JPS63126557A - Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines - Google Patents

Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Info

Publication number
JPS63126557A
JPS63126557A JP61271969A JP27196986A JPS63126557A JP S63126557 A JPS63126557 A JP S63126557A JP 61271969 A JP61271969 A JP 61271969A JP 27196986 A JP27196986 A JP 27196986A JP S63126557 A JPS63126557 A JP S63126557A
Authority
JP
Japan
Prior art keywords
catalyst
elements
formula
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61271969A
Other languages
Japanese (ja)
Inventor
Hideaki Tsuneki
英昭 常木
Yoshiharu Shimazaki
由治 嶋崎
Kimio Ariyoshi
公男 有吉
Rikuo Uejima
植嶋 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61271969A priority Critical patent/JPS63126557A/en
Priority to DE8686310074T priority patent/DE3677950D1/en
Priority to CA000526170A priority patent/CA1276615C/en
Priority to EP86310074A priority patent/EP0230776B1/en
Priority to AU66888/86A priority patent/AU590653B2/en
Priority to KR1019860011392A priority patent/KR910004074B1/en
Priority to CN86108970A priority patent/CN1013646B/en
Priority to US07/126,351 priority patent/US4841061A/en
Publication of JPS63126557A publication Critical patent/JPS63126557A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To convent alkanol amines to cyclic amines by using a catalyst consisting of group IIIa elements and/or group IVa elements or group Va elements alkali metals and/or alkaline earth metal, and specific bond of P, O. CONSTITUTION:The titled catalyst is constituted of the catalyst compsn. expressed by the formula XaPbYcOa (X denotes 1 or more kinds of elements selected from the group IIIa elements and/or IVa group elements and/or Va group elements, Y denotes the alkali metals or alkaline earth metals, a-d denote atomic ratios of the respective elements, b=0.01-6 c=0.001-3 when a=1, d is the numerical value determined by the bonding condition of a-c and various constituting elements). The alkanol amines expressed by formula I (R, R' are selected from H, methyl groups and ethyl groups, n is an integer in a 2-5 range) are highly selectively and stably converted to the cyclic amines expressed by formula II (R, R' are the same in formula I) at a high yield.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は一般式(I)で表わされるアルカノールアミン
類を、一般式(If)で表わされる環式アミン類へ転化
する際に用いる新規な気相分子内説水反応用触媒に関す
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a novel method for converting alkanolamines represented by the general formula (I) into cyclic amines represented by the general formula (If). Concerning catalysts for gas phase molecular introspection water reactions.

(式中、R,R′は各々水素、メチル基およびエチル基
からなる群から選ばれ、nは2〜5の範囲の整数をとる
。) 前記(n)で表わされる環式アミン類は一般に、反応性
に富み、種々の官能基をもつ化合物と反応することから
、アミノ基を有する各種誘導体を製造することができる
。また、環保持反応も可能であることから、開環反応性
を有する誘導体を製造することもできる。更には、開環
重合反応によってポリアミン系ポリマーを製造すること
もでき、非常に利用度の高い化合物である。そして環式
アミン類の誘導体は、I帷加工剤、帯電防止剤、医薬、
農薬原料等として、各種産業に広く利用される非常に有
用な化合物である。本発明は、この様な有用化合物であ
る環式アミン類を、生産性において非常に有利な気相で
の、アルカノールアミン類の分子内脱水反応により製造
する際に用いる高性能な触媒を提供するものである。
(In the formula, R and R' are each selected from the group consisting of hydrogen, methyl group, and ethyl group, and n is an integer in the range of 2 to 5.) The cyclic amines represented by (n) above are generally Since it is highly reactive and reacts with compounds having various functional groups, it is possible to produce various derivatives having amino groups. Furthermore, since a ring-retaining reaction is also possible, derivatives having ring-opening reactivity can also be produced. Furthermore, polyamine-based polymers can also be produced by ring-opening polymerization reaction, making it a highly useful compound. Derivatives of cyclic amines are used for I-cloth processing agents, antistatic agents, pharmaceuticals,
It is a very useful compound that is widely used in various industries as a raw material for agricultural chemicals. The present invention provides a high-performance catalyst for use in producing cyclic amines, which are such useful compounds, by intramolecular dehydration reaction of alkanolamines in the gas phase, which is extremely advantageous in terms of productivity. It is something.

