JPS63128713A - Correction of distortion in scanning aligner - Google Patents

Correction of distortion in scanning aligner

Info

Publication number
JPS63128713A
JPS63128713A JP61275976A JP27597686A JPS63128713A JP S63128713 A JPS63128713 A JP S63128713A JP 61275976 A JP61275976 A JP 61275976A JP 27597686 A JP27597686 A JP 27597686A JP S63128713 A JPS63128713 A JP S63128713A
Authority
JP
Japan
Prior art keywords
scanning
substrate
exposure
mask
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61275976A
Other languages
Japanese (ja)
Other versions
JPH0529129B2 (en
Inventor
Masaki Suzuki
正樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61275976A priority Critical patent/JPS63128713A/en
Publication of JPS63128713A publication Critical patent/JPS63128713A/en
Publication of JPH0529129B2 publication Critical patent/JPH0529129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Abstract

PURPOSE:To compensate for errors of an apparatus and also easily compensate for distortion of each substrate by compensating for distortion through displacement of relative position of a mask and a substrate by means of a fine feed mechanism while the scanning for exposure is carried out after the initial positioning of the mask and the substrate. CONSTITUTION:Before exposure scanning, a scanning frame 26 is moved to set the exposure area 29 to the position A and the alignment marks 53a, 54a of substrate are set respectively to the center by the fine feeding mechanism 34 for the mask alignment marks 55a, 56a projected through the alignment optical system 52 or 28. Then, the scanning frame 26 is moved to set the exposure area 29 to the position B and positional distortion xb and yb of alignement marks 55b, 56b of projected mask for the alignment marks 53b, 54b of substrate observed through the alignment optical system 52 or 28 can be measured. Distortion can be compensated during actual exposure scanning by fine feeding of substrate in the x and y directions with the fine feeding mechanism 34.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体製造工程等に用いられる反射型投影露
光機のディストーション補正方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a distortion correction method for a reflection type projection exposure machine used in semiconductor manufacturing processes and the like.

従来の技術 近年、反射型投影露光機のディストーション補正は、露
光走査用のリニア・エア・ベアリングの空気圧力制御に
よって行われている。
2. Description of the Related Art In recent years, distortion correction in reflection type projection exposure machines has been performed by controlling the air pressure of a linear air bearing for exposure scanning.

以下図面を参照しながら、上述した従来の走査型露光装
置のブイスト−シラン補正装置の一例について説明する
。第4図、第6図は従来の反射型投影露光装置の主要部
を示すものである。第4図第5図において、1は凹面鏡
、2は凸面鏡、3は2つの平面鏡を有する台形ミラー、
4はマスク、5は露光される基板、6はマスク4と基板
6とを平行に保持し、露光光学系の光軸7に平行に走査
する走査枠、8はマスク4と基板6の位置ズレを測定す
るだめのアライメント光学系、9は円孤形露光エリアで
ある。10.11は走査枠6のガイドレール、12.1
3は走査枠6のリニア中エア自ベアリング、14.15
は同上下方向制御空気ボート、16は左右方向制御空気
ボートである。
An example of the boost-silane correction device for the above-mentioned conventional scanning exposure apparatus will be described below with reference to the drawings. 4 and 6 show the main parts of a conventional reflection type projection exposure apparatus. 4 and 5, 1 is a concave mirror, 2 is a convex mirror, 3 is a trapezoidal mirror having two plane mirrors,
4 is a mask, 5 is a substrate to be exposed, 6 is a scanning frame that holds the mask 4 and the substrate 6 in parallel and scans parallel to the optical axis 7 of the exposure optical system, and 8 is a positional deviation between the mask 4 and the substrate 6. 9 is an alignment optical system for measuring the arc-shaped exposure area. 10.11 is the guide rail of the scanning frame 6, 12.1
3 is the linear medium air self-bearing of the scanning frame 6, 14.15
16 is a vertically controlled air boat, and 16 is a horizontally controlled air boat.

以上のように構成された反射型投影露光機のディストー
ション補正装置について、第6図、第7図を参照しなが
ら、以下その動作について説明する。
The operation of the distortion correction device for a reflection type projection exposure machine constructed as described above will be described below with reference to FIGS. 6 and 7.

