JPS63128152A - Spring steel having superior settling fatigue resistance - Google Patents

Spring steel having superior settling fatigue resistance

Info

Publication number
JPS63128152A
JPS63128152A JP27502186A JP27502186A JPS63128152A JP S63128152 A JPS63128152 A JP S63128152A JP 27502186 A JP27502186 A JP 27502186A JP 27502186 A JP27502186 A JP 27502186A JP S63128152 A JPS63128152 A JP S63128152A
Authority
JP
Japan
Prior art keywords
fatigue
fatigue resistance
setting
resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27502186A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oki
隠岐 保博
Takashi Taniguchi
隆志 谷口
Satoshi Abe
聡 安部
Takahiko Nagamatsu
永松 孝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27502186A priority Critical patent/JPS63128152A/en
Publication of JPS63128152A publication Critical patent/JPS63128152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the setting and fatigue resistances of a steel having a specified compsn. by adding specified amts. of W and Mo and/or V. CONSTITUTION:This spring steel consists of, by weight, 0.30-0.80% C, 0.50-2.00% Si, 0.40-1.50% Mn, 0.20-1.00% Cr, 0.04-0.10% Al, 0.03-1.00% W, 0.002-0.015% N, 0.05-2.00% Mo and/or 0.05-0.5% V and the balance Fe. In the steel, W forms forms carbide and precipitates during tempering to produced a fine precipitation strengthening effect. In case of <0.03% W, the amt. of the precipitate is insufficient. In case of >1.00% W, the effect is not further enhanced. When the amt. of Mo is <0.05%, Mo does not produce a satisfactory effect on setting and fatigue and >2.00% Mo is not effective in further improving the setting resistance. Though V makes the grains fine, increases the yield strength ratio and is effective in improving the setting resistance, <0.50% V does not produce the effect on setting and fatigue. In case of >0.5% V, insoluble alloy carbide remains as a mass and deteriorates the fatigue resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐へたり性と耐疲労性の優れたばね用銅に関し
、さらに詳しくは、高速、高回転化に耐えられる高性能
を存する耐へたり性と耐疲労性にすぐれたばね用銅に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to copper for springs that has excellent fatigue resistance and fatigue resistance, and more specifically relates to copper that has high performance and can withstand high speeds and high rotations. Concerning copper for springs that has excellent durability and fatigue resistance.

[従来技術] 従来より、ばね用銅の化学成分はJ I S G356
5〜G 3567、G4801に規定されており、これ
らのばね用銅から製造されたロッドを、伸線を繰り返し
て4φ前後のばねに加工したり、また、ロッド→1回伸
線後OT処理ばね加工(冷間巻きばね)、さらに、1回
伸線後、加熱→ばね加工→焼戻しく熱間巻きばね)によ
って製作されている。そして、このような工程によって
製作されたばねの重要特性として耐へたり性および耐疲
労性が挙げられる。
[Prior art] Conventionally, the chemical composition of copper for springs is JIS G356.
5 to G 3567, G4801, rods made from these spring coppers are processed into springs of around 4φ by repeated wire drawing, or OT treated springs after the rod is drawn once. It is manufactured by processing (cold coiled spring), and then, after drawing once, heating → spring processing → hot coiled spring). Important characteristics of springs manufactured through such processes include fatigue resistance and fatigue resistance.

しかし、上記の化学成分系ではどうしても対応できない
ような、高速、高回転化に耐える高性能を有するばねが
要求されるようになり、現在のばね用銅では充分に満足
できなくなってきている。
However, there is now a demand for springs with high performance that can withstand high speeds and high rotations, which cannot be met by the above chemical composition system, and the current copper for springs is no longer able to fully satisfy this demand.

[発明が解決しようとする問題点] 本発明は上記に説明したように従来におけるばね鋼の問
題点に鑑み、本発明者が鋭意研究を行い、検討を重ねた
結果、耐へたり性および耐疲労性に優れ、さらに、高速
、高回転化の耐える高性能のばね用銅を開発したのであ
る。
[Problems to be Solved by the Invention] As explained above, in view of the problems of conventional spring steels, the present inventor has conducted intensive research and has made numerous studies, and as a result, the present invention has been developed to improve the fatigue resistance and durability. They developed a high-performance copper for springs that has excellent fatigue resistance and can withstand high speeds and high rotations.