[従来の技術] アルカノールアミン類を脱水反応により、環式アミン類
に転化する方法としては、ハロゲン化アミンを濃アルカ
リにより分子内開環する方法(Gabriel法)、ア
ルカノールアミン硫酸エステルを熱濃アルカリにより閉
環する方法(W enker法)が公知であるが、これ
らの方法は、アルカリを大量に濃厚溶液として用いるた
め生産性が低く、また原材料費に占めるアルカリの原単
位が大きいこと、更には利用度の低い無機塩が大量に副
生ずる等、工業的には多くの問題を有するものである。
[Prior art] Methods for converting alkanolamines into cyclic amines through a dehydration reaction include a method in which halogenated amines are intramolecularly opened with a concentrated alkali (Gabriel method), and an alkanolamine sulfate ester is converted into a cyclic amine using a hot concentrated alkali. A method of ring-closing (Wenker method) is known, but these methods use a large amount of alkali in the form of a concentrated solution, resulting in low productivity.Also, the basic unit of alkali in the raw material cost is large, and furthermore, it is difficult to use. This method has many problems industrially, such as large amounts of low-grade inorganic salts produced as by-products.

近年、上記の様な液相法に対し、アルカノールアミンと
して、モノエタノールアミンを用い、これを触媒の存在
下、気相で脱水反応せしめ、対応する環式アミンすなわ
ちエチレンイミンを連続的に製造する試みが幾つか報告
されている。それらの例として、例えば、特公昭50−
10593号には、酸化タングステン系触媒を用いる方
法が、記載されており、また、米l特許第4,301,
036号明m書には、酸化タングステンとケイ素より成
る触媒を用いる方法が、さらに米国特許第4,289,
656号、同第4,337.175号、同第4.477
、591号各明細I書には、ニオブあるいはタンタル系
触媒を用いる方法が開示されている。
In recent years, in contrast to the liquid phase method described above, monoethanolamine has been used as the alkanolamine and dehydrated in the gas phase in the presence of a catalyst to continuously produce the corresponding cyclic amine, ie, ethyleneimine. Several attempts have been reported. As an example of these, for example,
No. 10593 describes a method using a tungsten oxide catalyst, and US Pat. No. 4,301,
No. 036 discloses a method using a catalyst consisting of tungsten oxide and silicon, and is further described in U.S. Pat. No. 4,289,
No. 656, No. 4,337.175, No. 4.477
, No. 591, each specification I discloses a method using a niobium or tantalum catalyst.

[発明が解決しようとする問題点1 しかしながら、前記の触媒を用いた何れの方法もモノエ
タノールアミンの転化率が低く、また比較的転化率が高
い場合でも、脱アンモニア反応および二借化反応等の副
反応による生成物のυ1合が高いため、エチレンイミン
の選択性は低いものとなっている。更には、本発明者ら
の検討によれば触媒の寿命に関していえば、いずれの場
合もう10期間での活性低下が箸しく、工業的な観点か
らは、全く満足できるものではない。
[Problem to be Solved by the Invention 1] However, in any of the methods using the above-mentioned catalysts, the conversion rate of monoethanolamine is low, and even when the conversion rate is relatively high, deammonification reaction, diboration reaction, etc. The selectivity for ethyleneimine is low because the υ1 ratio of the product resulting from the side reaction is high. Furthermore, according to the studies of the present inventors, in terms of the life of the catalyst, in any case, the activity decreases after another 10 periods, which is completely unsatisfactory from an industrial point of view.

本発明は、アルカノールアミン類の気相分子内脱水反応
を行うにあたり、目的の環式アミン類を^選択的かつ高
収率をもって、しかも長期にわたり安定的に製造するも
のである。
The present invention is intended to produce target cyclic amines selectively and in high yields, and moreover, stably over a long period of time when performing a gas phase intramolecular dehydration reaction of alkanolamines.

[問題点を解決するための手段] 本発明者らはアルカノールアミン類の気相分子内脱水反
応用触媒について鋭意研究した結果、一般式XaP、Y
CO,(式中、Xは周期率表におけるIIIa族元素お
よび/または、rVa族元素および/または、Va族元
素の中から選ばれる1種またはそれ以上の元素、Yはア
ルカリ金属および/またはアルカリ土類金属の中から選
ばれる1種またはそれ以上の元素、Pはリン、0は酸素
を表わす。添字a、b、c、dはそれぞれの元素の原子
比を示し、a=1のとき、b =0.01〜6(好まし
くは0.05〜3)、 c = 0.001〜3(好ま
しくは0.01〜2)の範囲の値をとり、dはa、b、
Cd5よび各種構成元素の結合状態により定まる数値で
ある。)で表わされる触媒組成物を用いることによリ、
アルカノールアミン類の気相分子内脱水反応が極めて好
都合に進行し、目的環式アミン類を高選択的にかつ高収
率をもって、しかも長期にわたり安定的に製還しうろこ
とを見出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive research on catalysts for gas-phase intramolecular dehydration reactions of alkanolamines, the present inventors found that the general formulas XaP, Y
CO, (wherein, One or more elements selected from earth metals, P represents phosphorus, and 0 represents oxygen. Subscripts a, b, c, and d indicate the atomic ratio of each element, and when a = 1, b = 0.01 to 6 (preferably 0.05 to 3), c = 0.001 to 3 (preferably 0.01 to 2), and d is a, b,
This value is determined by the bonding state of Cd5 and various constituent elements. ) By using a catalyst composition represented by
It was discovered that the gas-phase intramolecular dehydration reaction of alkanolamines proceeds extremely favorably, and that the target cyclic amines can be recovered with high selectivity and yield, and stably over a long period of time, and the present invention has been achieved. It was completed.

