する衛星を追尾する場合にAZ軸ま
わりの回転角速度が非常に大きくなるという難点がある
。これに対して、水平に固定された固定軸(X軸)と、
この固定軸のまわりに回転しこれと直交した可動軸(Y
軸)とを備え九X−Yマウントは、天頂付近を通過する
衛星の追尾には支障ないが、低仰角の衛星の追尾に難点
があるほか支持構造が大型となシ、特に直径の大きな大
型アンテナには不向きである。
Among the methods of supporting an all-sky directional antenna, a horizontal elevation axis (EL axis) 1 is provided on an azimuth swivel table that is installed vertically and can rotate around a friend azimuth axis (AZ axis), and around this BL axis. The AZ-EL mount system, in which the directional antenna is mounted on a mount that can rotate from the horizontal to the zenith, is the most structurally advantageous and is widely used. However, this method has a drawback in that the rotational angular velocity around the AZ axis becomes extremely large when tracking a satellite passing near the zenith. On the other hand, a fixed axis (X axis) fixed horizontally,
A movable axis (Y
The 9X-Y mount has no problem in tracking satellites passing near the zenith, but it has difficulties in tracking satellites at low elevation angles, and the support structure is large. Not suitable for antennas.

上記の問題を解決する一方法として、AZ−ELマウン
トの上にEL軸と直交した直交俯仰軸(XEL@)を設
け、このXEL軸のまわシに指向性アンテナを限定され
た範囲だけ回転可能に取付けた3軸マウントアンテナが
$p、XEL@まわシの回転可能範囲を小さくできる駆
動制御方法が特開昭60−22803号公報に提案され
ている。この方法は天頂付近を通過する衛星を追尾する
とき、衛星が最大仰角に達する以前にAZ@まわシに先
行して駆動させることによシ、XEL@lわシの回転可
能範囲を先行駆動を行わない場合の半分以下に限定でき
る方法でるる。
One way to solve the above problem is to create an orthogonal elevation axis (XEL@) on the AZ-EL mount that is perpendicular to the EL axis, and the directional antenna can be rotated within a limited range around this XEL axis. Japanese Patent Laid-Open No. 60-22803 proposes a drive control method that can reduce the rotatable range of the XEL@Mawashi, in which the three-axis mount antenna attached to the XEL@Mawashi is $p. In this method, when tracking a satellite passing near the zenith, by driving AZ@Washi in advance before the satellite reaches its maximum elevation angle, the rotatable range of XEL@L is driven in advance. This is a method that can limit the number of cases to less than half of what it would be if it were not carried out.

第6図は上述の特開昭60−22803号公報に記載さ
れた3軸マウ/ドア/テナの制御系のブロック図、第7
図は第6図の動作を説明するための流れ図である。以下
に第6悶および第7図を参照してこの制御方法を説明す
る。
FIG. 6 is a block diagram of the control system for the 3-axis maw/door/tenna described in the above-mentioned Japanese Patent Application Laid-Open No. 60-22803.
This figure is a flowchart for explaining the operation of FIG. 6. This control method will be explained below with reference to Fig. 6 and Fig. 7.