反射型投影露光機には一般に第6図aに示すような、ガ
イドレール10.11の上下方向の曲りによる、第7図
a補正前に示すような、走査方向の倍率誤差のディスト
ーショ/と、光軸7と走査方向の平行度誤差による、第
7図す補正前に示すような直角度誤差のディストーショ
ンがある。走査方向の倍率誤差を補正するためには、第
6図Cに示す如く、リニア・エア・ベアリング12.1
3の上下方向制御空気ポー)14.15への供給空気圧
Pを走査枠6の位置に応じて制御し、第6図すに示す如
く、エアベアリング12,13を光軸7に平行に走査さ
せる。また直角度誤差を補正するためには、同様に、リ
ニア・エア・ベアリング13の左右方向制御空気ボート
16への供給空気圧力を走査枠6の位置に応じて制御し
、走査枠6を光軸7に平行に走査させる。
Reflection type projection exposure machines generally have distortion/magnification error in the scanning direction as shown in FIG. 7a before correction due to the vertical bending of the guide rail 10.11 as shown in FIG. 6a. , there is a distortion due to a squareness error as shown in FIG. 7 before correction due to a parallelism error between the optical axis 7 and the scanning direction. In order to correct the magnification error in the scanning direction, a linear air bearing 12.1 is used as shown in FIG. 6C.
The air pressure P supplied to the vertical control air port 14 and 15 of No. 3 is controlled according to the position of the scanning frame 6, and the air bearings 12 and 13 are caused to scan parallel to the optical axis 7, as shown in FIG. . In addition, in order to correct the squareness error, similarly, the air pressure supplied to the left-right control air boat 16 of the linear air bearing 13 is controlled according to the position of the scanning frame 6, and the scanning frame 6 is aligned with the optical axis. 7 to scan in parallel.

発明が解決しようとする問題点 しかしながら上記のような構成では、ディストーション
補正装置の目的はあくまでも走査枠6の光軸7に対する
走査誤差を無くして歪みのない完全な投影露光を行うた
めのものであり、仮にその機能を用いて、基板パターン
自体の熱処理等による均一な歪み補正は行えたとしても
、補正量の調整は専用テストマスクと基板を用いてアラ
イメントテスト又はテスト露光を行うものであり、大変
な手数を要し、基板のロフト毎や1枚毎に自動的に基板
の歪みに合わせて補正できるものではなかった。またエ
アベアリングの供給空気圧を制御する機構を必要とし、
さらにその調整範囲はエアベアリングのすき間を増減さ
せるものであるので通常1μm以下の狭い範囲の調整し
かできないという欠点を有してい念。
Problems to be Solved by the Invention However, in the above configuration, the purpose of the distortion correction device is to eliminate scanning errors of the scanning frame 6 with respect to the optical axis 7, and to perform perfect projection exposure without distortion. Even if it were possible to use this function to uniformly correct distortion by heat treatment of the substrate pattern itself, adjusting the amount of correction would involve performing an alignment test or test exposure using a dedicated test mask and substrate, which would be very difficult. This required a lot of effort, and it was not possible to automatically correct the distortion of the board for each board loft or each board. It also requires a mechanism to control the air pressure supplied to the air bearing.
Furthermore, since the adjustment range is to increase or decrease the gap between the air bearings, it usually has the disadvantage that it can only be adjusted within a narrow range of 1 μm or less.

本発明は上記問題点に鑑み、装置の誤差を補正すると共
に、基板の熱処理等による不均一な歪みに対しても補正
を容易とする、走査型露光機のディ図−ション補正方法
を提供するものである。
In view of the above-mentioned problems, the present invention provides a distortion correction method for a scanning exposure machine, which not only corrects errors in the apparatus but also facilitates correction of non-uniform distortion caused by heat treatment of a substrate, etc. It is something.