Xは周期率表におけるma族元素および/または、IV
a族元素および/または、Va族元素の中から選ばれる
1種またはそれ以上の元素であるが、このような元素の
例としては、A1.Ga 、TI。
X is a group Ma element in the periodic table and/or IV
One or more elements selected from Group A elements and/or Group Va elements, and examples of such elements include A1. Ga, T.I.

Si 、Sn、Pb、Sb、Biなどの元素が挙げられ
る。また、Yはアルカリ金属および/またはアルカリ土
類金属の中から選ばれる1種またはそれ以上の元素であ
るが、このような元素の例としては、Li 、Na 、
に、Rb 、C5、MO、Ca 。
Examples include elements such as Si, Sn, Pb, Sb, and Bi. Further, Y is one or more elements selected from alkali metals and/or alkaline earth metals, and examples of such elements include Li, Na,
In, Rb, C5, MO, Ca.

Sr、Baなどの元素が挙げられる。Examples include elements such as Sr and Ba.

反応原料となるアルカノールアミン類としては一般式(
I)で表わされるアルカノールアミン類が好適であり、
これらのアミン類は本発明に従い、一般式(I[)で表
わされる環式アミン類に高転化率、高選択率をもって、
かつ長期にわたり安定的に転化される。該アルカノール
アミン類の例としては(a)モノエタノールアミン、(
b)イソプロパツールアミン、(C)3−アミノ −1
−プロパツール、(d)5−アミノ −1−ペンタノー
ル、(e)2−アミノ −1−ブタノール等が挙げられ
るが、これらに限定されるものではない。これらのアミ
ン類に対応して得られる環式アミン類は、それぞれ(a
′)エチレンイミン、(bi2−メチル−エチレンイミ
ン、(C′)アゼチジン、(d′)ピペリジン、(e”
>2−エチル−エチレンイミンである。
The alkanolamines used as reaction raw materials have the general formula (
Alkanolamines represented by I) are preferred;
According to the present invention, these amines are converted into cyclic amines represented by the general formula (I[) with high conversion rate and high selectivity.
And it is converted stably over a long period of time. Examples of the alkanolamines include (a) monoethanolamine, (
b) Isopropanolamine, (C) 3-amino-1
-propanol, (d) 5-amino-1-pentanol, (e) 2-amino-1-butanol, and the like, but are not limited to these. The cyclic amines obtained corresponding to these amines are each (a
') Ethyleneimine, (bi2-methyl-ethyleneimine, (C') azetidine, (d') piperidine, (e''
>2-ethyl-ethyleneimine.

X成分およびY成分の原料としては、各々の酸化物、水
酸化物、ハロゲン化物、塩類(炭酸塩、硫酸塩、硝酸塩
等)および金属などが、またリン源としては、オルトリ
ン酸、ビロリン酸、メタリン酸、亜リン酸およびポリリ
ン酸等の各種リン酸、五酸化リンおよび前記リン酸の塩
類(リン酸アンモニウム、リン酸カリウム、リン酸ナト
リウム等)などが用いられる。なお、X成分源、Y成分
源およびリン源として、X成分やY成分のリン酸塩類を
用いてもよい。
Raw materials for the X component and Y component include respective oxides, hydroxides, halides, salts (carbonates, sulfates, nitrates, etc.) and metals, and phosphorus sources include orthophosphoric acid, birophosphoric acid, Various phosphoric acids such as metaphosphoric acid, phosphorous acid, and polyphosphoric acid, phosphorus pentoxide, and salts of the above-mentioned phosphoric acids (ammonium phosphate, potassium phosphate, sodium phosphate, etc.) are used. Note that phosphates of the X component and the Y component may be used as the source of the X component, the source of the Y component, and the phosphorus source.

本発明による触媒の調製法は特に限定されるものではな
く、通常おこなわれる調製法がとられる。
The method for preparing the catalyst according to the present invention is not particularly limited, and a commonly used preparation method can be used.