第6図に示す3軸アンテナ制御系は、直交した二つの誤
差信号101.102を検出する追尾受信機1と、各軸
角度検出器2,3.4からの角度表示情報によシ軌道予
測演算等を行う天頂追尾装置5と、EL@駆動系6.A
Z軸軸駆動計尺びXEL軸駆動系8の各軸駆動系によシ
構成されている。衛星位置が下限リミットを越えて衛星
の初期捕捉が終シ、追尾受信機1の受信レベルが自己追
尾可能な状態になったとき、第7図のステップ201に
示すように、XEL、軸を角度表示が00 の位置に固
定して通常のAZ−ELマウントの場合と同様にAZ軸
およびEL軸のみを用いて自己追尾を行り。この間に仰
角が一定の値を越えるとステップ202で軌道予測演算
を行い、衛星が天頂付近を通過するときAZ軸の所要駆
動速度が最大駆動速度を越えると判断された場合に天頂
追尾モードに切換え、ステップ203に示すようにAZ
軸を定速度で先行駆動し、追尾受信機lの誤差信号10
2をAZZ駆動系7からXEL軸駆動系8に切換え、E
L軸およびXEL軸による自己追尾を行う。衛星が天頂
付近を通過して仰角が所定角度以下になると、AZ軸の
定速態動を終了して再びAZ軸およびEL軸による自己
追尾モードに戻シ、仰角が低下して下限リミットに達す
ると追尾動作を終了する。
The three-axis antenna control system shown in FIG. 6 includes a tracking receiver 1 that detects two orthogonal error signals 101 and 102, and trajectory prediction based on angle display information from each axis angle detector 2, 3.4. A zenith tracking device 5 that performs calculations, etc., and an EL@drive system 6. A
It is composed of a Z-axis drive meter, an XEL-axis drive system 8, and each axis drive system. When the satellite position exceeds the lower limit, the initial acquisition of the satellite ends, and the reception level of the tracking receiver 1 reaches a state where self-tracking is possible, as shown in step 201 in FIG. The display is fixed at the 00 position and self-tracking is performed using only the AZ and EL axes as in the case of a normal AZ-EL mount. During this time, if the elevation angle exceeds a certain value, orbit prediction calculation is performed in step 202, and if it is determined that the required drive speed of the AZ axis exceeds the maximum drive speed when the satellite passes near the zenith, the mode is switched to zenith tracking mode. , AZ as shown in step 203
The axis is driven in advance at a constant speed, and the error signal 10 of the tracking receiver l is
2 from AZZ drive system 7 to XEL axis drive system 8, and
Self-tracking is performed using the L and XEL axes. When the satellite passes near the zenith and the elevation angle becomes less than a predetermined angle, the constant speed motion of the AZ axis is terminated and the satellite returns to self-tracking mode using the AZ and EL axes, and the elevation angle decreases until it reaches the lower limit. Then, the tracking operation ends.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の例に示したように、従来の3軸ア/テナ制御方式
では、天頂付近を除く大部分の範囲ではAZ−ELマウ
ントの場合と同様に、追尾受信機1の直交する誤差信号
101.102でAZ軸とEL軸との回転を制御し、天
頂付近の衛星を追尾する天頂追尾モードのときにaEL
軸とXEL軸とを用いて自己追尾を行りよつに構成され
てお夛、追尾受信機lの誤差信号出力の接続を自己追尾
動作の途中で変更し、これに伴ってAZ軸の制御感度調
整のためのcosec補正回路を挿入したり除去したシ
する煩雑さがあるという問題点がるる。
As shown in the above example, in the conventional three-axis antenna/antenna control system, the orthogonal error signals 101 . 102 controls the rotation of the AZ axis and the EL axis, and when in the zenith tracking mode that tracks the satellite near the zenith, the aEL
The system is configured to perform self-tracking using the axis and There is a problem in that it is complicated to insert or remove a COSEC correction circuit for adjustment.