問題点を解決するだめの手段 上記問題点を解決するために本発明の走査型露光機ディ
ストーション補正方法は、マスクと基板の初期位置合せ
後、露光走査を行いながら、走査位置に応じて、マスク
又は基板の微小送り機構を用いてマスクと基板の位置関
係を相対的にずらすというものであり、また、さらには
その位置ずらし量を定めるために、あらかじめ走査方向
に複数の個所でディストーションによる位置ズレ量を測
っておくか、露光を行いながら、位置ズレ量を測りつつ
補正を行うという要件を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the scanning exposure machine distortion correction method of the present invention, after initial alignment of the mask and the substrate, while performing exposure scanning, adjusts the mask position according to the scanning position. Alternatively, the positional relationship between the mask and the substrate is relatively shifted using a micro-feeding mechanism of the substrate, and furthermore, in order to determine the amount of positional shift, the positional shift due to distortion is measured at multiple locations in the scanning direction in advance. This requires that the amount of positional deviation be measured in advance, or that correction be made while measuring the amount of positional deviation during exposure.

作  用 本発明は上記した構成によって、単に装置の誤差による
ディストーションを補正するのみならず、基板の不均一
な歪みに対しても、マスクと基板の位置関係を露光走査
を行いつつずらすことにより補正を行うことができるも
のである。
Function: With the above-described configuration, the present invention not only corrects distortion caused by errors in the apparatus, but also corrects non-uniform distortion of the substrate by shifting the positional relationship between the mask and the substrate while performing exposure scanning. It is something that can be done.

実施例 以下本発明の一実施例の走査型露光機のディストーショ
ン補正方法について図面を参照しながら説明する。
EXAMPLE Hereinafter, a distortion correction method for a scanning exposure machine according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における走査型露光機のディ
ストーション補正装置のたて断面図を示すものであり、
第2図は同上平面図を示すものである。
FIG. 1 shows a vertical sectional view of a distortion correction device for a scanning exposure machine in an embodiment of the present invention.
FIG. 2 shows a plan view of the same.

第1図、第2図において、21は凹面鏡、22は凸面鏡
、23は2つの平面鏡を有する台形ミラー、24はマス
ク、26は露光される基板、26は露先光学系の光軸2
7に平行にマスク24と基板26を保持して走査する走
査枠、28はマスク24と基板26の位置ズレを測定す
るためのアライメント光学系、29は円孤形露光エリア
である。30゜31は走査枠2eのガイドレール、32
.33は走査枠26のリニア・エア・ベアリングである
1 and 2, 21 is a concave mirror, 22 is a convex mirror, 23 is a trapezoidal mirror having two plane mirrors, 24 is a mask, 26 is a substrate to be exposed, and 26 is an optical axis 2 of the exposure optical system.
7 is a scanning frame that holds and scans the mask 24 and the substrate 26 in parallel; 28 is an alignment optical system for measuring the positional deviation between the mask 24 and the substrate 26; and 29 is an arc-shaped exposure area. 30° 31 is the guide rail of the scanning frame 2e, 32
.. 33 is a linear air bearing of the scanning frame 26.

34は微小送り機構であり、可動枠36には3方にロー
ラー36,37.38が取付けられ、鋼球群39を介し
て走査枠26の下面にバネ(図示せず)により懸垂され
ており、可動枠36の下面には基板26が真空吸着され
ている。40,41゜42はパルスモニターであシ各々
ボーAyf、ジ43゜44.45によりフサビ48.4
7.48をスライドさせる。クサビ46.47.48に
は各々前記ローラー36.37.38がバネ49により
押圧されており、モーター40,41.42の動作によ
り、マスク26の位置を第2図に示す3cyθ方向に微
動させることができる。60は走査枠26の走査位置を
検出するためのリニアスケールであり、61はその検出
器である。52は基板26の裏面に設けたアライメント
光学系であり、基板26が透光性である場合マスク24
に対する基板25の位置ズレを観測できるものである。
Reference numeral 34 denotes a minute feed mechanism, and a movable frame 36 has rollers 36, 37, and 38 attached to three sides, and is suspended from the lower surface of the scanning frame 26 via a group of steel balls 39 by a spring (not shown). , the substrate 26 is vacuum-adsorbed to the lower surface of the movable frame 36. 40, 41゜42 are pulse monitors, respectively Baud Ayf, Ji 43゜44.45 make the frame 48.4.
7. Slide 48. The rollers 36, 37, and 38 are pressed by springs 49 on the wedges 46, 47, and 48, respectively, and the position of the mask 26 is slightly moved in the 3cyθ direction shown in FIG. 2 by the operation of the motors 40, 41, and 42. be able to. 60 is a linear scale for detecting the scanning position of the scanning frame 26, and 61 is its detector. 52 is an alignment optical system provided on the back surface of the substrate 26, and when the substrate 26 is translucent, the mask 24
It is possible to observe the positional deviation of the substrate 25 with respect to the substrate 25.