例えば、■X成分、Y成分およびリンの各種触媒原料を
水中に溶解もしくは懸濁せしめ、撹拌下、加熱、濃縮し
、乾燥後成型し、更に焼成を経て触媒とする方法、■X
成分およびY成分の原料を水中に溶解し、各種リン酸あ
るいは各種リン酸塩を加え、必要に応じてpHを調節し
た後、濾過、水洗を行い、乾燥、成型後、焼成を経て触
媒とする方法、あるいは■各成分元素の酸化物または水
酸化物に、各種リン酸あるいは各種リン酸塩を加えて混
合し、適当な成型助剤(例えば水、アルコールなど)を
添加後成型し、乾燥、焼成を経て触媒とする方法、等が
あげられる。
For example, ■ A method of dissolving or suspending various catalyst raw materials of component X, component Y, and phosphorus in water, heating and concentrating with stirring, drying, molding, and further calcination to form a catalyst, ■
Components and raw materials for component Y are dissolved in water, various phosphoric acids or various phosphates are added, pH is adjusted as necessary, filtered, washed with water, dried, molded, and then calcined to form a catalyst. Method or ■ Mix various phosphoric acids or various phosphates to the oxides or hydroxides of each component element, add appropriate molding aids (e.g. water, alcohol, etc.), mold, dry, Examples include a method of converting it into a catalyst through calcination.

また、本発明による触媒は、公知の不活性な担体[例え
ば、セライト(商品名)、シリカゲル、炭化ケイ素、ア
ルミナなどが好ましいが、これらに限定されるものでは
ない]に担持して用いることもできる。
Further, the catalyst according to the present invention may be supported on a known inert carrier (for example, Celite (trade name), silica gel, silicon carbide, alumina, etc. are preferable, but not limited to these). can.

なお、本発明の触媒の焼成湿度については、用いる原料
の種類にもよるが、300℃〜1500℃の広い範囲を
とれ、好ましくは400℃〜1200℃の範囲である。
Note that the firing humidity of the catalyst of the present invention may vary widely from 300°C to 1500°C, preferably from 400°C to 1200°C, although it depends on the type of raw materials used.

本発明の実施にあたり反応器は固定床流通型、流動床型
のいずれも使用できる。原料アルカノールアミン類は必
要に応じ窒素、ヘリウム、アルゴンなどの不活性ガスで
濃度1〜80容出%、好ましくは2〜50容出%に希釈
して用いる。また、場合によっては、副反応を抑える目
的で、アンモニアあるいは水等をアルカノールアミン類
と共に供給することもできる。反応圧は通常常圧で行な
うが必要に応じて加圧または減圧下に行なうこともでき
る。反応温度は原料の種類により異なり250〜600
℃の範囲である。原料ガスの空間速度は原料の種類およ
び原料ガス濃度により異なるが、100〜40,0OO
hr  (STP)  、好ましくは500〜20.0
00hr”(STP)の範囲が適当である。
In carrying out the present invention, either a fixed bed flow type reactor or a fluidized bed type reactor can be used. The raw material alkanolamines are used after being diluted with an inert gas such as nitrogen, helium, or argon to a concentration of 1 to 80% by volume, preferably 2 to 50% by volume, if necessary. Further, in some cases, ammonia, water, or the like may be supplied together with alkanolamines for the purpose of suppressing side reactions. The reaction is usually carried out at normal pressure, but it can also be carried out under increased or reduced pressure if necessary. The reaction temperature varies depending on the type of raw material and varies from 250 to 600℃.
℃ range. The space velocity of the raw material gas varies depending on the type of raw material and the concentration of the raw material gas, but is between 100 and 40,000 OO.
hr (STP), preferably 500-20.0
A range of 00hr'' (STP) is appropriate.

[作用および発明の効果] 本発明の触媒をアルカノールアミン類の気相分子内脱水
反応に用いた場合、従来公知の触媒に比べ、非常に高い
活性を示し、また目的環式アミンへの選択率も著しく高
いものであった。
[Operations and Effects of the Invention] When the catalyst of the present invention is used in the gas phase intramolecular dehydration reaction of alkanolamines, it exhibits extremely high activity compared to conventionally known catalysts, and has a high selectivity to the target cyclic amine. was also significantly high.

しかも、この反応を長時間連続して行なった場合でも、
触媒の活性劣化現象は認められず、活性、収率ともきわ
めて安定しており、工業化する上で最重要とされる短期
的劣化現象の克服という問題を十分に解決しうるちので
あった。
Moreover, even if this reaction is carried out continuously for a long time,
No deterioration in the activity of the catalyst was observed, and both activity and yield were extremely stable, and the problem of overcoming short-term deterioration, which is most important for industrialization, could be fully solved.

なお、触媒性能を、公知のモノエタノールアミンからの
エチレンイミン合成用触媒(例えば特公昭50−105
93号公報、および米国特許第4.337.175号に
示されたWO3−8i 02およびNb205−BaO
なる組成物触媒)と比較したところ、本発明による触媒
の性能は、活性、選択性共に、それらの触媒性能を著し
く上層るものであった。
The catalytic performance was evaluated using a known catalyst for ethyleneimine synthesis from monoethanolamine (for example, Japanese Patent Publication No. 50-105
No. 93, and WO3-8i 02 and Nb205-BaO shown in U.S. Patent No. 4.337.175.
When compared with other composition catalysts, the performance of the catalyst according to the present invention was significantly superior to those catalysts in terms of both activity and selectivity.

