JPS63129033A - Process for feeding raw material for glass - Google Patents

Process for feeding raw material for glass

Info

Publication number
JPS63129033A
JPS63129033A JP27393386A JP27393386A JPS63129033A JP S63129033 A JPS63129033 A JP S63129033A JP 27393386 A JP27393386 A JP 27393386A JP 27393386 A JP27393386 A JP 27393386A JP S63129033 A JPS63129033 A JP S63129033A
Authority
JP
Japan
Prior art keywords
raw material
glass raw
carrier gas
flow rate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27393386A
Other languages
Japanese (ja)
Other versions
JPH0433738B2 (en
Inventor
Akio Shiomi
塩見 明男
Shigeki Endo
茂樹 遠藤
Tatsuo Saito
達男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27393386A priority Critical patent/JPS63129033A/en
Publication of JPS63129033A publication Critical patent/JPS63129033A/en
Publication of JPH0433738B2 publication Critical patent/JPH0433738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/86Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid by bubbling a gas through the liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/85Feeding the burner or the burner-heated deposition site with vapour generated from liquid glass precursors, e.g. directly by heating the liquid
    • C03B2207/88Controlling the pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To enable feeding of raw material for glass at a fixed flow rate without being influenced by the variation of atmospheric pressure by changing at least one among the flow rate of carrier gas, the vapor pressure of vaporous raw material for the glass, and the degree of saturation of the vapor of the raw material in accordance with the variation of atmospheric pressure. CONSTITUTION:A liquid raw material for the glass to be used as the parent material for optical fiber is filled in a raw material vessel, and the liquid glass raw material is evaporated by bubbling carrier gas, and a mixture of the vaporous glass raw material and the carrier gas is fed to a reaction vessel. In this process, a sensor for sending atmospheric pressure is provided, and at least one among (A) the flow rate of the carrier gas, (B) the vapor pressure of the vaporous glass raw material and (C) the degree of saturation of the vapor of the glass raw material is (are) changed in accordance with the measured value. Thus, the glass raw material is fed at a fixed flow rate without being influenced by the change of the atmospheric pressure. Accordingly, a parent material for optical fiber having uniform quality is fed with satisfactory reproducibility.

Description

【発明の詳細な説明】 〈産業上の利用公費〉 本発明は光ファイバ用母材のガラス原料を所望の供給量
で再現性よ(反応容器へ供給しうるガラス原料供給方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Utilization Public Funds> The present invention relates to a method for supplying a glass raw material for an optical fiber base material to a reaction vessel in a reproducible manner in a desired supply amount.

〈従来の技術〉 光ファイバ用母材の代表的製造方法としては、肉付は法
、外付は法及びVAD法(気相軸付は法)が知られてい
る。従来のこれらの方法においては、四塩化ケイ素及び
四塩化ゲルマニウム、オキシ塩化リン、三臭化ホウ素等
のドーピング物質を各原料容器内に充填し、流量制御さ
れたキャリアガス、例えばアルゴンガスを各原料容器内
のガラス原料中にバブリングして所望の各原料のガスを
発生させ、該原料蒸気の飽和度を調整した後、これらを
反応領域に輸送供給していた。第4図には従来のガラス
原料供給方法を概念的に示しである。同図において、1
はキャリアガス流量制御器、2はガラス原料容器、3は
ガラス原料、4は反応容器であり、ガラス原料容器2内
のガラス原料3はキャリアガス流量制御Wjlにより制
御されたキャリアガスのバブリングにより蒸気化され、
反応容器4に供給される。
<Prior Art> As typical methods for manufacturing optical fiber preforms, there are known methods for producing optical fiber preforms, such as the thickening method, the external mounting method, and the VAD method (vapor phase shafting method). In these conventional methods, doping substances such as silicon tetrachloride, germanium tetrachloride, phosphorus oxychloride, and boron tribromide are filled into each raw material container, and a carrier gas such as argon gas is supplied to each raw material at a controlled flow rate. Gases of desired raw materials were generated by bubbling into the glass raw materials in the container, and after adjusting the degree of saturation of the raw material vapors, these were transported and supplied to the reaction zone. FIG. 4 conceptually shows a conventional glass raw material supply method. In the same figure, 1
is a carrier gas flow rate controller, 2 is a frit container, 3 is a frit, and 4 is a reaction vessel, and the frit 3 in the frit container 2 is vaporized by bubbling of the carrier gas controlled by the carrier gas flow rate control Wjl. became
It is supplied to the reaction vessel 4.