以上のように構成された走査型投影露光機のディストー
シロン補正装置について、以下第3図を用いてその動作
を説明する。第3図は第2図の基板26の部分の詳細図
であシ、53a、53b。
The operation of the distortion correction device for a scanning projection exposure machine constructed as described above will be explained below with reference to FIG. FIG. 3 is a detailed view of the portion of the substrate 26 in FIG. 2, 53a and 53b.

53c 、54a 、64b 、54cの十字マークは
、前工程で基板26に加工されたアライメントマークで
あシ、55a 、essb 、55c 、56a 。
The cross marks 53c, 54a, 64b, and 54c are alignment marks processed on the substrate 26 in the previous process; 55a, essb, 55c, and 56a.

56b、56cのカギ十字マークはマスク24のアライ
メントマークが投影光学系により基板25上に投影され
たものであり、露光走査の前に走査枠26を動かして露
光エリア29をAの位置に合わせてアライメント光学系
、62又は28により観測して投影されたマスクアライ
メントマーク55a 、56aに対し基板のアライメン
トマーク53a、54aを基板の微小送り機構34によ
り各々中央に位置合せする。
The swastika marks 56b and 56c are alignment marks of the mask 24 projected onto the substrate 25 by the projection optical system, and the scanning frame 26 is moved to align the exposure area 29 to the position A before exposure scanning. The alignment marks 53a and 54a on the substrate are aligned to the centers of the mask alignment marks 55a and 56a observed and projected by the alignment optical system 62 or 28, respectively, by the micro-feeding mechanism 34 for the substrate.

次に走査枠26を動かして露光エリア29をBの位置合
わせて、アライメント光学系62又は28により観測し
て基板のアライメントマーク63b。
Next, the scanning frame 26 is moved to align the exposure area 29 at point B, and the alignment optical system 62 or 28 is used to observe the alignment mark 63b on the substrate.

64bに対する投影されたマスクのアライメントマーク
ssb、sabの位置ズレ量xbとybを測定する。次
に同様に走査枠26を動かしてCの位置における位置ズ
レ量XcとyCを測定する。位置ズレ量X b+1 !
 、は走査方向の倍率誤差のディストーションに相浩し
、yb−yCは直角度誤差のディストーションに相幽す
る。
The positional deviation amounts xb and yb of the projected mask alignment marks ssb and sab with respect to 64b are measured. Next, the scanning frame 26 is similarly moved to measure the positional deviation amounts Xc and yC at the position C. Positional deviation amount X b+1!
, corresponds to the distortion of the magnification error in the scanning direction, and yb-yC corresponds to the distortion of the squareness error.

このディスト−シコンを実際の露光走査時に補正するた
めには、走査枠26に取付けたIJ ニアスケール50
.51から検出する第3図のA位置からの走査距離2に
応じ、A−B間については基板をX方向にx=xbX2
/IIb、y方向にy= y b X 11 /A b
だけ微小送り機構34により微小送りし、B−0間につ
いては、基板をX方向にx = (xC−xb)X(I
l−1b)/ (j?C−j2b) 、 y方向に、y
 =(y、7yb)X(n4b)/ (ftc4b) 
 だけ微小送りして補正する。微動は連続送シが望まし
いが最小限のステップ送りでも可能である。また補正量
の式は直線補間で示したが、曲線補間や、位置ズレ測定
個所を増して統計処理した補正量を与えても良い。この
補正量は露光機又は基板の個有の値いとして、露光機の
記憶装置に記憶しておき、次の基板の露光に対しくり返
し、同じ補正を行う。
In order to correct this discretization during actual exposure scanning, an IJ near scale 50 attached to the scanning frame 26 must be used.
.. 51, the substrate is moved in the X direction between A and B according to the scanning distance 2 from the A position in FIG.
/IIb, in the y direction y= y b X 11 /A b
The substrate is moved in the X direction between B and 0 by x = (xC-xb)X(I
l-1b)/(j?C-j2b), in the y direction, y
=(y,7yb)X(n4b)/(ftc4b)
Correct by making a small feed. Continuous feeding is desirable for fine movement, but minimal step feeding is also possible. Further, although the formula for the correction amount is shown by linear interpolation, it is also possible to use curve interpolation or increase the number of positions where the positional deviation is measured and provide the correction amount through statistical processing. This correction amount is stored in the storage device of the exposure machine as a value unique to the exposure machine or the substrate, and the same correction is repeated for the exposure of the next substrate.