[問題点を解決するための手段] 本発明に係る耐へたり性および耐疲労性の優れたばね用
銅の特徴とするところは、 G 0.3(1〜0.80wt%、S i 0.50〜
2.00wt%、Mn 0.40〜1.50wt%、C
r 0.20〜1.00wt%、A10.04〜0.1
0wt%、w o、oa〜1.Oht%、N 0.00
2〜0.015wt% を含有し、さらに、 Mo 0.05〜2.00wt%、V 0.05〜0.
5vt%の1種または2種 を含有し、残部Feおよび不可避不純物からなることに
ある。
[Means for Solving the Problems] The copper for springs according to the present invention, which has excellent fatigue resistance and fatigue resistance, has the following characteristics: G 0.3 (1 to 0.80 wt%, Si 0. 50~
2.00wt%, Mn 0.40-1.50wt%, C
r 0.20-1.00wt%, A10.04-0.1
0wt%, w o, oa~1. Oht%, N 0.00
2 to 0.015 wt%, and further contains Mo 0.05 to 2.00 wt%, V 0.05 to 0.
It contains 5vt% of one or two types, and the remainder consists of Fe and unavoidable impurities.

本発明に係る耐へたり性と耐疲労性の優れたばね用銅に
ついて以下詳細に説明する。
The copper for springs having excellent fatigue resistance and fatigue resistance according to the present invention will be described in detail below.

先ず、本発明に係る耐へたり性と耐疲労性の優れたばね
用銅の含有成分および含有割合について説明する。
First, the components and content ratio of the copper for springs having excellent fatigue resistance and fatigue resistance according to the present invention will be explained.

Cは含有量が0Jht%未満では所定の強度が得られず
、また、0.80vt%を越えて含有されると絞りが低
下する。さらには、ばね製造時の表面脱炭および表面疵
を除去するための切削および研削による素材加工を容易
にすることを狙いとしている。よって、C含有量は 0
.30〜0.80vt%とする。
If the C content is less than 0 Jht%, the desired strength cannot be obtained, and if the C content exceeds 0.80 Vt%, the reduction of area is reduced. Furthermore, the aim is to facilitate material processing by cutting and grinding to remove surface decarburization and surface flaws during spring manufacturing. Therefore, the C content is 0
.. 30 to 0.80vt%.

Siは含有量が0.50wt%未満ではSiによるマト
リックスの強化が充分得られなくなり、耐へたり性を向
上させることが充分できなく、また、Si含有量の上限
を2.00wt%としたのはSiによるマトリックス強
化が飽和する点であるため耐へたり性に対する効果が望
むことができず、さらに、Si含有量の増加に伴い内部
酸化が進行し、ばね用銅として有害である脱炭を生じさ
せるようになるからである。よって、Si含有量は0.
50〜2.00wt%とする。
If the Si content is less than 0.50 wt%, the matrix will not be sufficiently strengthened by Si, and the fatigue resistance will not be sufficiently improved. Since this is the point at which the matrix reinforcement by Si is saturated, no effect on fatigue resistance can be expected.Furthermore, as the Si content increases, internal oxidation progresses, causing decarburization, which is harmful to copper for springs. This is because it causes it to occur. Therefore, the Si content is 0.
The content is 50 to 2.00 wt%.

Mnは含有量が0.40wt%未満ではばね用銅として
強度が不足し、さらには、焼入れ性の点で不充分であり
、また、l 、 50wt%を越えて含有されるとへた
り性に対して有害である残留オーステナイト量を抑制す
ることができない。よって、Mn含有量は0.40〜1
.5ht%とする。
If the content of Mn is less than 0.40 wt%, the strength as copper for springs will be insufficient, and furthermore, the hardenability will be insufficient, and if the content exceeds 50 wt%, it will have a tendency to set. It is not possible to suppress the amount of retained austenite, which is harmful to steel. Therefore, the Mn content is 0.40 to 1
.. 5ht%.

