JPS63128559A - Solid electrolyte fuel cell module - Google Patents

Solid electrolyte fuel cell module

Info

Publication number
JPS63128559A
JPS63128559A JP61274322A JP27432286A JPS63128559A JP S63128559 A JPS63128559 A JP S63128559A JP 61274322 A JP61274322 A JP 61274322A JP 27432286 A JP27432286 A JP 27432286A JP S63128559 A JPS63128559 A JP S63128559A
Authority
JP
Japan
Prior art keywords
reaction
air
fuel cell
module
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61274322A
Other languages
Japanese (ja)
Inventor
Susumu Sato
進 佐藤
Osao Kudome
長生 久留
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61274322A priority Critical patent/JPS63128559A/en
Publication of JPS63128559A publication Critical patent/JPS63128559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the space for adiabatic materials extensively and to improve the thermal efficiency, by furnishing air preheaters to heat the air for reaction from a reaction air inlet, which are installed in a module shell, a reaction chamber to which the heated air is fed, a combustion chamber, and a solid electrolyte fuel cell main body installed at the reaction chamber and the combustion chamber. CONSTITUTION:The air for reaction is led from a reaction air inlet 12 to the inside of a module shell 11 at a normal temperature, and introduced to a low temperature air preheater 14 through a reaction air header 23. The air heated at the low temperature air preheater 14 is heated further at a high temperature air preheater 15, and led to a reaction chamber 17 through a reaction air pouring pipe 24. On the other hand, a reaction hydrogen is led to a solid electrolyte fuel cell (SOFC) main body 21 from the inlets 22a of introduction pipes 22, the hydrogen which is not utilized in the SOFC main body 21 is made into a burned gas in the combustion chamber 18, fed to the high temperature air preheater 15, and, after the heat is recovered there, exhausted to the outside from an exhaust gas outlet 13. In such a way, as well as the space for adiabatic materials is reduced extensively, the thermal efficiency can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、固体電解質燃料電池モジュールの改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in solid electrolyte fuel cell modules.

[従来の技術] 従来、固体電解質燃料電池(SOFG)モジュールとし
ては、例えば第2図に承すものが知られている。
[Prior Art] Conventionally, as a solid electrolyte fuel cell (SOFG) module, one shown in FIG. 2, for example, is known.

図中の1は、内壁に断熱材2を配設した鋼板製のモジュ
ール外殻である。この外殻1の内部は反応室3と燃焼室
4とに分けられ、前記反応室3には反応用空気を導入す
る導入口5が、前記燃焼室4には排ガスを排気する排出
口6が設けられている。前記外殻1内には、複数のSO
FG本体7・・・が縦方向に設けられている。こうした
構造のモジュールにおいては、前記断熱材2により約1
000℃の反応室3を断熱し、かつ反応用空気は外部に
設置された空気予熱器(図示せず)で一旦昇濡した後モ
ジュール外殻1内へ供給する構造となっている。
1 in the figure is a module outer shell made of a steel plate with a heat insulating material 2 disposed on the inner wall. The inside of this outer shell 1 is divided into a reaction chamber 3 and a combustion chamber 4, the reaction chamber 3 has an inlet 5 for introducing reaction air, and the combustion chamber 4 has an outlet 6 for exhausting exhaust gas. It is provided. Inside the outer shell 1, a plurality of SO
The FG main body 7... is provided in the vertical direction. In a module with such a structure, the heat insulating material 2
The reaction chamber 3 is insulated at 000° C., and the reaction air is heated in an external air preheater (not shown) and then supplied into the module shell 1.

[発明が解決しようとする問題点] しかしながら、従来の5OFCモジユールは、燃料電池
自体の特性により1000℃程度で高温で運転する必要
があるため、温度の維持と高温排ガスの熱回収を行うこ
とがプラトン性能向上のために不可欠である。しかるに
、従来の5OFGモジユールでは、鋼板製のモジュール
外殻1の内側に断熱材2を挿着して放散熱」を押えると
ともに、外部に設置された空気予熱器で反応用空気を予
熱した慢にモジュール外殻1へ供給する構造となってい
るため、断熱材2はモジュール外殻1内のかなりのスペ
ースを占める。また、モジュール外殻1の外部に空気予
熱器が必要のみならず、モジュール外殻1との配管は^
温く700〜900℃)となり、放散熱量の増大となる
[Problems to be solved by the invention] However, because the conventional 5OFC module needs to be operated at a high temperature of about 1000°C due to the characteristics of the fuel cell itself, it is difficult to maintain the temperature and recover heat from high-temperature exhaust gas. Plato is essential for improving performance. However, in the conventional 5OFG module, a heat insulating material 2 is inserted inside the module outer shell 1 made of steel plate to suppress the heat dissipation, and an air preheater installed outside is used to preheat the reaction air. Due to the structure in which it is supplied to the module shell 1, the insulation material 2 occupies a considerable space within the module shell 1. In addition, not only is an air preheater required outside the module outer shell 1, but the piping with the module outer shell 1 is also required.
(700 to 900°C), resulting in an increase in the amount of heat dissipated.