以上のように本実施例によれば、露光走査を行いながら
、マスク又は基板の微小送シ機構によりマスフと基板の
位置をあらかじめ測定して定めた最適の変位パターンで
相対的にずらしてディストーションを補正するので、特
別な補正機構を必要とせず、その補正範囲も広くとるこ
とができる。
As described above, according to this embodiment, while performing exposure scanning, the positions of the mask and the substrate are measured in advance using the micro-feeding mechanism of the mask and the substrate, and the positions of the mask and the substrate are relatively shifted in an optimal displacement pattern to produce distortion. Since the correction is performed, a special correction mechanism is not required and the correction range can be widened.

以下本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

この実施例はディストーションの量を、露光の直前に走
査枠26を複数の位置に動かしてアライメント光学系に
よりマスクと基板の位置ズレ量を測定し、基板ごとに最
適のディストレージョン補正量を決定して、露光走査時
に第一の実施例と同様の補正を行う。以上のように1枚
づつの基板に対し、露光の前に基板上の複数の位置でア
ライメントマークの位置ズレ量を測定し、微小送り機構
により最適のディストーション補正を施すことにより、
基板毎に特有のディストーションを容易に補正すること
ができる。
In this embodiment, the amount of distortion is determined by moving the scanning frame 26 to a plurality of positions immediately before exposure, measuring the amount of misalignment between the mask and the substrate using an alignment optical system, and determining the optimal amount of distortion correction for each substrate. Then, the same correction as in the first embodiment is performed during exposure scanning. As described above, for each substrate, the amount of positional deviation of the alignment mark is measured at multiple positions on the substrate before exposure, and the optimal distortion correction is performed using the micro-feeding mechanism.
Distortion specific to each substrate can be easily corrected.

以下本発明の第3図の実施例について説明する。The embodiment of the present invention shown in FIG. 3 will be described below.

この実施例については、透明基板に対する裏面からのア
ライメント光学系62のように露光照明を遮らないアラ
イメント光学系を用いて、第3図A初期の基板アライメ
ントマークと投影されたマスクアライメントマークを位
置合せした後、露光走査を行いながら多数設けられたア
ライメントマークの位置ずれ量をアライメント光学系5
2に取付けた画像メモリー付テレビカメラ装置等で観測
し、ディストーション補正量を決定し、マスク又は基板
の微小送り機構34で補正を行うものである。
In this embodiment, an alignment optical system that does not block the exposure illumination, such as an alignment optical system 62 for aligning the transparent substrate from the back side, is used to align the initial substrate alignment mark in FIG. 3A and the projected mask alignment mark. After that, while performing exposure scanning, the amount of positional deviation of the many alignment marks is measured by the alignment optical system 5.
The amount of distortion correction is determined by observing with a television camera device with an image memory attached to 2, and the correction is performed by a micro-feeding mechanism 34 of the mask or substrate.

露光走査を行いながら補正が可能で、露光前の複数個所
での位置ズレ量観測が不要なので、露光機の能率が高い
Correction can be made while performing exposure scanning, and there is no need to observe the amount of positional deviation at multiple locations before exposure, so the efficiency of the exposure machine is high.