このようなガラス原料供給方法における流!mは次式で
表されていた。
The flow in such a glass raw material supply method! m was expressed by the following formula.

(11式中、mはガラス原料流量、Cは飽和度係数、M
はキャリアガス流量、Tは容器の温度、PIT、は温度
Tにおけろガラス原料蒸気圧である。
(In formula 11, m is the glass raw material flow rate, C is the saturation coefficient, M
is the carrier gas flow rate, T is the temperature of the container, and PIT is the frit vapor pressure at temperature T.

この蒸気化したガラス原料流量mを一定にするには(1
)式の右辺に示される各位を一定に保てばよい。そして
、飽和度係数Cを一定にする技術としては、例えば特公
昭61−1378号公報に開示されている。この技術に
よると、同一の液状ガラス原料を充填した容器を前・後
段に区分してバブリング用キャリアガス導管により直列
に接続し、且つ前段にある容器の温度を後段にある容器
の温度により高温に保持することにより、飽和度係数C
を再現性よ(はぼ1に保つことができる。また、容器の
温度Tは温度制御装置、キャリアガス流量Mは例えばマ
スフローコントローラーによって再現性よく一定に保つ
ことができる。
In order to keep the vaporized frit flow rate m constant (1
) can be kept constant on the right side of the equation. A technique for keeping the saturation coefficient C constant is disclosed, for example, in Japanese Patent Publication No. 1378/1983. According to this technology, containers filled with the same liquid glass raw material are divided into front and rear stages and connected in series through a bubbling carrier gas conduit, and the temperature of the container at the front stage is raised to a higher temperature by the temperature of the container at the rear stage. By holding, the saturation coefficient C
can be kept at a constant level with good reproducibility. Also, the temperature T of the container can be kept constant with good reproducibility by a temperature control device, and the carrier gas flow rate M can be kept constant with good reproducibility, for example, by a mass flow controller.

〈発明が解決しようとする問題点〉 しかしながら、従来のガラス原料供給方法によると、た
とえ、上述したような方法により飽和度係数C1キャリ
アガス流[M及び容器の温度Tを一定に保っても、やは
りガラス原料の流量mは微妙に変化してしまい、再現性
よく、一定値に保つことができなかった。
<Problems to be Solved by the Invention> However, according to the conventional glass raw material supply method, even if the saturation coefficient C1 carrier gas flow [M and the temperature T of the container are kept constant by the method described above, As expected, the flow rate m of the glass raw material changed slightly and could not be kept at a constant value with good reproducibility.

本発明はこのような事情に鑑み、ガラス原料を所望の供
給量に再現性よく保つことができるガラス原料供給方法
を提供することを目的とする。
In view of these circumstances, the present invention aims to provide a method for supplying glass raw materials that can maintain a desired supply amount of glass raw materials with good reproducibility.

く問題点を解決するための手段〉 前記目的を達成するために、本発明者らは種々検討を重
ねた結果、従来のガラス原料供給方法においては大気圧
の変化によりガラス原料流量mが変化してしまうことを
知見した。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies and found that in the conventional glass raw material supply method, the glass raw material flow rate m changes due to changes in atmospheric pressure. I found out that this can happen.

すなわち、次の(2)式において大気圧P。がΔP。That is, atmospheric pressure P in the following equation (2). is ΔP.

t!け変化するとガラス原料流量mは(3)式で表され
る6mだけ変化してしまうことが判明しtこ。
T! It turns out that if the amount changes, the glass raw material flow rate m will change by 6 m, which is expressed by equation (3).

よって、大気圧P。が変動した場合には、この変動を打
ち消すようにキャリアガス流量M1容器の温度T及び飽
和度係数Cのうち何れか1つ又は2つ以上を変化させる
ようにすればよい。
Therefore, atmospheric pressure P. If there is a change in the carrier gas flow rate M1, one or more of the temperature T of the container and the saturation coefficient C may be changed to cancel out this change.