本発明による触媒が、アルカノールアミン類から環式ア
ミン類への気相脱水反応に優れた性能を示すことの原因
について詳細は明らかではないが、触媒表面上には酸性
点およびMAu性点が存在し、その協奏的な働きによる
ものと考えられる。X成分はリン酸による酸性点の酸強
度を詞御し、更に塩基性点をも生じさせ、本反応に適し
た触媒の表面状態を形成するものと考えられる。Y成分
は更に表面の酸性点、塩基性点の微妙な制御を行い、目
的環式アミンの選択性をより向上させる。そして、反応
が酸塩基協同作用により効果的に進むと同時に、生成物
の脱離も円滑になり、触媒上への強吸着物質の被毒によ
る失活が抑えられるため、従来の触媒に認められるよう
な転化率向上に伴う選択率の低下現象を解決し、高転化
率かつ高選択率でしかも長期にわたり極めて安定的に目
的環式アミンを製造し得るものと考えられる。
Although the details of the reason why the catalyst according to the present invention exhibits excellent performance in the gas phase dehydration reaction from alkanolamines to cyclic amines are not clear, the presence of acidic points and MAu points on the catalyst surface is not clear. This is thought to be due to their concerted action. It is believed that the X component controls the acid strength of the acidic sites caused by phosphoric acid, and also generates basic sites, forming a surface condition of the catalyst suitable for this reaction. The Y component further finely controls the acidic and basic sites on the surface and further improves the selectivity of the target cyclic amine. The reaction progresses effectively through acid-base cooperation, and at the same time, the desorption of products is smooth, and deactivation due to poisoning of strongly adsorbed substances on the catalyst is suppressed, which is the same as in conventional catalysts. It is believed that this method solves the phenomenon of decrease in selectivity due to improvement in conversion rate, and can produce the target cyclic amine with high conversion rate and high selectivity, and extremely stably over a long period of time.

[実施例1 以下、実施例において本発明を具体的に述べるが、実施
例中の転化率、選択率および単流収率については、次の
定義に従うものとする。
[Example 1] Hereinafter, the present invention will be specifically described in Examples, but the conversion rate, selectivity, and single flow yield in the Examples shall comply with the following definitions.

転化率(モル%)− 消費されたアルカノールアミン のモル数 のモル数 選択率(モル%)− のモル数 単流収率(モル%)− のモル数 実施例1゜ 三酸化アンチモン43.70を水100dに懸濁させ、
85重量%オルトリン酸34.6gを加え、十分に撹拌
しながら加熱濃縮し、温浴上で蒸発乾固した。これを空
気中120℃で1晩乾燥した後、空気中600℃で2時
間焼成し、固形物とした。この固形物に水酸化ナトリウ
ム129を水401に溶解した溶液を加え、温浴上で蒸
発乾固し、120℃で1晩乾燥した後、9〜5メツシユ
に破砕し、500℃で2時間焼成して触媒とした。この
触媒20−を内径16amのステンレス製反応管に充填
した後、430℃の溶融塩浴に浸漬し、該管内に容量比
でモノエタノールアミン:窒素−5:95の原料ガスを
空間速度1500hr” (STP)で通し、反応を行
なった。反応は連続して行ない、反応開始後2時間およ
び50時間での生成物をガスクロマトグラフにより定量
分析した結果を表−1に示した。
Conversion rate (mol%) - Number of moles of alkanolamine consumed Selectivity (mol%) - Number of moles Single stream yield (mol%) - Number of moles Example 1゜Antimony trioxide 43.70 suspended in 100 d of water,
34.6 g of 85% by weight orthophosphoric acid was added, and the mixture was heated and concentrated while thoroughly stirring, and evaporated to dryness on a hot bath. This was dried in the air at 120°C overnight, and then calcined in the air at 600°C for 2 hours to form a solid. A solution of sodium hydroxide 129 dissolved in water 401 was added to this solid, evaporated to dryness on a hot bath, dried overnight at 120°C, crushed into 9 to 5 meshes, and calcined at 500°C for 2 hours. It was used as a catalyst. After filling a stainless steel reaction tube with an inner diameter of 16 am with this catalyst 20-, it was immersed in a 430°C molten salt bath, and a raw material gas having a volume ratio of monoethanolamine:nitrogen of 5:95 was charged into the tube at a space velocity of 1500 hr. (STP) to carry out the reaction.The reaction was carried out continuously, and the results of quantitative analysis of the product by gas chromatography at 2 hours and 50 hours after the start of the reaction are shown in Table 1.

