JPS63128272A - Fault point locating method - Google Patents

Fault point locating method

Info

Publication number
JPS63128272A
JPS63128272A JP27301186A JP27301186A JPS63128272A JP S63128272 A JPS63128272 A JP S63128272A JP 27301186 A JP27301186 A JP 27301186A JP 27301186 A JP27301186 A JP 27301186A JP S63128272 A JPS63128272 A JP S63128272A
Authority
JP
Japan
Prior art keywords
voltage
fault point
fault
arc
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27301186A
Other languages
Japanese (ja)
Inventor
Masayuki Okazaki
正幸 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP27301186A priority Critical patent/JPS63128272A/en
Publication of JPS63128272A publication Critical patent/JPS63128272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To execute locating with high accuracy by estimating an arc voltage of a fault point from a result of frequency analysis of a voltage at an electrical plant outlet. CONSTITUTION:A high-frequency component voltage in a measured voltage of an electrical plant outlet at the time of generating an arc fault obtained by a frequency analysis is a high-frequency component contained in a fault point arc voltage attenuated by high-frequency attenuation characteristics of a line, and also, a ratio of the high-frequency component voltage in the fault point arc voltage to a fundamental wave component voltage is roughly constant. Therefore, by utilizing this point, an arc voltage of a fault point is estimated from a prescribed expression, and by subtracting this voltage from the fundamental wave voltage component of the measured voltage at the electrical plant outlet, a voltage drop of a line extending from the electrical plant to the fault point is derived. From the obtained voltage drop, a measured fault phase current at the electrical plant outlet, and a line impedance per unit length, a distance extending from the electrical plant outlet to the fault point can be derived.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は送配電線路における故障点標定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for locating fault points in power transmission and distribution lines.

(従来技術とその問題点) 送配電線路における事故のうう、機材の損傷。(Prior art and its problems) Accidents on power transmission and distribution lines and damage to equipment.

断線事故等に結びつき易い、アークを伴う短絡故障発生
時、その故障点位置を発変電所などの電気所からの距離
として求めることができれば、線路の早期復旧など線路
保守の面において著しく有利である。そこで従来から種
々の標定方法が提案され実施されている。例えば、その
一つは第1図に示す系統図のように、3線地絡アーク故
障Fの発生時、電気所Tの出口において測定された故障
相の対地電圧及び故障相電流を利用して標定する方法で
ある。即ち測定された対地電圧をV3(V)、故障相電
流を■5(A)、故障点に発生したアーク電圧をvF、
予め知り得る単位長(m1当たりの線路インピーダンス
をZL%故障点までの距離をlとしたとき、電気所Tの
出口における対地電圧■、がVS−(ZL  x 7!
x ■s  )  + VFとして表されることから、
電気所Tから地絡点までの距離pが L−rs として与えられることを原理とするものである。
In the event of a short-circuit fault accompanied by an arc, which is likely to lead to a disconnection accident, if the location of the fault point can be determined as the distance from an electrical station such as a power generation/substation, it would be extremely advantageous in terms of track maintenance, such as early line recovery. . Therefore, various orientation methods have been proposed and put into practice. For example, one method, as shown in the system diagram shown in Figure 1, is to use the ground voltage and fault phase current of the faulty phase measured at the outlet of the electrical station T when a three-wire ground fault F occurs. This is a method of locating. That is, the measured voltage to ground is V3 (V), the fault phase current is ■5 (A), the arc voltage generated at the fault point is VF,
When the line impedance per unit length (m1 that can be known in advance is ZL%) and the distance to the fault point is l, the voltage to ground at the exit of the electrical station T is VS-(ZL x 7!
Since it is expressed as x ■s ) + VF,
The principle is that the distance p from the electric station T to the ground fault point is given as L-rs.

この方法は電気所における電圧電流を利用するものであ
るので、比較的簡単であるが、通常故障条件などによっ
て大きく変化する故障点のアーク電圧VFを電気所にお
いて測定することはできない。
This method is relatively simple as it utilizes the voltage and current at the electrical station, but it is not possible to measure the arc voltage VF at the fault point, which normally changes greatly depending on the fault conditions, at the electrical station.