本発明の目的は、追尾受信機の出力を常時EL軸に接続
したままで使用でき、運用中に追尾受信機出力の接続変
更を必要としない3@アンテナ制制御式を提供すること
である。
An object of the present invention is to provide a 3@antenna control system that can be used with the output of the tracking receiver always connected to the EL axis and does not require changing the connection of the output of the tracking receiver during operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の3軸アンテナ制御方式は、垂直に設けられた方
位軸と、この方位軸のまわシに回転できる水平な俯仰軸
と、この俯仰軸のまわシに回転できこれと直交する直交
俯仰軸と、この直交俯仰軸のまわりに限定された角度範
囲内で回転できるように取付けられた指向性アンテナと
、この指向性アンテナの指向方向誤差を検出する追尾受
信機とを備えた3軸マウントアンテナを自己追尾モード
で制御する3軸アンテナ制御方式において、前記俯仰軸
および直交俯仰軸の回転を前記追尾受信機からの互いに
直交する誤差信号成分によシそれぞれ制御し、前記方位
軸の回転を前記方位軸の角度表示が前記方位軸、俯仰軸
および直交俯仰軸の角度表示情報からおらかじめ足めら
れた関係にょう設定される指令角度と一致するように位
置制御を行うように構成される。
The three-axis antenna control system of the present invention has a vertical azimuth axis, a horizontal elevation axis that can be rotated around this azimuth axis, and an orthogonal elevation axis that can be rotated around this elevation axis and perpendicular to it. , a directional antenna mounted so as to be able to rotate within a limited angular range around this orthogonal elevation axis, and a tracking receiver that detects a pointing direction error of this directional antenna. In the three-axis antenna control method, the rotation of the elevation axis and the orthogonal elevation axis are respectively controlled by mutually orthogonal error signal components from the tracking receiver, and the rotation of the azimuth axis is controlled by the orthogonal error signal components from the tracking receiver. It is configured to perform position control so that the angle display of the azimuth axis matches a command angle set according to a predetermined relationship from the angle display information of the azimuth axis, the elevation axis, and the orthogonal elevation axis. .

〔実施例〕〔Example〕

次に、本発明の実施例について口面を参照して説明する
Next, embodiments of the present invention will be described with reference to the mouth surface.

第1図は本発明の一実施例のブロック因である。FIG. 1 shows a block diagram of an embodiment of the present invention.

第1図において、追尾受信機(図示せず)からの互いに
直交する誤差信号101,102はそれぞれA−D変換
器9.lOでディジタル信号に変換された後、サーボ制
御回路11.12及び追尾モード切換器13を経てD−
AyR換器14,15に加えられ、アナログ信号に変換
されてEL軸およびXELIIm[部系の速度制御信号
103,104として送シ出される。
In FIG. 1, mutually orthogonal error signals 101 and 102 from a tracking receiver (not shown) are sent to an A-D converter 9. After being converted into a digital signal by IO, it is passed through servo control circuits 11 and 12 and tracking mode switch 13 to D-
The signals are applied to AyR converters 14 and 15, converted into analog signals, and sent as speed control signals 103 and 104 for the EL axis and XELIIm systems.

一方、レゾルバ(図示せず)で検出された各軸の角度表
示信号は、レゾルバ変換器16,17゜18でディジタ
ル信号に変換され、それぞれ座標変換回路19又は角度
指令発生回路20からの指令角度情報105,106,
107と比較されたのち、サーボ制御回路21,22.
23を経て追尾モード切換器13に送られる。追尾モー
ド切換器13及び13aがA側(Pはプログラム追尾モ
ード、Sは速度制御モード)に接続されている自己追尾
そ一ドでは、EL軸およびXELEL軸系は常に追尾受
信機からの誤差信号によ多制御され、AZ軸駆動系は角
度指令発生回路20からの指令角度情報によ)制御され
、AZ軸の角度表示が角度指令発生回路200指令角度
と一致するよりな位置制御が行われるよりに構成されて
いる。角度指令発生回路20は各軸の角度表示情報に基
づいて軌道予測演算を行い、この予測結果からAZ軸の
指令角度情報を発生する回路である。
On the other hand, the angle display signal of each axis detected by a resolver (not shown) is converted into a digital signal by resolver converters 16, 17° 18, and the command angle from the coordinate conversion circuit 19 or the angle command generation circuit 20, respectively. Information 105, 106,
After being compared with servo control circuits 21, 22 .
23 and is sent to the tracking mode switch 13. In self-tracking mode where the tracking mode switchers 13 and 13a are connected to the A side (P is program tracking mode, S is speed control mode), the EL axis and XELEL axis system always receives the error signal from the tracking receiver. The AZ-axis drive system is controlled by command angle information from the angle command generation circuit 20, and position control is performed such that the angle display of the AZ axis matches the command angle of the angle command generation circuit 200. It is composed of The angle command generation circuit 20 is a circuit that performs a trajectory prediction calculation based on the angle display information of each axis, and generates command angle information of the AZ axis from the prediction result.