本発明は上記事情に鑑みてなされたもので、断熱材のス
ペースの大幅な削減及び熱効率の向上をなし得る固体電
解質燃料電池モジュールを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid electrolyte fuel cell module that can significantly reduce the space for a heat insulating material and improve thermal efficiency.

[問題点を解決するための手段と作用1本発明は、反応
用空気入口、排ガス出口を夫々備えたモジュール外殻と
、この外殻内に設けられて前記反応用空気入口からの反
応用空気を加熱する空気予熱器と、この空気予熱器によ
って加熱された空気が供給される反応室と、この反応室
と仕切板を介して隣接された燃焼室と、前記反応室及び
燃焼室に設けられた固体電解質燃料電池本体とを具備す
ることを要旨とする。本発明によれば、断熱材のスペー
スを大幅に削減できるとともに、熱効率を著しく向上で
きる。
[Means and Effects for Solving the Problems 1] The present invention comprises a module outer shell provided with a reaction air inlet and an exhaust gas outlet, and a module outer shell provided within the outer shell to allow reaction air to flow from the reaction air inlet. a reaction chamber to which air heated by the air preheater is supplied; a combustion chamber adjacent to the reaction chamber via a partition plate; The gist is to include a solid electrolyte fuel cell main body. According to the present invention, the space for the heat insulating material can be significantly reduced, and the thermal efficiency can be significantly improved.

[実施例コ 以下、本発明の一実施例を第1図を参照して説明する。[Example code] An embodiment of the present invention will be described below with reference to FIG.

図中の11は、モジュール外殻である。このモジュール
外殻11の上部には反応用空気入口12が設けられ、底
部には排ガス出口13が設けられている。前記モジュー
ル外殻11の内周壁近くには低温空気予熱器14が設け
られ、底部には^温空気予熱器15が設けられている。
11 in the figure is a module outer shell. A reaction air inlet 12 is provided at the top of the module shell 11, and an exhaust gas outlet 13 is provided at the bottom. A low temperature air preheater 14 is installed near the inner peripheral wall of the module shell 11, and a hot air preheater 15 is installed at the bottom.

これら予熱器14(又は15)は具体的には夫々蛇行状
の通路からなり、互いに連通している。前記モジュール
外殻11の中心部には、断熱材16で囲まれた反応室1
7及び燃焼室18が仕切板19を介して縦方向に隣設さ
れている。前記燃1!18の底部には、ポーラスなセラ
ミック板(輻射変換体)20が設けられている。前記反
応室17、燃焼苗18には5OFC本体21が設けられ
、該5OFC本体21の上部には一端がモジュール外殻
11を貫通する反応用水素用導入管22が設けられてい
る。
Specifically, these preheaters 14 (or 15) each consist of a meandering passage and communicate with each other. At the center of the module outer shell 11 is a reaction chamber 1 surrounded by a heat insulating material 16.
7 and a combustion chamber 18 are arranged adjacent to each other in the vertical direction with a partition plate 19 in between. A porous ceramic plate (radiation converter) 20 is provided at the bottom of the fuel 1!18. A 5OFC main body 21 is provided in the reaction chamber 17 and the combustion seedling 18, and a reaction hydrogen introduction pipe 22 having one end penetrating the module shell 11 is provided in the upper part of the 5OFC main body 21.

なお、図中の23はモジュール外殻11内の上部に位置
して反応用空気が導入される反応用空気ヘッダ、24は
仕切板19を貫通して設けられて前記高温空気予熱器1
5の通路と反応室17を連通させる反応用空気注入管で
ある。
In the figure, 23 is a reaction air header which is located at the upper part of the module outer shell 11 and into which reaction air is introduced, and 24 is a reaction air header which is provided through the partition plate 19 and which is connected to the high temperature air preheater 1.
This is a reaction air injection pipe that communicates the passage No. 5 with the reaction chamber 17.