かかる知見に基づく本発明の構成は、光ファイバ用母材
の液状ガラス原料を原料容器に充填し、この液状ガラス
原料にキャリアガスをバブリングして蒸気化し、蒸気状
ガラス原料及びキャリアガスの混合物を反応容器に供給
するガラス原料供給方法において、前記原料容器をとり
かこむ大気の圧力を測定し、この大気圧の変動に応じて
キャリアガスの流量、蒸気状ガラス原料の蒸気圧及びガ
ラス原料蒸気の飽和度の何れか1つ又は2つ以上を変化
させることにより蒸気状ガラス原料の供給量を一定にす
ることを特徴とする。
The structure of the present invention based on this knowledge is to fill a raw material container with a liquid glass raw material for an optical fiber base material, vaporize the liquid glass raw material by bubbling a carrier gas into the liquid glass raw material, and create a mixture of the vaporized glass raw material and the carrier gas. In a method for supplying glass raw materials to a reaction vessel, the pressure of the atmosphere surrounding the raw material vessel is measured, and the flow rate of the carrier gas, the vapor pressure of the vaporous glass raw material, and the saturation of the glass raw material vapor are adjusted according to fluctuations in the atmospheric pressure. The method is characterized in that the supply amount of the vaporous glass raw material is made constant by changing one or more of the degrees.

く作   用〉 大気圧の変動による蒸気状ガラス原料の供給量の変化を
打ち消すようにキャリアガスの流量・蒸気状ガラス原料
の蒸気圧及びガラス原料蒸気の飽和度の何れか1つ又は
2つ以上を変化させることにより蒸気状ガラス原料の供
給量を一定にする。
Effect> Any one or more of the flow rate of the carrier gas, the vapor pressure of the vaporous frit, and the degree of saturation of the frit vapor to cancel out changes in the supply amount of the vaporous frit due to fluctuations in atmospheric pressure. By changing the amount, the amount of vaporized glass raw material supplied is kept constant.

く実 施 例〉 以下、本発明を実施例を挙げて具体的に説明する。Example of implementation Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本実施例を概念的に示す説明図であり、同図中
、1はキャリアガス流量制御器、2はガラス原料容器、
3はガラス原料、4は反応容器を示す。以上の構成は従
来と同様であるが、本実施例では周囲の大気圧を測定す
る大気圧センサ5を設けるとともに、この大気圧センサ
5の測定値に応じてキャリアガス流量制御器1を補正制
御してガラス原料流量を一定に保つようにするキャリア
ガスの補正制御装置6を設けている。さらに詳言すると
、補正制御装置6は、大気圧センサ5の測定値の変化量
より上述の(3)式にしたがいガラス原料流量の変化量
を計算し、この変化量を補う量だけキャリアガス流量を
増加もしくは減少する制御を行っている。これによりガ
ラス原料流量は、大気圧が変化しても常に一定になるよ
うに制御され、再現性よく光ファイバ用ガラス母材を得
ることができる。
FIG. 1 is an explanatory diagram conceptually showing this embodiment, in which 1 is a carrier gas flow rate controller, 2 is a frit container,
3 indicates a glass raw material, and 4 indicates a reaction vessel. The above configuration is the same as the conventional one, but in this embodiment, an atmospheric pressure sensor 5 is provided to measure the surrounding atmospheric pressure, and the carrier gas flow rate controller 1 is corrected and controlled according to the measured value of the atmospheric pressure sensor 5. A carrier gas correction control device 6 is provided to keep the frit flow rate constant. More specifically, the correction control device 6 calculates the amount of change in the glass raw material flow rate according to the above-mentioned equation (3) from the amount of change in the measured value of the atmospheric pressure sensor 5, and calculates the amount of change in the flow rate of the frit by the amount that compensates for this amount of change. control to increase or decrease. As a result, the glass raw material flow rate is controlled to be constant even if the atmospheric pressure changes, and a glass preform for optical fiber can be obtained with good reproducibility.

次に実験例を説明する。Next, an experimental example will be explained.

上述の実施例において、キャリアガス制御装置1として
マスフローコントローラーを用い、キャリアガスとして
アルゴンガスを毎分200 cc流し、36.0℃に保
った反応容器4に輸送されたガラス原料3である四塩化
ケイ素の流量を測定した。なお、大気圧を74On++
aHgから760mHgに変化させたときの結果を第2
図に示す。
In the above example, a mass flow controller was used as the carrier gas control device 1, argon gas was flowed at 200 cc/min as the carrier gas, and the glass raw material 3, ie, tetrachloride, was transported to the reaction vessel 4 maintained at 36.0°C. The flow rate of silicon was measured. In addition, the atmospheric pressure is 74On++
The second result is the result when changing from aHg to 760mHg.
As shown in the figure.

比較のため、第4図に示す従来の方法によって上述の条
件と同様な実験を行い、この結果を第5図に示す。
For comparison, an experiment was conducted using the conventional method shown in FIG. 4 under the same conditions as described above, and the results are shown in FIG.