第2図は第1図に示した角度指令発生回路の一実施例の
製作を説明する流れ図で、ELlllまわシの回転が天
頂を越えて180度まで可能な3軸マウントアンテナの
場合を示している。衛星位置が下限リミットを越えて追
尾受信機出力が自己追尾可能な状態となると、その出力
でEL軸とXELEL軸系を制御して自己追尾を行い、
ステップ204に示すようにAZ@駆動系に対する指令
角度0鶴は θ婬=0ム2−θnL     ・・・・・・(1)と
なるように設定される。ここでθAZ 、 ax、Lは
それぞれAZ軸、XEL軸の角度表示である。AZ軸は
角度表示θ認が指令角度0ム2と等しくなるように位置
制御されるから、(1)式からθ)GIL ” 0 @
  となるような制御が行われることになる。次に、ス
テップ205においてEL軸の角度表示θBLが65゜
〜706の間に軌道予測を行い、最高仰角θILMが算
出される。”ILが70°を越え、θELMが83″よ
り大きい場合にはステップ206に移行し、角度指令発
生回路20から 屯、=0認−も3L十(90°−GILM)   ・・
・・・・(2)となるような指令角度情報が出され、E
L軸を90″の天頂点を越えて回転させる天頂追尾モー
ドの駆動が行われる。このとき、0ム2=θ認となるよ
うな位置制御が行われるから、(2)式からXEL軸の
角度表示はθxIIL=90@#l珈となる。
Fig. 2 is a flowchart explaining the production of one embodiment of the angle command generation circuit shown in Fig. 1, and shows the case of a three-axis mount antenna in which the rotation of the ELllll rotation is possible up to 180 degrees beyond the zenith. There is. When the satellite position exceeds the lower limit and the tracking receiver output becomes capable of self-tracking, the output controls the EL and XELEL axes to perform self-tracking.
As shown in step 204, the command angle 0 for the AZ@ drive system is set so that θ婬=0mu2−θnL (1). Here, θAZ, ax, and L represent angles of the AZ axis and the XEL axis, respectively. The position of the AZ axis is controlled so that the angle display θ is equal to the command angle 0m2, so from equation (1), θ)GIL ” 0 @
Control will be performed such that: Next, in step 205, trajectory prediction is performed while the angle display θBL of the EL axis is between 65° and 706°, and the maximum elevation angle θILM is calculated. If ``IL exceeds 70 degrees and θELM is greater than 83'', the process moves to step 206, and the angle command generation circuit 20 outputs a value of 0, which is 3L0 (90 degrees - GILM).
...The command angle information as shown in (2) is output, and E
Zenith tracking mode driving is performed to rotate the L axis beyond the 90" zenith. At this time, position control is performed such that 0m2=θ is recognized, so from equation (2), the XEL axis is The angle display is θxIIL=90@#lc.