実施例2゜ 触媒原料として、水酸化ナトリウムの代りに水酸化ルビ
ジウム15.4gを用いた他は、実施例1と同様にして
触媒を調製した。この触媒を用いて、モノエタノールア
ミンおよびイソプロパツールアミンについて実施例1と
同様の方法で反応を行なった。反応条件および結果を表
−1に示した。
Example 2 A catalyst was prepared in the same manner as in Example 1, except that 15.4 g of rubidium hydroxide was used instead of sodium hydroxide as the catalyst raw material. Using this catalyst, monoethanolamine and isopropanolamine were reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

実施例3゜ ビロリン酸第−スズ72.59に水酸化リチウム(1水
和物) 12.6gを水200dに溶解した溶液を加え
、湯浴上で蒸発乾固し、120℃で1晩乾燥した後、9
〜5メツシユに破砕し、500℃で2時間焼成して触媒
とした。この触媒を用いて、モノエタノールアミンおよ
び 3−アミノ −1−プロパツールについて実施例1
と同様に反応を行なった。反応条件および結果を表−1
に示した。
Example 3 A solution of 12.6 g of lithium hydroxide (monohydrate) dissolved in 200 d of water was added to 72.59 stannous birophosphate, evaporated to dryness on a hot water bath, and dried overnight at 120°C. After that, 9
It was crushed into ~5 meshes and calcined at 500°C for 2 hours to obtain a catalyst. Example 1 for monoethanolamine and 3-amino-1-propanol using this catalyst
The reaction was carried out in the same manner. Table 1 shows reaction conditions and results.
It was shown to.

実施例4゜ 硝酸アルミニウムく9水塩)  112.5gを水30
〇−に溶解し、リン酸三アンモニウム44.7Qを水3
00−に溶解した溶液を撹拌しながら加えた。得られた
沈澱をか過、水洗した後、水酸化セシウム2、251;
lを水10dに溶解した溶液を加え、よく混練し、12
0℃で1晩乾燥した後、9〜5メツシユに破砕し、10
00℃で2時間焼成して触媒とした。この触媒を用いて
、モノエタノールアミンおよび2−アミノ −1−ブタ
ノールについて実施例1と同様に反応を行なった。反応
条件および結果を表−1に示した。
Example 4 112.5 g of aluminum nitrate nonahydrate was mixed with 30 g of water.
〇-Dissolve triammonium phosphate 44.7Q in water 3
00- was added with stirring. After filtering and washing the obtained precipitate with water, cesium hydroxide 2,251;
1 in 10 d of water, mix well, and add 12
After drying at 0°C overnight, crush into 9-5 meshes,
The catalyst was calcined at 00°C for 2 hours. Using this catalyst, monoethanolamine and 2-amino-1-butanol were reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

実施例易。Examples are easy.

触媒原料として、水酸化セシウムの代りに酸化バリウム
9.2gを用いた他は、実施例4と同様にして触媒を調
製した。この触媒を用いて、モノエタノールアミンおよ
び 5−アミノ −1−ペンタノールについて実施例1
と同様に反応を行なった。反応条件および結果を表−1
に示した。
A catalyst was prepared in the same manner as in Example 4, except that 9.2 g of barium oxide was used instead of cesium hydroxide as the catalyst raw material. Example 1 for monoethanolamine and 5-amino-1-pentanol using this catalyst.
The reaction was carried out in the same manner. Table 1 shows reaction conditions and results.
It was shown to.

実施例6゜ 触媒原料として、三酸化アンチモンの代りに酸化ケイ素
9gを、水酸化ナトリウムの代りに水酸化カリウム16
.817を用い、600℃での前焼成の時間を24時間
とした他は、実施例1と同様にして触媒を調製した。こ
の触媒を用いて、モノエタノールアミンについて実施例
1と同様に反応を行なった。反応条件および結果を表−
1に示した。
Example 6 As catalyst raw materials, 9 g of silicon oxide was used instead of antimony trioxide, and 16 g of potassium hydroxide was used instead of sodium hydroxide.
.. A catalyst was prepared in the same manner as in Example 1, except that 817 was used and the precalcination time at 600° C. was changed to 24 hours. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. Table of reaction conditions and results.
Shown in 1.