第3図及び第5図に示すように、従来の方法では大気圧
が変化するとガラス原料流量が変化してしまうが、本発
明方法によれば、大気圧が変化しても、ガラス原料流量
が一定に保たれろことが確認された。
As shown in FIGS. 3 and 5, in the conventional method, the frit flow rate changes when the atmospheric pressure changes, but according to the method of the present invention, the frit flow rate changes even if the atmospheric pressure changes. It was confirmed that it should be kept constant.

さらに、上記実施例の方法により、実際にグレイテッド
インデックス型光ファイバを100本製造し、その1.
3μmにおける伝送帯域について調べたところ、第3図
に示す結果を得た。
Furthermore, 100 graded index optical fibers were actually manufactured using the method of the above embodiment, and 1.
When the transmission band at 3 μm was investigated, the results shown in FIG. 3 were obtained.

また、比較のため、第4図に示す従来の方法により同様
にグレイテッドインデックス型光ファイバを100本製
造し、その13μmにおける伝送帯域について調へたと
ころ、第6図に示す結果を得た。
For comparison, 100 graded index optical fibers were similarly manufactured using the conventional method shown in FIG. 4, and the transmission band at 13 μm was investigated, and the results shown in FIG. 6 were obtained.

現在の技術水準では大気圧の変動以外の要因も伝送帯域
に影響するので、まったく同質の光ファイバを製造する
ことは不可能であるが、第3図及び第6図に示す結果か
ら、木兄 ・明方法を用いることにより伝送帯域値のち
らぼり具合が低減できることが明らかである。
With the current state of technology, factors other than atmospheric pressure fluctuations also affect the transmission band, so it is impossible to manufacture optical fibers of exactly the same quality. However, from the results shown in Figures 3 and 6, - It is clear that the scattering of transmission band values can be reduced by using the bright method.

なお、上記実施例においては大気圧の変動に応じてキャ
リアガスの流量を変化させるようにしているが、この代
りにガラス原料の蒸気圧(原料容器の温度で制御する)
あるいはガラス原料蒸気の飽和度、もしくはこれらを2
つ以上同時に変化させることによりガラス原料流量を一
定に保つことができる。
Note that in the above embodiment, the flow rate of the carrier gas is changed according to fluctuations in atmospheric pressure, but instead of this, the vapor pressure of the glass raw material (controlled by the temperature of the raw material container) is changed.
Or saturation of frit vapor, or 2
By changing two or more at the same time, the glass raw material flow rate can be kept constant.

〈発明の効果〉 以上、実施例とともに具体的に説明したように、本発明
にかかるガラス原料供給方法によれば、ガラス原料が大
気圧の変動に影響されずに一定流量で供給されるので、
再現性よく同質の光ファイバ母材を得ることができる。
<Effects of the Invention> As specifically explained above in conjunction with the examples, according to the glass raw material supply method according to the present invention, the glass raw material is supplied at a constant flow rate without being affected by fluctuations in atmospheric pressure.
Optical fiber preforms of the same quality can be obtained with good reproducibility.