第3図は第2図の制御方法で最大仰角85°の衛星を追
尾した場合の各軸の角度表示の変化を説明するベクトル
図である。第3因において、細い実線の矢印は衛星が方
位角O0の基準線に平行にEからWまで通過したときの
AZ軸、EL軸の角度表示を示すベクトル、太い実線の
矢印はXEL軸の角度表示を示すベクトルである。衛星
仰角が70’になるまではθ)GIL=0’  となる
ようにAZ軸、EL軸による追尾が行われ、衛星仰角が
70’からほぼ110’までの間はθAZ = 0°、
θ、L=5° で一定となり、θ肛のみを変化して追尾
が行われる。この方法は天頂追尾時にAZ軸の指令角度
がGILにかかわらず一定となシ、θELの情報は軌道
予測と天頂追尾モードへの切換えのためのみに使用され
、角度指令発生回路20の構成が簡単で、各軸間の相互
干渉も少なく安定な制御が容易に行えるという特徴があ
る。
FIG. 3 is a vector diagram illustrating changes in the angle display of each axis when a satellite with a maximum elevation angle of 85° is tracked using the control method shown in FIG. In the third factor, the thin solid line arrow is a vector indicating the angle of the AZ axis and EL axis when the satellite passes from E to W parallel to the reference line of azimuth angle O0, and the thick solid line arrow is the angle of the XEL axis. This is a vector indicating the display. Until the satellite elevation angle reaches 70', tracking is performed using the AZ and EL axes so that θ)GIL=0', and when the satellite elevation angle is from 70' to approximately 110', θAZ = 0°,
θ and L are constant at 5°, and tracking is performed by changing only θ. In this method, the command angle of the AZ axis is constant regardless of the GIL during zenith tracking, and the θEL information is used only for orbit prediction and switching to the zenith tracking mode, and the configuration of the angle command generation circuit 20 is simple. It has the characteristic that there is little mutual interference between each axis and stable control can be easily performed.

第2図に示した流れ図には、ステップ206の天°頂追
尾時に指令角度θAZがθMLに無関係に(2)式で表
される場合を示したが、指令角度θム2がθilLの関
数で θ超=θム2−θX1lll +f (θgL)  ・
・・・・・(3)となるよう角度指令発生回路を構成し
てもよい。
The flowchart shown in FIG. 2 shows a case where the command angle θAZ is expressed by equation (2) regardless of θML during zenith tracking in step 206, but the command angle θM2 is a function of θilL. θ exceed = θmu2−θX1llll +f (θgL) ・
The angle command generation circuit may be configured to satisfy (3).

例えば、θELが70°及び110’のときf(θgL
)=O’、θELが90°のと@f(θBL)=909
−θEIJJ = 5° となり、この間でf(θBL
)が余弦関数状に連続的に変化するように設定すれば、
第3丙の場合と同じ衛星を追尾したときの各軸の角度表
示に第4図に示すような変化を示し、θXIILに急激
な変化が生じない特徴がある。
For example, when θEL is 70° and 110', f(θgL
)=O', when θEL is 90°, @f(θBL)=909
−θEIJJ = 5°, and during this period f(θBL
) changes continuously like a cosine function, then
When tracking the same satellite as in the case of 3rd C, the angle display of each axis shows changes as shown in FIG. 4, and there is a characteristic that θXIIL does not change abruptly.