実施例7゜ 触媒原料として、三酸化アンチモンの代りに酸化第−タ
リウム192.5!11を、水酸化ナトリウム129の
代りに水酸化ナトリウム0.36gおよび水酸化ルビジ
ウム0.92gを用いた他は、実施例1と同様にして触
媒を調製した。この触媒を用いて、モノエタノールアミ
ンについて実施例1と同様に反応を行なった。反応条件
および結果を表−1に示した。
Example 7: As catalyst raw materials, thallium oxide 192.5!11 was used instead of antimony trioxide, and 0.36 g of sodium hydroxide and 0.92 g of rubidium hydroxide were used instead of sodium hydroxide 129. A catalyst was prepared in the same manner as in Example 1. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

実施例8゜ 酸化アルミニウム14.5g、三酸化アンチモン2゜1
9g、リン酸水素アンモニウム39.6(Jおよび硝酸
セシウムB、77Qを粉体のまま混合した後、少量の水
でよく混練し、直径3a++e 、長さ311a+のペ
レット状に成型して、空気中120℃で1晩乾燥した後
、1000℃で24時間焼成して触媒とした。この触媒
を用いて、モノエタノールアミンについて実施例1と同
様に反応を行なった。反応条件および結果を表−1に示
した。
Example 8゜Aluminum oxide 14.5g, antimony trioxide 2゜1
9 g, ammonium hydrogen phosphate 39.6 (J) and cesium nitrate B, 77Q were mixed together as powders, then kneaded well with a small amount of water, formed into pellets with a diameter of 3a++e and a length of 311a+, and air-filled. After drying at 120°C overnight, it was calcined at 1000°C for 24 hours to obtain a catalyst.Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1.Reaction conditions and results are shown in Table 1. It was shown to.

比較例1゜ 30重山型オルトリン酸水溶液100gに601の炭化
ケイ素担体を加え、湯浴上で蒸発担持した。これを12
0℃で1晩乾燥した後、450℃で2時間焼成して触媒
とした。この触媒を用いて、モノエタノールアミンおよ
び2−アミノ −1−ブタノールについて実施例1と同
様に反応を行なった。反応条件および結果を表−2に示
した。
Comparative Example 1 A 601 silicon carbide carrier was added to 100 g of a 30-30 Shigeyama type orthophosphoric acid aqueous solution and evaporated and supported on a hot water bath. This is 12
After drying at 0°C overnight, it was calcined at 450°C for 2 hours to obtain a catalyst. Using this catalyst, monoethanolamine and 2-amino-1-butanol were reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-2.

比較例2゜ 三酸化アンチモン43.γ9を水100mに懸濁させ、
85重世%オルトリン酸34.6(lを加え、十分に撹
拌しながら加熱濃縮し、湯浴上で蒸発乾固した。これを
空気中120℃で1晩乾燥した侵、9〜5メツシユに破
砕し、600℃で2時間焼成して触媒とした。この触媒
を用いて、モノエタノールアミンについて実m例7と同
様に反応を行なった。反応条件および結果を表−2に示
した。
Comparative example 2゜antimony trioxide 43. Suspend γ9 in 100 m of water,
Add 34.6 liters of 85% orthophosphoric acid, heat and concentrate with thorough stirring, and evaporate to dryness on a hot water bath. This was dried in air at 120°C overnight, and then mixed into 9 to 5 meshes. The catalyst was crushed and calcined at 600°C for 2 hours.Using this catalyst, a reaction was carried out with monoethanolamine in the same manner as in Example 7.The reaction conditions and results are shown in Table 2.

比較例3゜ 触媒原料として、三酸化アンチモンの代りに酸化第−ス
ズ40.4(lを用いた他は、比較例2と同様にして触
媒を11製した。この触媒を用いて、モノエタノールア
ミンについて実施例1と同様に反応を行なった。反応条
件および結果を表−2に示した。
Comparative Example 3 A catalyst No. 11 was prepared in the same manner as in Comparative Example 2, except that 40.4 l of tin oxide was used instead of antimony trioxide as the catalyst raw material. Using this catalyst, monoethanol The amine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table 2.

比較例4゜ メタタングステン酸アンモニウム水溶液(W○3基準で
50重量%) 85.2Qに直径5mmの炭化ケイ素4
0gを浸し、湯浴上で蒸発乾固した。これを空気中15
0℃で1時間乾燥した後、115℃で4FR間焼成して
触媒前駆物を得た。これを酸化ケイ素10%コロイド液
5011に浸し、湯浴上で蒸発乾固した。更に、空気中
150℃で1時間乾燥した後、715℃で4時間焼成し
て酸化タングステン25.4重量%、酸化ケイ素3.3
重量%を含む担持触媒〈原子比でWto St O,5
04,1)を得た。この触媒を用いて、モノエタノール
アミンについて実施例1と同様に反応を行なった。反応
条件および結果を表−2に示した。
Comparative Example 4 Ammonium metatungstate aqueous solution (50% by weight based on W○3) Silicon carbide 4 with a diameter of 5 mm on 85.2Q
0 g was soaked and evaporated to dryness on a water bath. 15 times this in the air
After drying at 0°C for 1 hour, it was calcined at 115°C for 4FR to obtain a catalyst precursor. This was immersed in 10% silicon oxide colloidal solution 5011 and evaporated to dryness on a hot water bath. Furthermore, after drying in air at 150°C for 1 hour, it was calcined at 715°C for 4 hours to obtain 25.4% by weight of tungsten oxide and 3.3% by weight of silicon oxide.
Supported catalyst containing % by weight (in atomic ratio W to St O,5
04,1) was obtained. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-2.