また、本発明方法は、光ファイバ母材の製造のみならず
、種々の気相状態で堆積成長させろ結晶育成、材料製造
分野における原料供給に応用しても同様の理由から有用
である。
Furthermore, the method of the present invention is useful not only for the production of optical fiber preforms, but also for the same reason when it is applied to deposition growth in various gas phase states, crystal growth, and raw material supply in the field of material production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例にかかり、第1図はそ
の構成を概念的に示す説明図、第2図は大気圧の変動に
対するガラス原料の輸送量の変化を示すグラフ、第3図
は伝送帯域に対するファイバ数を示すヒストグラム、第
4図〜第6図は従来技術にかかり、第4図はその構成を
示す説明図、第5図は大気圧の変動に対するガラス原料
の輸送量の変化を示すグラフ、第6図は伝送帯域に対す
るファイバ数を示すヒストグラムである。 図面中、 1はキャリアガス制御装置、 2はガラス原料容器、 3はガラス原料、 4は反応容器、 5は大気圧センサ、 6はキャリアガス流量補正装置である。
1 to 3 relate to an embodiment of the present invention, FIG. 1 is an explanatory diagram conceptually showing its configuration, and FIG. 2 is a graph showing changes in the transport amount of glass raw materials with respect to fluctuations in atmospheric pressure. Figure 3 is a histogram showing the number of fibers with respect to the transmission band, Figures 4 to 6 relate to the conventional technology, Figure 4 is an explanatory diagram showing its configuration, and Figure 5 is the transportation of glass raw materials with respect to atmospheric pressure fluctuations. FIG. 6 is a histogram showing the number of fibers with respect to the transmission band. In the drawings, 1 is a carrier gas control device, 2 is a frit container, 3 is a frit material, 4 is a reaction vessel, 5 is an atmospheric pressure sensor, and 6 is a carrier gas flow rate correction device.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ用母材の液状ガラス原料を原料容器に充填し
、この液状ガラス原料にキャリアガスをバブリングして
蒸気化し、蒸気状ガラス原料及びキャリアガスの混合物
を反応容器に供給するガラス原料供給方法において、前
記原料容器をとりかこむ大気の圧力を測定し、この大気
圧の変動に応じてキャリアガスの流量、蒸気状ガラス原
料の蒸気圧及びガラス原料蒸気の飽和度の何れか1つ又
は2つ以上を変化させることにより蒸気状ガラス原料の
供給量を一定にすることを特徴とするガラス原料供給方
法。
In a glass raw material supply method, a liquid glass raw material for an optical fiber base material is filled into a raw material container, a carrier gas is bubbled into the liquid glass raw material to vaporize it, and a mixture of the vaporized glass raw material and the carrier gas is supplied to a reaction vessel. , measure the pressure of the atmosphere surrounding the raw material container, and adjust one or more of the flow rate of the carrier gas, the vapor pressure of the vaporized frit, and the degree of saturation of the frit vapor according to fluctuations in the atmospheric pressure. A glass raw material supply method characterized by keeping the supply amount of vaporous glass raw material constant by changing the amount of glass raw material.
JP27393386A 1986-11-19 1986-11-19 Process for feeding raw material for glass Granted JPS63129033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27393386A JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27393386A JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Publications (2)

Publication Number Publication Date
JPS63129033A true JPS63129033A (en) 1988-06-01
JPH0433738B2 JPH0433738B2 (en) 1992-06-03

Family

ID=17534594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27393386A Granted JPS63129033A (en) 1986-11-19 1986-11-19 Process for feeding raw material for glass

Country Status (1)

Country Link
JP (1) JPS63129033A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226849A (en) * 1988-07-15 1990-01-29 Shin Etsu Chem Co Ltd Production of optical fiber bace material
JPH0240440U (en) * 1988-09-08 1990-03-19
JP2018529549A (en) * 2015-09-02 2018-10-11 トーンジェット リミテッド How to operate an inkjet printhead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226849A (en) * 1988-07-15 1990-01-29 Shin Etsu Chem Co Ltd Production of optical fiber bace material
JPH0240440U (en) * 1988-09-08 1990-03-19
JP2018529549A (en) * 2015-09-02 2018-10-11 トーンジェット リミテッド How to operate an inkjet printhead
US11148423B2 (en) 2015-09-02 2021-10-19 Tonejet Limited Method of operating an inkjet printhead

Also Published As

Publication number Publication date
JPH0433738B2 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
JPS63129033A (en) Process for feeding raw material for glass
US10557213B2 (en) Crystal growing systems and methods including a transparent crucible
US4894079A (en) Method and apparatus for supplying glass forming raw material
KR920009652B1 (en) Compound semiconductor manufacturing apparatus
JP4277574B2 (en) Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same
US4539221A (en) Process for the chemical vapor deposition of oxidic particles
JPH01239033A (en) Production of optical fiber preform
JP3157693B2 (en) Method for producing silica glass-based deposit
JPH085690B2 (en) Raw material supply method and device
JPH0226849A (en) Production of optical fiber bace material
JPS6126215A (en) Manufacture of gaas single crystal
JPH02164734A (en) Production of quartz glass soot
JP3192571B2 (en) Method for producing silica-based glass
JPH04295018A (en) Production of synthetic quartz glass
JPH0457640B2 (en)
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JPS5645837A (en) Production of optical fiber blank material for infrared ray transmission
JPH0366121A (en) Vapor growth device and vapor growth
JPS61111931A (en) Production of optical fiber preform
JPH0657615B2 (en) Method for manufacturing optical fiber preform
JPS61117191A (en) Device for preparing silicon single crystal
JPS63147898A (en) Method for growing compound semiconductor single crystal
JPH038800A (en) Method for growing compound semiconductor single crystal of group iii and v
JPH07187698A (en) Production of preform for optical fiber
JPS61229321A (en) Vapor growth method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term