以上の説明はEL軸のまわりにOoから18011まで
回転可能な3軸マウントア/テナを制御する場合につい
て述べたが、本発明はEL@まわりの回転範囲が00か
ら901′までの3軸マウントアンテナに対しても適用
することができる。すなわち、軌道予測によりe高仰角
θEIJIJが一定値を越すと予想される場合に、従来
の技術で述べた特開昭60−22803号公報記載の方
法と同様なAZ軸の先行駆動を、仰角が一定値に達した
後AZ軸とEL軸の角度表示のベクトルがあらかじめ定
めた一定の軌跡を通って移動するように行えはよい。第
5図は、衛星が方位角0°方向から1806方向にアン
テナの真上を通過する場合の各軸の角度表示の変化を示
すベクトル図でろシ、第1図に示す角度指令発生回路2
0からの指令角度が、仰角70’までに(1)式であり
70@を越すと(3)式となシ、f(0匹)を太い案線
矢印のベクトルの長さとなるよりに設定した場合に、A
Z軸およびEL軸の角度表示はθBL = 70°から
破線に沿って変化することを表している。
The above explanation was about controlling a 3-axis mount antenna that can rotate from Oo to 18011 around the EL axis, but the present invention provides a 3-axis mount antenna whose rotation range around the EL It can also be applied to That is, when the e-high elevation angle θEIJIJ is predicted to exceed a certain value based on trajectory prediction, the AZ-axis advance drive similar to the method described in Japanese Patent Application Laid-open No. 60-22803 described in the prior art is performed when the elevation angle is After reaching a certain value, the angle display vectors of the AZ axis and the EL axis may move along a predetermined certain trajectory. FIG. 5 is a vector diagram showing changes in the angle display of each axis when the satellite passes directly above the antenna from the azimuth direction of 0° to the 1806 direction.
If the command angle from 0 is up to 70' in elevation, the equation (1) will be obtained, and if it exceeds 70@, the equation (3) will be obtained. Set f (0 fish) to be the length of the vector of the thick draft arrow. If A
The Z-axis and EL-axis angles indicate changes from θBL = 70° along the broken line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、3軸マウントア
ンテナを用いて天頂付近を通過する衛星を自己追尾モー
ドで追跡する場合、追跡中に追尾受信機の出力fjI:
AZ@からXEL軸に接続変更する必要がなく、切換え
に伴つ諸問題を除去できるといり効果がある。
As explained above, according to the present invention, when tracking a satellite passing near the zenith using a three-axis mount antenna in self-tracking mode, the output fjI of the tracking receiver during tracking:
There is no need to change the connection from the AZ@ to the XEL axis, and it is effective in eliminating various problems associated with switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第工崗は本発明の一実施例のブロック図、第2図は第1
因に示した角度指令発生回路の一実施例の動作を説明す
る流れ図、第3図〜第5図に衛星追尾時の各軸の角度表
示の変化を示すベクトル図、第6図は従来の3軸アンテ
ナ制御方式の一例のブロック図、第7図は第6図の動作
を説明する流れ因である。 1・・・・・・追尾受信機、2,3,4・・・・・・角
度検出器、5・・・・・・天頂追尾装置、6,7,8・
・・・・・駆動系、9゜10・・・・・・A−D変換器
、11,12,21,22゜23・・・・・・サーボ・
制御回路% 13,13a・・・・・・追尾モード切換
器、14.15・・・・・・L)−A変換器、16゜1
7.18・・・・・・レゾルバ変換器、19・・団・座
標変換器、20・・・・・・角度指令発生回路。 第 4 図 Eム
Fig. 1 is a block diagram of an embodiment of the present invention, and Fig. 2 is a block diagram of an embodiment of the present invention.
Figures 3 to 5 are vector diagrams showing changes in the angle display of each axis during satellite tracking, and Figure 6 is a flowchart explaining the operation of one embodiment of the angle command generation circuit shown in FIG. 7, which is a block diagram of an example of the axial antenna control method, is a flow diagram explaining the operation of FIG. 6. 1... Tracking receiver, 2, 3, 4... Angle detector, 5... Zenith tracking device, 6, 7, 8...
... Drive system, 9゜10 ... A-D converter, 11, 12, 21, 22゜23 ... Servo.
Control circuit% 13, 13a...Tracking mode switch, 14.15...L)-A converter, 16゜1
7.18...Resolver converter, 19...Group/coordinate converter, 20...Angle command generation circuit. Figure 4 E

Claims (1)