従って一般にはアーク電圧VFを零と仮定したり、従来
の経験にもとづく一定値として算出することが行われて
いるが、これでは標定結果に大きな誤差を含むのをまぬ
がれることができない。
Therefore, although arc voltage VF is generally assumed to be zero or calculated as a constant value based on conventional experience, this cannot avoid including large errors in the orientation result.

また他の方式として所謂パルス標定方式、即ち故障発生
時線路を一旦停電させて電気所から高圧パルスを線路に
印加し、その発射より故障点において反射して帰来する
までの時間から、距離を標定する方法である。この方法
は電圧電流法と異なり、故障が自復した場合には距離標
定を行うことができないため、自復の機会が大きい故障
の場合には不利である欠点がある。これに加えて前記の
ように線路を一旦停電させて標定動作を行わなければな
らない。従って標定に時間を要し線路の復旧などに時間
を要するため、サービスの低下を招かざるを得ない欠点
がある。
Another method is the so-called pulse locating method, in which when a fault occurs, the line is temporarily cut off and a high-voltage pulse is applied to the line from an electric station, and the distance is determined from the time it takes for the pulse to be reflected from the point of failure and return home. This is the way to do it. This method differs from the voltage-current method in that it is not possible to perform distance determination when a fault recovers, so it has the disadvantage of being disadvantageous in the case of a fault with a large chance of recovery. In addition to this, as mentioned above, it is necessary to temporarily cut off the power to the line and perform the locating operation. Therefore, it takes time to locate and restore the track, which inevitably leads to a decline in service.

(発明の目的) 本発明は故障時における電気所出口の電圧の周波数分析
結果から故障点のアーク電圧を推定できるようにして、
従来の電圧電流法によるものに比べて高い精度で標定を
行いうるようにして、従来方式の欠点を除去したもので
ある。次に図面を用いて本発明の詳細な説明する。
(Objective of the Invention) The present invention makes it possible to estimate the arc voltage at the fault point from the frequency analysis result of the voltage at the outlet of the electrical station at the time of the fault.
This method eliminates the drawbacks of the conventional method by allowing location to be performed with higher accuracy than the conventional voltage-current method. Next, the present invention will be explained in detail using the drawings.

(問題点を解決するための本発明の手段)本発明は本発
明者による次の研究結果からなされたものである。
(Means of the present invention for solving the problems) The present invention was made based on the following research results by the present inventor.

■ 故障点に発生するアーク電圧VFはアーク長、アー
クの発生雰囲気、アーク電流等により異なるが、アーク
長(電極間の距離にほぼ比例)とアーク電圧V、は、本
発明者による気中及びSFcガス中における各種の電極
配置時における実験結果から、第2図に示すようにほぼ
比例関係にある。
■ The arc voltage VF generated at the fault point varies depending on the arc length, the atmosphere in which the arc occurs, the arc current, etc., but the arc length (approximately proportional to the distance between the electrodes) and the arc voltage V, From the experimental results of various electrode arrangements in SFc gas, there is a nearly proportional relationship as shown in FIG.

■ またアーク長及びアーク電圧は、故障の形態によっ
て広い範囲に変化するが、アーク電圧波形は通常第3図
(alに示す実測結果のように方形波に類似した特有の
波形を持つ。しかも第2図のようにアーク電圧波形中に
含まれる基本波成分BKと高調波成分HKの比率には、
通常電圧の測定に使用される抵抗分圧器や計器用変圧器
による測定可能周波数範囲内において、アーク電圧値が
変化してもそれ程度化せずほぼ一定である。
■Although the arc length and arc voltage vary over a wide range depending on the type of failure, the arc voltage waveform usually has a unique waveform similar to a square wave, as shown in the measurement results shown in Figure 3 (al). As shown in Figure 2, the ratio of the fundamental wave component BK and harmonic component HK included in the arc voltage waveform is as follows:
Within the frequency range that can be measured by a resistance voltage divider or a voltage transformer that is normally used to measure voltage, even if the arc voltage value changes, it remains almost constant.

■ また更に上記基本波と高調波成分の比率には線路電
流によって変化するが、その変化の度合は第4図中に示
すように大きくなく、しかも第3回出)に示す波形図の
ように線路電流■、はほぼ基本波成分からのみなるもの
と云って過言ではない。
■Furthermore, the ratio of the fundamental wave and harmonic components mentioned above changes depending on the line current, but the degree of change is not large as shown in Figure 4, and moreover, as shown in the waveform diagram shown in Part 3). It is no exaggeration to say that the line current ■ consists almost only of fundamental wave components.