発明の効果 以上のように本発明は、走査型露光機において、マスク
と基板の初期位置合せ後、露光走査を行いながら、微小
送り機構によりマスフと基板の相対的位置をずらしてデ
ィスト−シコンを補正する方法であるので、単に装置の
誤差を補正するのみならず、個々の基板の歪みに対して
もブイスト−シランの補正が容易で、露光機として能率
が高く、また特別な補正機構を付加する必要の無い経済
的な露光装置を提供することができる。
Effects of the Invention As described above, the present invention uses a scanning exposure machine to shift the relative position of the mask and the substrate using a minute feed mechanism while performing exposure scanning after initial alignment of the mask and the substrate. Since it is a correction method, it is easy to correct the boost-silane not only for equipment errors, but also for distortions of individual substrates, and is highly efficient as an exposure function, and also has a special correction mechanism. It is possible to provide an economical exposure apparatus that does not require

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における走査型露光装置
のたて断面図、第2図は第1図の上平面図、第3図は走
査型露光装置のディストーションの説明図、第4図は従
来の反射型投影露光機のたて断面図、第6図は第4図の
上平面図、第6図は第4図の装置のディストーション補
正の原理図、第7図は同ディストーション補正の説明図
である。 21・・・・・・凹面鏡、22・・・・・・凸面鏡、2
3・・・・・・台形ミラー、24・・・・・・マスク、
25・・・・・・基板、26・・・−・−走査枠、30
,31・・・・・・ガイドレール、32゜33・・・・
・・リニア・エア・ベアリング、34・・・・・・微小
送り機構。 第1図     9.−3池鏡 り2−・・凸  ・ノ 23−一一台aεラー 8−−−マlり 25−−・基ふ失 りG−友嚢什 第4図 第5図
FIG. 1 is a vertical sectional view of a scanning exposure apparatus according to a first embodiment of the present invention, FIG. 2 is a top plan view of FIG. 1, and FIG. 3 is an explanatory diagram of distortion in the scanning exposure apparatus. Figure 4 is a vertical sectional view of a conventional reflection type projection exposure machine, Figure 6 is a top plan view of Figure 4, Figure 6 is a principle diagram of distortion correction of the apparatus in Figure 4, and Figure 7 is a diagram of the same distortion. It is an explanatory diagram of correction. 21... Concave mirror, 22... Convex mirror, 2
3...Trapezoidal mirror, 24...Mask,
25... Board, 26...--Scanning frame, 30
, 31... Guide rail, 32° 33...
...Linear air bearing, 34...Minute feed mechanism. Figure 1 9. -3 Pond Kagami 2--Convex 23-11 aε Ra 8--Mall 25--G base lost G-Friend bag Fig. 4 Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)マスクを備え露光面積の一部分を露光しつつ、全
面を走査することによって、露光を行う走査型露光機に
おいて、マスクと基板の初期位置合せ後、あらかじめ定
めた走査手順による露光走査を行いながら加えて、微小
送り機構によりマスクと基板の位置を一定の変位パター
ンで相対的にずらせて行う走査型露光装置のディストー
ション補正方法。
(1) In a scanning exposure machine that is equipped with a mask and performs exposure by scanning the entire surface while exposing a part of the exposure area, after initial alignment of the mask and substrate, exposure scanning is performed according to a predetermined scanning procedure. In addition, this method uses a micro-feeding mechanism to relatively shift the positions of the mask and substrate in a fixed displacement pattern.
(2)マスクを備え露光面積の一部分を露光しつつ全面
を走査することによって、露光を行う走査型露光機にお
いて、マスクと基板の初期位置合せ後あらかじめ定めた
走査手順による露光走査を行ないながら加えて、微小送
り機構によりマスクと基板の位置を一定の変位パターン
で相対的にずらせて行なう走査型露光装置のディストー
ション補正方法であって、露光の走査方向に複数の位置
でマスクと基板の位置ズレを測定し、測定結果に基いて
露光走査を行ないながら、走査位置に応じマスクと基板
の位置を微小送り機構により相対的にずらせて行なう走
査型露光装置のディストーション補正方法。
(2) In a scanning exposure machine that is equipped with a mask and performs exposure by scanning the entire surface while exposing a part of the exposure area, after initial alignment of the mask and substrate, the exposure is scanned according to a predetermined scanning procedure. This is a distortion correction method for a scanning exposure apparatus in which the positions of the mask and the substrate are relatively shifted in a fixed displacement pattern using a micro-feeding mechanism. A distortion correction method for a scanning type exposure apparatus, in which the positions of the mask and the substrate are relatively shifted using a micro-feeding mechanism according to the scanning position while performing exposure scanning based on the measurement results.
(3)露光のための走査を行いつつ、マスクと基板の位
置ズレを測定し、その結果に基いてマスクと基板の位置
を微小送り機構により相対的にずらして行う、特許請求
の範囲第2項記載の走査型露光装置のディストーション
補正方法。
(3) While performing scanning for exposure, the positional deviation between the mask and the substrate is measured, and based on the result, the positions of the mask and the substrate are relatively shifted by a micro-feeding mechanism. Distortion correction method for a scanning exposure apparatus as described in .
JP61275976A 1986-11-19 1986-11-19 Correction of distortion in scanning aligner Granted JPS63128713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275976A JPS63128713A (en) 1986-11-19 1986-11-19 Correction of distortion in scanning aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275976A JPS63128713A (en) 1986-11-19 1986-11-19 Correction of distortion in scanning aligner