【特許請求の範囲】[Claims] 垂直に設けられた方位軸と、この方位軸のまわりに回転
できる水平な俯仰軸と、この俯仰軸のまわりに回転でき
これと直交する直交俯仰軸と、この直交俯仰軸のまわり
に限定された角度範囲内で回転できるように取付けられ
た指向性アンテナと、この指向性アンテナの指向方向誤
差を検出する追尾受信機とを備えた3軸マウントアンテ
ナを自己追尾モードで制御する3軸アンテナ制御方式に
おいて、前記俯仰軸および直交俯仰軸の回転を前記追尾
受信機からの互いに直交する誤差信号成分によりそれぞ
れ制御し、前記方位軸の回転を前記方位軸の角度表示が
前記方位軸、俯仰軸および直交俯仰軸の角度表示情報か
らあらかじめ定められた関係により設定される指令角度
と一致するように位置制御することを特徴とする3軸ア
ンテナ制御方式。
A vertical azimuth axis, a horizontal elevation axis that can be rotated around this azimuth axis, an orthogonal elevation axis that can be rotated around this elevation axis and perpendicular to it, and limited around this orthogonal elevation axis. A 3-axis antenna control method that controls a 3-axis mounted antenna in self-tracking mode, which includes a directional antenna mounted so that it can rotate within an angular range and a tracking receiver that detects the pointing direction error of this directional antenna. The rotation of the elevation axis and the orthogonal elevation axis are respectively controlled by mutually orthogonal error signal components from the tracking receiver, and the rotation of the azimuth axis is controlled such that the angle representation of the azimuth axis is orthogonal to the azimuth axis, the elevation axis, and the orthogonal elevation axis. A three-axis antenna control method characterized by controlling the position so as to match a command angle set according to a predetermined relationship based on angle display information of an elevation axis.
JP27715686A 1986-05-21 1986-11-19 3-axis antenna control method Expired - Lifetime JPH0626284B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27715686A JPH0626284B2 (en) 1986-11-19 1986-11-19 3-axis antenna control method
EP87107347A EP0246635B1 (en) 1986-05-21 1987-05-20 Tracking controller for three-axis mount antenna systems
DE3789162T DE3789162T2 (en) 1986-05-21 1987-05-20 Tracking control device for triaxial antenna support systems.
US07/324,951 US4994815A (en) 1986-05-21 1989-03-16 Tracking controller for three-axis mount antenna systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27715686A JPH0626284B2 (en) 1986-11-19 1986-11-19 3-axis antenna control method

Publications (2)

Publication Number Publication Date
JPS63129702A true JPS63129702A (en) 1988-06-02
JPH0626284B2 JPH0626284B2 (en) 1994-04-06

Family

ID=17579580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27715686A Expired - Lifetime JPH0626284B2 (en) 1986-05-21 1986-11-19 3-axis antenna control method

Country Status (1)

Country Link
JP (1) JPH0626284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
WO2018151250A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Antenna device, antenna control device, and method for controlling antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
WO2018151250A1 (en) * 2017-02-17 2018-08-23 三菱電機株式会社 Antenna device, antenna control device, and method for controlling antenna device
JPWO2018151250A1 (en) * 2017-02-17 2019-06-27 三菱電機株式会社 Antenna apparatus, antenna control apparatus and control method of antenna apparatus

Also Published As

Publication number Publication date
JPH0626284B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
EP0461394B1 (en) Spacecraft earth-pointing attitude acquisition method
CN111897357B (en) Attitude tracking control method for satellite earth scanning
JP5881898B2 (en) 3-axis control antenna
WO2015108095A1 (en) Antenna control device and antenna apparatus
US10234532B2 (en) Tracking system, tracking method, and non-transitory computer-readable recording medium storing program
CN110775302A (en) Emergency sun-checking method based on solar panel output current information
JP2573465B2 (en) 3-axis control antenna unit
CN113296529A (en) Communication-in-motion phased array antenna for low-orbit satellite and control method thereof
JPS63129702A (en) Three-axis antenna control system
JP4489654B2 (en) Antenna control device for satellite tracking
CN110502038B (en) High-stability control method for antenna presetting in maneuvering process
JPH10253349A (en) Visual axis-directing apparatus
JP2973919B2 (en) Acquisition control device for satellite antenna and control method therefor
JP2008217129A (en) Following device
JPS63174406A (en) Tracking antenna system
CN214846391U (en) Communication-in-motion phased array antenna for low-earth orbit satellite
JPH0192677A (en) Automatic satellite tracking device
US20210119319A1 (en) Controllable multi-axis antenna mount for use on aerial vehicles
JPS5886472A (en) Tracking system for space airframe
JPH028411Y2 (en)
JPH05167328A (en) Antenna mount
JP2842963B2 (en) Mobile antenna device
JPH05150834A (en) Antenna driving controller
RU2021174C1 (en) Method of orientation of space ship along local planet vertical
CN115923993A (en) Unmanned ship video target searching and image stabilizing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term