Crは焼入れ性を良好とし、耐熱性を向上させる元素で
あり、含有量が0.20wt%未満では充分な焼入れ性
効果が得られず、また、1.00wt%を越えて多く含
有させても耐へたり性に効果がない。
Cr is an element that improves hardenability and heat resistance, and if the content is less than 0.20 wt%, sufficient hardenability effects cannot be obtained, and even if it is contained in a large amount exceeding 1.00 wt%. No effect on fatigue resistance.

よって、Or含有量は0.20〜1.0ht%とする。Therefore, the Or content is set to 0.20 to 1.0 ht%.

AIは結晶粒度を微細化し、耐へたり性を改善する元素
であり、含有量が0.04wt%未満では耐へたり性の
効果が不充分であり、また、0.lht%を越えて含有
されると窒化物量が鋼中に増加し、非金属介在物が肥大
し、耐疲労性が悪くなる。よって、AI含有量は0.0
4〜0. lovt%とする。
AI is an element that refines the crystal grain size and improves the resistance to settling, and if the content is less than 0.04 wt%, the effect of the resistance to setting is insufficient; When the content exceeds lht%, the amount of nitrides increases in the steel, nonmetallic inclusions become enlarged, and fatigue resistance deteriorates. Therefore, AI content is 0.0
4-0. Let it be lovt%.

Wは鋼中で炭化物を形成し、焼戻し時に析出することに
より、微細析出強化を付与する元素であり、含有量が0
.03wt%未満では析出量が不足し、また、1.00
wt%を越えて含有されると効果が飽和する。よって、
W含有量は0.03〜1.0ht%とする。
W is an element that forms carbides in steel and precipitates during tempering, giving fine precipitation strengthening.
.. If it is less than 0.03 wt%, the precipitation amount will be insufficient, and if it is less than 1.00 wt%, the amount of precipitation will be insufficient.
If the content exceeds wt%, the effect will be saturated. Therefore,
The W content is 0.03 to 1.0 ht%.

NはAIと結合して結晶粒度を微細化し、耐へたり性を
向上させるためには、含有mは少なくとも0.002w
t%は必要であり、また、0.01!m%を越えて含有
されると粗大なAINがオーステナイト粒界に析出し、
鋼の分塊加工時に割れが発生したり、オイルテンパー線
においても材料の延性が低下する。よって、N含有量は
0.002〜0.015wt%とする。
In order to combine N with AI to refine the grain size and improve the resistance to settling, the content m should be at least 0.002w.
t% is necessary and 0.01! If the content exceeds m%, coarse AIN will precipitate at the austenite grain boundaries,
Cracks occur during blooming of steel, and the ductility of the material decreases even in oil tempered wire. Therefore, the N content is set to 0.002 to 0.015 wt%.

Moは含有量が0.05wt%未満ではへたりおよび疲
労に対して充分な効果が得られず、また、2.00wt
%を越えて含有させても耐へたり性に効果はない。よっ
て、Mo含有量は0.05〜2.00wt%とする。
If the Mo content is less than 0.05 wt%, sufficient effects against fatigue and fatigue cannot be obtained;
Even if the content exceeds %, there is no effect on the sag resistance. Therefore, the Mo content is set to 0.05 to 2.00 wt%.

■は結晶粒度を微細化し、耐力比を上げることにより耐
へたり性に効果がある元素であり、含有量が0.05w
t%未満ではへたりおよび疲労に対して効果か得られず
、また、0.5wt%を越えて含有されると、オーステ
ナイト中に溶解されない合金炭化物が増加し、大きな塊
となって残り非金属介在物となって耐疲労性を損なう。
■ is an element that is effective in improving fatigue resistance by refining the grain size and increasing the yield strength ratio, and the content is 0.05w.
If the content is less than 0.5 wt%, no effect will be obtained on fatigue and fatigue, and if the content exceeds 0.5 wt%, the amount of alloy carbides that will not be dissolved in the austenite will increase, forming large lumps and forming non-metallic substances. They become inclusions and impair fatigue resistance.