Publications (2)

Publication Number Publication Date
JPS63128713A true JPS63128713A (en) 1988-06-01
JPH0529129B2 JPH0529129B2 (en) 1993-04-28

Family

ID=17563043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275976A Granted JPS63128713A (en) 1986-11-19 1986-11-19 Correction of distortion in scanning aligner

Country Status (1)

Country Link
JP (1) JPS63128713A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198319A (en) * 1989-12-27 1991-08-29 Toshiba Corp Exposure device
US6124923A (en) * 1994-11-01 2000-09-26 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6211946B1 (en) 1994-06-16 2001-04-03 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
USRE37361E1 (en) 1993-11-11 2001-09-11 Nikon Corporation Scanning type exposure apparatus and exposure method
USRE37762E1 (en) 1994-04-12 2002-06-25 Nikon Corporation Scanning exposure apparatus and exposure method
US6437354B1 (en) 1998-01-07 2002-08-20 Nikon Corporation Exposure method and scanning-type exposure apparatus
US6462807B1 (en) 1993-05-28 2002-10-08 Nikon Corporation Projection exposure apparatus and method
USRE37913E1 (en) 1991-03-06 2002-11-26 Nikon Corporation Exposure method and projection exposure apparatus
US6556278B1 (en) 1993-06-30 2003-04-29 Nikon Corporation Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
USRE38113E1 (en) 1993-04-02 2003-05-06 Nikon Corporation Method of driving mask stage and method of mask alignment
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6753948B2 (en) 1993-04-27 2004-06-22 Nikon Corporation Scanning exposure method and apparatus
USRE38798E1 (en) 1992-10-22 2005-09-20 Nikon Corporation Projection exposure apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108745A (en) * 1981-12-23 1983-06-28 Canon Inc Erroneous transcription adjusting device
JPS59132621A (en) * 1982-12-21 1984-07-30 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Positioning system for scanning mask aligner and focus adjusting system
JPS60182444A (en) * 1984-03-01 1985-09-18 Canon Inc Semiconductor exposing device
JPS6125102A (en) * 1984-07-16 1986-02-04 Akai Electric Co Ltd Formation of optical film
JPS61247026A (en) * 1985-04-25 1986-11-04 Canon Inc Exposure equipment
JPS61251025A (en) * 1985-04-30 1986-11-08 Canon Inc Projection exposing apparatus
JPS61283121A (en) * 1985-06-10 1986-12-13 Nippon Telegr & Teleph Corp <Ntt> Charged beam projecting exposure device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108745A (en) * 1981-12-23 1983-06-28 Canon Inc Erroneous transcription adjusting device
JPS59132621A (en) * 1982-12-21 1984-07-30 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Positioning system for scanning mask aligner and focus adjusting system
JPS60182444A (en) * 1984-03-01 1985-09-18 Canon Inc Semiconductor exposing device
JPS6125102A (en) * 1984-07-16 1986-02-04 Akai Electric Co Ltd Formation of optical film
JPS61247026A (en) * 1985-04-25 1986-11-04 Canon Inc Exposure equipment
JPS61251025A (en) * 1985-04-30 1986-11-08 Canon Inc Projection exposing apparatus
JPS61283121A (en) * 1985-06-10 1986-12-13 Nippon Telegr & Teleph Corp <Ntt> Charged beam projecting exposure device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198319A (en) * 1989-12-27 1991-08-29 Toshiba Corp Exposure device
USRE37913E1 (en) 1991-03-06 2002-11-26 Nikon Corporation Exposure method and projection exposure apparatus