■ 一方、線路インピーダンスは線型であるので、前記
第3図(b)によって示されたように、故障相線路電流
I、中に高調波成分が含まれないものとすれば、線路電
圧降下中に高調波成分が含まれることはない。このため
電気所出口における測定電圧V、中の高調波成分H0は
、故障点アーク電圧VF中の高調波成分Hイが、第1図
の電気所Tから故障点までの線路中において減衰したも
の、即ち線路の高調波減衰特性をη□、電気所から故障
点までの距離をβとすれば、HA=Hヤ×η□xx  
−−−−−−−・−・−−−−−−−(1)となる。
■ On the other hand, since the line impedance is linear, as shown in Fig. 3(b) above, if the fault phase line current I does not contain harmonic components, then during line voltage drop, No harmonic components are included. Therefore, the harmonic component H0 in the measured voltage V at the outlet of the electrical station is the harmonic component H in the arc voltage VF at the fault point that is attenuated in the line from the electrical station T to the fault point in Figure 1. , that is, if the harmonic attenuation characteristic of the line is η□, and the distance from the electrical station to the fault point is β, then HA=H×η□xx
−−−−−−−・−・−−−−−−(1).

他方電気所出口において測定された対地電圧V、中の基
本波成分BAは、故障アーク電圧中の基本波成分BKと
、基本波成分のみからなる線路電流■3と線路インピー
ダンスZLの積にもとづく電圧降下の和、即ち BA =Bx + (13X ZL X 12)  −
−−(21で与えられる。
On the other hand, the fundamental wave component BA in the ground voltage V measured at the outlet of the electrical station is a voltage based on the product of the fundamental wave component BK in the fault arc voltage, the line current 3 consisting only of the fundamental wave component, and the line impedance ZL. The sum of the drops, i.e. BA = Bx + (13X ZL X 12) −
--(Given by 21.

そこで全前記第2図及び第4図によって説明したように
、故障点アーク電圧中に含まれる各次高調波成分Hにと
、基本波成分Bxとの成分比、K=HK/BK    
−−−一・−・−−−−−−−−−−−−−−−−〜−
−(31が一定であるとすれば、以上(1)〜(3)式
から電気所より故障点までの距離を求めることができる
。即ち今(3)式を変形して HK= K X B K−−−−−−−−−−−−−・
・−−−−−−−−−−−−−−−−−−−−−−−−
(41とし、(4)式を(11式に代入して整理すれば
HA =KXBx Xηx Xβ となる。これを前記(3)式に代入して整理すればBA
xK×η、X j2 =HA十Kx ηHX ll(I
sxZLx x)ISXZLX ’7HXKX j! 
”  BAX 77 、xKx j! +Ha= 0−
−−−一−−−−−−−−−−−−−−−〜・−(6)
となり、これから電気所出口から故障点までの距離lは −−−−−−−−・・−−−・ (7)として与えられ
る。
Therefore, as explained above with reference to FIGS. 2 and 4, the component ratio between each harmonic component H included in the fault point arc voltage and the fundamental wave component Bx, K=HK/BK
−−−1・−・−−−−−−−−−−−−−−−−~−
-(31) is constant, the distance from the electrical station to the fault point can be found from the above equations (1) to (3). That is, by transforming equation (3), HK=K K----------
・−−−−−−−−−−−−−−−−−−−−−−−
(41), and if we substitute equation (4) into equation (11 and organize it, we get HA = KXBx Xηx Xβ.If we substitute this into equation (3) and organize it, then BA
xK×η,
sxZLx x) ISXZLX '7HXKX j!
” BAX 77, xKx j! +Ha= 0-
−−−1−−−−−−−−−−−−−−−・−(6)
From this, the distance l from the outlet of the electrical station to the failure point is given as ----------・・---- (7).

また更に前記したように、故障点アーク電圧中の高調波
成分と基本波成分の比率には、線路電流I、によって変
化する。従って線路電流I、の大きさに応じて、故障点
アーク電圧の推定値を変えることにより、更に距離の標
定を正確に行うことができる。
Furthermore, as described above, the ratio of harmonic components to fundamental components in the arc voltage at the fault point changes depending on the line current I. Therefore, by changing the estimated value of the arc voltage at the fault point according to the magnitude of the line current I, it is possible to more accurately determine the distance.