こうした構造の空冷式5OFCモジユールにおいて、反
応用空気は反応用空気入口12よりモジュール外股11
内に常温で導入され、反応用空気ヘッダ23を介して低
温空気予熱器14へ導かれる。低温空気予熱器14で加
熱された空気は高温空気予熱器15で更に昇温され、反
応用空気注入管24を通して反応室17へ導入される。
In the air-cooled 5OFC module with such a structure, reaction air is supplied from the reaction air inlet 12 to the module outer leg 11.
The air is introduced into the reactor at room temperature and guided to the low-temperature air preheater 14 via the reaction air header 23. The air heated in the low-temperature air preheater 14 is further heated in the high-temperature air preheater 15, and then introduced into the reaction chamber 17 through the reaction air injection pipe 24.

一方、反応水素は、前記導入管22の入口22aより5
OFG本体21へ導入される。そして、5OFC本体2
Iにおいて未利用の水素は燃焼室−モにて燃焼ガスとな
って^温空気予熱器15へ供給され、熱回収された後排
ガス出口13より外部へ放出される。
On the other hand, the reaction hydrogen is introduced from the inlet 22a of the introduction pipe 22 at 5.
It is introduced into the OFG main body 21. And 5OFC main body 2
In I, unused hydrogen becomes combustion gas in the combustion chamber-Mo and is supplied to the hot air preheater 15, where the heat is recovered and then discharged to the outside from the exhaust gas outlet 13.

上記実施例によれば、以下に述べる効果を有する。According to the above embodiment, the following effects are achieved.

■モジュール外壁11の外部に空気予熱器を設けること
なく、モジュール外殻11の内部に設けるため、従来と
比べ断熱材のスペースを大幅に削減できる。
■Since the air preheater is not provided outside the module outer wall 11 but is provided inside the module outer shell 11, the space required for insulation material can be significantly reduced compared to the conventional method.

■また、常温の反応用空気で熱交換するため、モジュー
ル出口排ガス温度が約200℃程度まで低下し、モジュ
ールの熱効率が向上する。
(2) Also, since heat is exchanged with reaction air at room temperature, the temperature of the exhaust gas at the exit of the module is reduced to about 200°C, improving the thermal efficiency of the module.

[発明の効果] 以上詳述した如く本発明によれば、断熱材のスペースを
大幅に削減するとともに、熱効率を向上し得るコンパク
トな固体電解質燃料電池モジュールを提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a compact solid electrolyte fuel cell module that can significantly reduce the space for a heat insulating material and improve thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る空冷式固体電解質燃料
電池モジュールの断面図、第2図は従来の固体電解質燃
料電池モジュールの断面図である。 11・・・モジュール外殻、12・・・反応用空気入口
、13・・・排ガス出口、14・・・低温空気予熱器、
15・・・高温空気予熱器、16・・・断熱材、17・
・・反応室、18・・・燃焼室、19・・・仕切板、2
0・・・セラミック板、21・・・5OFG本体、22
・・・反応用水素用導入管、23・・・反応用空気ヘッ
ダ、24・・・反応用空気注入管。 出願人復代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a sectional view of an air-cooled solid oxide fuel cell module according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional solid oxide fuel cell module. 11... Module outer shell, 12... Reaction air inlet, 13... Exhaust gas outlet, 14... Low temperature air preheater,
15...High temperature air preheater, 16...Insulating material, 17.
...Reaction chamber, 18... Combustion chamber, 19... Partition plate, 2
0...Ceramic plate, 21...5OFG main body, 22
... Hydrogen introduction pipe for reaction, 23... Air header for reaction, 24... Air injection pipe for reaction. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] 反応用空気入口、排ガス出口を備えたモジュール外殻と
、このモジュール外殻内に設けられて前記反応用空気入
口からの反応用空気を加熱する空気予熱器と、この空気
予熱器によって加熱された空気が供給される反応室と、
この反応室と仕切板を介して隣設された燃焼室と、前記
反応室及び燃焼室に設けられた固体電解質燃料電池本体
とを具備することを特徴とする固体電解質燃料電池モジ
ュール。
a module outer shell equipped with a reaction air inlet and an exhaust gas outlet; an air preheater provided in the module outer shell to heat the reaction air from the reaction air inlet; a reaction chamber supplied with air;
A solid oxide fuel cell module comprising: a combustion chamber adjacent to the reaction chamber via a partition plate; and a solid oxide fuel cell main body provided in the reaction chamber and the combustion chamber.
JP61274322A 1986-11-18 1986-11-18 Solid electrolyte fuel cell module Pending JPS63128559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274322A JPS63128559A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274322A JPS63128559A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel cell module