よって、■含有量は0.05〜0.5wt%とする。Therefore, (1) content is set to 0.05 to 0.5 wt%.

し実 施 例] 次ぎに、本発明に係る耐へたり性と耐疲労性の優れたば
ね用銅の実施例を説明する。
Examples] Next, examples of the copper for springs having excellent fatigue resistance and fatigue resistance according to the present invention will be described.

実施例 第1表に示す含有成分および含有割合の鋼を次ぎに示す
(1)によりばね加工を行った。(1)溶製−分塊また
は連続鋳造−圧延一熱処理一皮削り伸線→ばね加工 製作されたばねの機械的性質および残留If断歪、疲労
限について試験を行い、その結果を第2表に示す。
EXAMPLE Steel having the components and proportions shown in Table 1 was subjected to spring processing according to (1) below. (1) Melting - Blowing or continuous casting - Rolling - Heat treatment - Skin shaving Wire drawing -> Spring processing The manufactured springs were tested for mechanical properties, residual If strain, and fatigue limit, and the results are shown in Table 2. show.

[試験] (1)残留剪断歪=へたり くばね諸元〉 材料の線径  (mm)d      4.0コイル平
均径 (nun)D      28.0総巻数   
 (巻) n      6.5有効巻数   (巻)
ne     4.5自由高さ   (mm) H,6
0,0くセッチング応力〉 引張強さの1/2の応力 〈試験条件〉 締付応力 :  70 Kgf/ml11”(ワールの
修正係数含む) 試験温度 : 230℃×96時間 く残留剪断歪の算出方法〉 τ =8D/πd3・△P−会・・・ (1)y τ  =Gγ  ・・・・・・・・ (2)(1)式(
2)式より 7ap = r AP / G X 100 (%)た
だし、 τ4.=荷重損失量に相当するねじり応力(Kgf’/
nu++す d =線径(au*) D=コイル平均径(arm) ッ=荷重損失量 G=横連弾性係数Kgf/1つ (8000Kgf/n″を採用) (2)疲労限=疲労 く試験条件〉 試験温度 : 室温 時間寿命 : 107回をクリアー 表面状態 : °ショットピーニング済〈疲労限の判定
〉 107回をn=2  クリアーした時の試験応力この第
2表より本発明に係る耐へたり性と耐疲労性の優れたば
ね用銅は、比較鋼に比べて優れていることがわかる。
[Test] (1) Residual shear strain = Flat spring specifications> Wire diameter of material (mm) d 4.0 Average coil diameter (nun) D 28.0 Total number of turns
(Volumes) n 6.5 Effective number of volumes (Volumes)
ne 4.5 Free height (mm) H, 6
0,0 setting stress> Stress of 1/2 of tensile strength <Test conditions> Tightening stress: 70 Kgf/ml11" (including Wahl's correction coefficient) Test temperature: 230°C x 96 hours Calculation of residual shear strain Method〉 τ = 8D/πd3・△P−kai... (1) y τ = Gγ ・・・・・・・・・ (2) Equation (1) (
2) From the formula, 7ap = r AP / G X 100 (%) However, τ4. = Torsional stress (Kgf'/
nu++sd = Wire diameter (au*) D = Coil average diameter (arm) = Load loss amount G = Lateral elastic modulus Kgf/1 (8000 Kgf/n'' is adopted) (2) Fatigue limit = Fatigue test Conditions> Test temperature: Room temperature Time life: Cleared 107 times Surface condition: ° Shot peened <Judgment of fatigue limit> Test stress when cleared 107 times n=2 Based on this Table 2, the fatigue resistance according to the present invention It can be seen that copper for springs, which has excellent strength and fatigue resistance, is superior to comparative steel.