第5図は以上述べた本発明による故障点標定の手順を判
り易く説明したフロー図であって、〔故障発生(1)→
電気所出口の対地電圧電流の測定(2)−高調波成分の
分析(3)−故障点アーク電圧の推定(4)−線路電圧
降下の算定(5)−故障点位置の標定(6)の手順で行
われる。
FIG. 5 is a flow diagram clearly explaining the procedure for locating a fault point according to the present invention as described above, and shows [fault occurrence (1)→
Measurement of ground voltage and current at the outlet of the electrical station (2) - Analysis of harmonic components (3) - Estimation of fault point arc voltage (4) - Calculation of line voltage drop (5) - Orientation of fault point location (6) It is done in steps.

(発明の効果) 以上のように本発明では故障点アーク電圧波形に含まれ
る高調波成分に着目し、その基本波成分との比率が規則
性を有することから、電気所出口において故障相電圧の
高調波成分を測定することによって、故障点のアーク電
圧を推定できることを着想してなされたものである。
(Effects of the Invention) As described above, the present invention focuses on the harmonic components included in the fault point arc voltage waveform, and since the ratio with the fundamental wave component has regularity, the fault phase voltage at the outlet of the electrical station is This was done based on the idea that the arc voltage at the fault point could be estimated by measuring the harmonic components.

従って従来の電圧電流法による標定法に比べて、故障点
の距離標定を正確に行うことができ、しかもパルス標定
法のように標定中線路を停電させることなく故障中また
は故障直後において標定を行いうる。これに加えて本発
明では故障中に測定された電圧−電流により標定を行う
ため、パルス標定法のように故障の自復に関係なく距離
標定を正確に行いうる。
Therefore, compared to the conventional voltage-current method, it is possible to more accurately locate the distance to the fault point, and it is possible to locate the fault point during or immediately after the fault without causing a power outage to the line during the location unlike the pulse location method. sell. In addition, in the present invention, since the location is performed using the voltage-current measured during the failure, it is possible to accurately determine the distance, unlike the pulse location method, regardless of recovery from the failure.

なお以上においては本発明を3線地絡アーク短絡事故に
ついて説明したが、2線地絡短絡、2線短絡、3線短絡
事故など要するに地絡の有無によらす、アーク短絡事故
の場合に適用して故障相の電圧及び電流から故障点位置
の標定を行いうる。
Although the present invention has been explained above in connection with a 3-wire ground fault arc short circuit accident, it can also be applied to arc short circuit accidents that depend on the presence or absence of a ground fault, such as a 2-wire ground short circuit, a 2-wire short circuit, or a 3-wire short circuit accident. The location of the fault point can be located from the voltage and current of the fault phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのモデル系統図、第2図
は電極間隔とアークに含まれる高調波成分と基本波成分
比及び電極間隔とアーク電圧の関係を示す図、第3図+
al (blはアーク電圧及びアーク電流の波形側図、
第4図はアーク電流とアーク電圧中に含まれる高調波成
分と基本波成分比の関係図、第5図は本発明の標定手順
の説明用フロー図である。
Fig. 1 is a model system diagram for explaining the present invention, Fig. 2 is a diagram showing the relationship between electrode spacing, the ratio of harmonic components and fundamental wave components included in the arc, and the electrode spacing and arc voltage, and Fig. 3 +
al (bl is the waveform side diagram of arc voltage and arc current,
FIG. 4 is a relationship diagram of the harmonic component and fundamental wave component ratio contained in the arc current and arc voltage, and FIG. 5 is a flow diagram for explaining the location procedure of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)周波数分析により得られた、アーク故障発生時に
おける電気所出口の測定電圧中の高調波成分電圧が、線
路の高調波減衰特性により減衰した故障点アーク電圧中
に含まれる高調波成分であり、かつ故障点アーク電圧中
の高調波成分電圧と基本波成分電圧の比がほぼ一定であ
ることを利用して、故障点のアーク電圧を推定し、これ
を電気所出口における測定電圧の基本波電圧成分から差
引くことにより、電気所から故障点までの線路の電圧降
下を求め、これと電気所出口における測定故障相電流と
単位長当たりの線路インピーダンスとから電気所出口か
ら故障点までの距離を求めることを特徴とする故障点標
定方法。
(1) The harmonic component voltage in the measured voltage at the outlet of the electrical station at the time of arc fault occurrence, obtained by frequency analysis, is the harmonic component contained in the fault point arc voltage attenuated by the harmonic attenuation characteristics of the line. By using the fact that the ratio of the harmonic component voltage and the fundamental wave component voltage in the arc voltage at the fault point is almost constant, the arc voltage at the fault point is estimated, and this is used as the basic value of the measured voltage at the outlet of the electrical station. The line voltage drop from the electric station to the fault point is determined by subtracting it from the wave voltage component, and from this, the measured fault phase current at the electric station exit, and the line impedance per unit length, the line voltage drop from the electric station exit to the fault point is calculated. A fault point locating method characterized by determining distance.
JP27301186A 1986-11-18 1986-11-18 Fault point locating method Pending JPS63128272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27301186A JPS63128272A (en) 1986-11-18 1986-11-18 Fault point locating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27301186A JPS63128272A (en) 1986-11-18 1986-11-18 Fault point locating method