USRE38085E1 (en) 1991-03-06 2003-04-22 Nikon Corporation Exposure method and projection exposure apparatus
USRE38038E1 (en) 1991-03-06 2003-03-18 Nikon Corporation Exposure method and projection exposure apparatus
USRE37946E1 (en) 1991-03-06 2002-12-31 Nikon Corporation Exposure method and projection exposure apparatus
USRE39083E1 (en) 1992-10-22 2006-05-02 Nikon Corporation Projection exposure apparatus
USRE38798E1 (en) 1992-10-22 2005-09-20 Nikon Corporation Projection exposure apparatus
USRE38113E1 (en) 1993-04-02 2003-05-06 Nikon Corporation Method of driving mask stage and method of mask alignment
US6753948B2 (en) 1993-04-27 2004-06-22 Nikon Corporation Scanning exposure method and apparatus
US6462807B1 (en) 1993-05-28 2002-10-08 Nikon Corporation Projection exposure apparatus and method
US6707536B2 (en) 1993-05-28 2004-03-16 Nikon Corporation Projection exposure apparatus
US6900879B2 (en) 1993-05-28 2005-05-31 Nikon Corporation Projection exposure apparatus
US6795169B2 (en) 1993-06-30 2004-09-21 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US7088425B2 (en) 1993-06-30 2006-08-08 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US6556278B1 (en) 1993-06-30 2003-04-29 Nikon Corporation Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
USRE37361E1 (en) 1993-11-11 2001-09-11 Nikon Corporation Scanning type exposure apparatus and exposure method
USRE37762E1 (en) 1994-04-12 2002-06-25 Nikon Corporation Scanning exposure apparatus and exposure method
US7202936B2 (en) 1994-06-16 2007-04-10 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using same
US6211946B1 (en) 1994-06-16 2001-04-03 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6124923A (en) * 1994-11-01 2000-09-26 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6262797B1 (en) * 1994-11-01 2001-07-17 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
US6437354B1 (en) 1998-01-07 2002-08-20 Nikon Corporation Exposure method and scanning-type exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JPH0529129B2 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
JPS63128713A (en) Correction of distortion in scanning aligner
US6372395B2 (en) Exposure method for overlaying one mask pattern on another
US6700667B2 (en) Exposure apparatus and method
JP3564735B2 (en) Scanning exposure apparatus and exposure method
JPH04317316A (en) Projection aligner
US20090059297A1 (en) Calibration method for image rendering device and image rendering device
JPH0142492B2 (en)
JPH0584663B2 (en)
US5850291A (en) Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error
JP3991165B2 (en) Alignment method and exposure method
US20060209277A1 (en) Roll printer with decomposed raster scan and X-Y distortion correction
JPH0257333B2 (en)
US5798822A (en) Exposure apparatus
JPH07142331A (en) Projection aligner
JPH09139340A (en) Positional discrepancy correcting method
JPS5954225A (en) Projection exposure method
JPH04235558A (en) Exposure device
US6708131B1 (en) Wafer alignment system
JPH08330219A (en) Scanning-type exposure device
JPH1097987A (en) Method and device for scanning type exposure
JPH088175A (en) Aligner and align method
JPH0629172A (en) Measuring method
JP2918589B2 (en) Exposure equipment
JPH0689032A (en) Method for adjusting mutual positions of film and printed circuit board and device for performing method thereof
JP2567811B2 (en) Scanning exposure device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term