[発明の効果] 以上説明したように、本発明に係る耐へたり性と耐疲労
性の優れたばね用銅は上記の構成であるから、高速、高
回転化に耐える高性能であり、さらに、耐へたり性およ
び耐疲労性に優れた効果を有するしのである。
[Effects of the Invention] As explained above, since the copper for springs according to the present invention has excellent fatigue resistance and fatigue resistance has the above-described structure, it has high performance that can withstand high speeds and high rotations, and furthermore, Shino has excellent effects on fatigue resistance and fatigue resistance.

Claims (1)

【特許請求の範囲】 C0.30〜0.80wt%、Si0.50〜2.00
wt%、Mn0.40〜1.50wt%、Cr0.20
〜1.00wt%、Al0.04〜0.10wt%、W
0.03〜1.00wt%、N0.002〜0.015
wt% を含有し、さらに、 Mo0.05〜2.00wt%、V0.05〜0.5w
t%の1種または2種 を含有し、残部Feおよび不可避不純物からなることを
特徴とする耐へたり性と耐疲労性の優れたばね用鋼。
[Claims] C0.30-0.80wt%, Si0.50-2.00
wt%, Mn0.40-1.50wt%, Cr0.20
~1.00wt%, Al0.04~0.10wt%, W
0.03-1.00wt%, N0.002-0.015
wt%, and further contains Mo0.05-2.00wt%, V0.05-0.5w
A spring steel with excellent fatigue resistance and fatigue resistance, characterized by containing one or two types of t%, with the balance consisting of Fe and unavoidable impurities.
JP27502186A 1986-11-18 1986-11-18 Spring steel having superior settling fatigue resistance Pending JPS63128152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27502186A JPS63128152A (en) 1986-11-18 1986-11-18 Spring steel having superior settling fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27502186A JPS63128152A (en) 1986-11-18 1986-11-18 Spring steel having superior settling fatigue resistance

Publications (1)

Publication Number Publication Date
JPS63128152A true JPS63128152A (en) 1988-05-31

Family

ID=17549770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27502186A Pending JPS63128152A (en) 1986-11-18 1986-11-18 Spring steel having superior settling fatigue resistance

Country Status (1)

Country Link
JP (1) JPS63128152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050327A1 (en) * 2000-12-20 2002-06-27 Nippon Steel Corporation High-strength spring steel and spring steel wire
WO2002063055A1 (en) * 2001-02-07 2002-08-15 Nippon Steel Corporation Heat-treated steel wire for high strength spring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827958A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior yielding resistance
JPS5827959A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior yielding resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827958A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior yielding resistance
JPS5827959A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior yielding resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050327A1 (en) * 2000-12-20 2002-06-27 Nippon Steel Corporation High-strength spring steel and spring steel wire
US7789974B2 (en) 2000-12-20 2010-09-07 Nippon Steel Corporation High-strength spring steel wire
WO2002063055A1 (en) * 2001-02-07 2002-08-15 Nippon Steel Corporation Heat-treated steel wire for high strength spring
US7575646B2 (en) 2001-02-07 2009-08-18 Nippon Steel Corporation Heat-treated steel wire for high strength spring

Similar Documents

Publication Publication Date Title
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
JPH05195153A (en) High-strength spring steel
KR20140033235A (en) Spring steel and spring
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPH05320827A (en) Steel for spring excellent in fatigue property and steel wire for spring as well as spring
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JPH08506623A (en) High strength and high toughness spring steel and manufacturing method thereof
JP2004263201A (en) High strength steel having excellent fatigue strength, and its production method
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JP3918587B2 (en) Spring steel for cold forming
JP3896902B2 (en) High-strength spring steel with excellent corrosion fatigue strength
JPH076037B2 (en) Spring steel with excellent fatigue strength
JPH064904B2 (en) ▲ High ▼ strength oil tempered wire for spring
JPH05148581A (en) Steel for high strength spring and production thereof
JPS63128152A (en) Spring steel having superior settling fatigue resistance
JPS63128153A (en) Spring steel having superior setting resistance
JP3031816B2 (en) Low decarburized spring steel
JP3429258B2 (en) Spring steel with excellent environmental resistance
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JPH07157846A (en) Steel for high strength spring
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JPH05202417A (en) Production of steel wire for ultrahigh strength spring
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method