Publications (1)

Publication Number Publication Date
JPS63128272A true JPS63128272A (en) 1988-05-31

Family

ID=17521908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27301186A Pending JPS63128272A (en) 1986-11-18 1986-11-18 Fault point locating method

Country Status (1)

Country Link
JP (1) JPS63128272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132421A (en) * 2017-12-13 2018-06-08 华北电力大学 Arc extinction cabinet failure phase judgment method based on transient high-frequency component
US10352984B2 (en) 2011-11-28 2019-07-16 The University Of Nottingham Fault location in power distribution systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352984B2 (en) 2011-11-28 2019-07-16 The University Of Nottingham Fault location in power distribution systems
CN108132421A (en) * 2017-12-13 2018-06-08 华北电力大学 Arc extinction cabinet failure phase judgment method based on transient high-frequency component
CN108132421B (en) * 2017-12-13 2020-04-07 华北电力大学 Arc suppression cabinet fault phase judgment method based on transient high-frequency component

Similar Documents

Publication Publication Date Title
US4871971A (en) High impedance fault analyzer in electric power distribution networks
US4851782A (en) High impedance fault analyzer in electric power distribution
Collantes-Bellido et al. Identification and modelling of a three phase arc furnace for voltage disturbance simulation
US5600248A (en) Fault distance locator for underground cable circuits
Magnago et al. A new fault location technique for radial distribution systems based on high frequency signals
CN107345984B (en) A kind of adaptive synchronicity phasor measurement method based on signal identification
CN1099037C (en) Method of detecting and locating a high-resistance earth fault in an electric power network
Lachman et al. On-line diagnostics of high-voltage bushings and current transformers using the sum current method
CN113009270B (en) Arc suppression coil compensation effect evaluation method by using temporary steady state information before and after arc suppression
CN103344911A (en) Method for identifying states of overall process of high-voltage direct-current switch disconnection
Cornick et al. Power system transients caused by arcing faults
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
RU2305292C1 (en) METHOD OF DETECTING FAULT IN 6( 10 )-35 kV ELECTRIC CIRCUIT WITH ISOLATED OR COMPENSATED NEUTRAL POINT
JPS63128272A (en) Fault point locating method
CN110716168A (en) Method for detecting performance of traveling wave distance measuring device
CA1287884C (en) High impedance fault analyzer in electric power
CN114252736A (en) Active power distribution network single-phase fault line selection method based on background harmonic
CN113376548A (en) Cable state monitoring method and device based on cable aging characteristic extraction
Mombauer et al. Load modelling for harmonic flow calculations
Fisher et al. Measurements of the Electrical Niose Produced in the Carrier Band by a DC Converter
AT500195B1 (en) Selective transient earth fault detection in polyphase networks involves comparing displacement voltage and null current curves, evaluating proportionality factor to detect earth leakage and direction
Ortmeyer et al. Measurement of the harmonic characteristics of radial distribution systems
RU2041472C1 (en) Device for transformer testing by short-circuit currents
Wattanasakpubal et al. Algorithm for Detecting, Indentifying, Locating and Experience to Develop the Automate Faults Location in Radial Distribution System
SU815683A1 (en) Method of determining short-circuiting circuit parameters