Publications (1)

Publication Number Publication Date
JPS63128559A true JPS63128559A (en) 1988-06-01

Family

ID=17540033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274322A Pending JPS63128559A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel cell module

Country Status (1)

Country Link
JP (1) JPS63128559A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374636A1 (en) * 1988-12-20 1990-06-27 Asea Brown Boveri Ag Process for the conversion of the chemical potential energy of a material into electrical energy by a high-temperature electrochemical process
EP0473540A2 (en) * 1990-08-27 1992-03-04 Sulzer Innotec Ag Heat management in fuel cells with solid electrolyte
JPH05166518A (en) * 1991-12-12 1993-07-02 Ngk Insulators Ltd Cell for solid electrolyte fuel cell and power generating device using it
JPH05166529A (en) * 1991-12-12 1993-07-02 Ngk Insulators Ltd Power generation device
WO1994022178A2 (en) * 1993-03-20 1994-09-29 Keele University Solid oxide fuel cell structures
WO1996007212A1 (en) * 1994-08-31 1996-03-07 Forschungszentrum Jülich GmbH Solid electrolyte high-temperature fuel cell and fuel cell arrangement
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2011086611A (en) * 2009-10-14 2011-04-28 Samsung Sdi Co Ltd Housing for solid-oxide fuel cell and solid-oxide fuel cell comprising the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374636A1 (en) * 1988-12-20 1990-06-27 Asea Brown Boveri Ag Process for the conversion of the chemical potential energy of a material into electrical energy by a high-temperature electrochemical process
EP0473540A2 (en) * 1990-08-27 1992-03-04 Sulzer Innotec Ag Heat management in fuel cells with solid electrolyte
JPH05166518A (en) * 1991-12-12 1993-07-02 Ngk Insulators Ltd Cell for solid electrolyte fuel cell and power generating device using it
JPH05166529A (en) * 1991-12-12 1993-07-02 Ngk Insulators Ltd Power generation device
WO1994022178A2 (en) * 1993-03-20 1994-09-29 Keele University Solid oxide fuel cell structures
WO1994022178A3 (en) * 1993-03-20 1995-01-12 Univ Keele Solid oxide fuel cell structures
US5827620A (en) * 1993-03-20 1998-10-27 Keele University Solid oxide fuel cell structures
WO1996007212A1 (en) * 1994-08-31 1996-03-07 Forschungszentrum Jülich GmbH Solid electrolyte high-temperature fuel cell and fuel cell arrangement
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2011086611A (en) * 2009-10-14 2011-04-28 Samsung Sdi Co Ltd Housing for solid-oxide fuel cell and solid-oxide fuel cell comprising the same

Similar Documents

Publication Publication Date Title
CA1164041A (en) Fuel cell generator
US4935037A (en) Fuel reforming apparatus
EP0328812B1 (en) Electrochemical generators of rectangular design having corner heating
US6326095B1 (en) Integrated manifold/reformer for fuel cell systems
JPS62283570A (en) High temperature solid electrolyte type fuel cell
EP0133747B1 (en) Improved fuel cell generators
JP2003282110A (en) Storage battery comprising fuel cell having integral heat exchanger
JP2930326B2 (en) Solid oxide fuel cell
JPH0541241A (en) Solid electrolyte type fuel cell
JP2010504607A (en) Solid oxide fuel cell with heat exchanger
JPS63128559A (en) Solid electrolyte fuel cell module
JP3939347B2 (en) Furnace for fuel cell power plant
JPS61106401A (en) Reforming apparatus
JPS60254568A (en) Fuel cell
JP4326078B2 (en) Solid oxide fuel cell module
JPH08287937A (en) Solid electrolyte fuel cell module
JPH06349513A (en) Cylindrical fuel cell module
JP3110158B2 (en) Solid electrolyte fuel cell power generator
JP3258518B2 (en) Solid electrolyte fuel cell module
JP2528836B2 (en) Cooled fuel reformer
JPS63119167A (en) Solid electrolyte fuel battery module
JPS6351058A (en) Fuel cell
JP2003234122A (en) Fuel cell
JP3377646B2 (en) Solid oxide fuel cell module
JPH08250145A (en) Hollow cylindrical plate type reformer