なお、この触媒は米国特許第4,301,036号明細
書記載の実施例4に従って調製したものである。
Note that this catalyst was prepared according to Example 4 described in US Pat. No. 4,301,036.

比較例5゜ 五酸化ニオブs、ogを水50−1に60℃で加熱しつ
つ完全に溶解させた後、アンモニウム水を加え、溶液の
pHを7.0とした。生成した沈澱をか過、水洗した後
、10重重層のシュウ酸水溶液8011に溶解し、更に
水酸化バリウム(8水和物)  0.217を加えた。
Comparative Example 5 Niobium pentoxide s, og was completely dissolved in water 50-1 while heating at 60°C, and then ammonium water was added to adjust the pH of the solution to 7.0. After filtering and washing the resulting precipitate with water, it was dissolved in a 10-layer oxalic acid aqueous solution 8011, and 0.217 g of barium hydroxide (octahydrate) was added thereto.

この溶液中に、炭化ケイ素eoccを浸し、80℃で蒸
発乾固させた後、空気中500℃で3時間焼成して五酸
化ニオブ3.7171%、酸化バリウム0.5重量%を
含む担持触媒く原子比で NtM、。
Silicon carbide EOCC was immersed in this solution, evaporated to dryness at 80°C, and then calcined in air at 500°C for 3 hours to form a supported catalyst containing 3.7171% niobium pentoxide and 0.5% by weight barium oxide. The atomic ratio is NtM.

3a O,102,6>を得た。この触媒を用いて、モ
ノエタノールアミンについて実施例1と同様に反応を行
なった。反応条件および結果を表−2に示した。
3a O,102,6> was obtained. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-2.

なお、この触媒は米国特許第4.477、591号明細
書記載の実施例3に従って調製したものである。
Note that this catalyst was prepared according to Example 3 described in US Pat. No. 4,477,591.

手  続  補  正  書  く自発)昭和62年6
月29日
Procedural amendment written spontaneously) June 1986
29th of the month

Claims (1)

【特許請求の範囲】[Claims] (1)一般式X_aP_bY_cO_d(式中、Xは周
期率表におけるIIIa族元素および/または、IVa族元
素および/または、Va族元素の中から選ばれる1種ま
たはそれ以上の元素、Yはアルカリ金属および/または
アルカリ土類金属の中から選ばれる1種またはそれ以上
の元素、Yはアルカリ金属および/またはアルカリ土類
金属の中から選ばれる1種またはそれ以上の元素、Pは
リン、Oは酸素を表わす。添字a、b、c、dはそれぞ
れの元素の原子比を示し、a=1のとき、b=0.01
〜6、c=0.001〜3の範囲の値をとり、dはa、
b、cおよび各種構成元素の結合状態により定まる数値
である。)で表わされる触媒組成物であることを特徴と
する、 一般式▲数式、化学式、表等があります▼( I ) (式中のR、R′は各々水素、メチル基およびエチル基
の中から選ばれ、nは2〜5の範囲の整数値をとる。)
で表わされるアルカノールアミン類を 一般式▲数式、化学式、表等があります▼(II) (式中のR、R′およびnは前記( I )式と同様であ
る。)で表わされる環式アミン類へ転化せしめる気相分
子内脱水反応用触媒。
(1) General formula and/or one or more elements selected from alkaline earth metals, Y is one or more elements selected from alkali metals and/or alkaline earth metals, P is phosphorus, and O is Represents oxygen. Subscripts a, b, c, and d indicate the atomic ratio of each element, and when a=1, b=0.01
~6, c=0.001~3, d is a,
It is a numerical value determined by b, c, and the bonding state of various constituent elements. ) is a catalyst composition represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. (n takes an integer value ranging from 2 to 5.)
Alkanolamines represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) (In the formula, R, R' and n are the same as in the above formula (I).) Cyclic amines Catalyst for gas phase intramolecular dehydration reaction that converts into
JP61271969A 1985-12-27 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines Pending JPS63126557A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61271969A JPS63126557A (en) 1986-11-17 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
DE8686310074T DE3677950D1 (en) 1985-12-27 1986-12-23 METHOD FOR PRODUCING CYCLIC AMINES.
CA000526170A CA1276615C (en) 1985-12-27 1986-12-23 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
EP86310074A EP0230776B1 (en) 1985-12-27 1986-12-23 Process for producing cyclic amines
AU66888/86A AU590653B2 (en) 1985-12-27 1986-12-23 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
KR1019860011392A KR910004074B1 (en) 1985-12-27 1986-12-27 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
CN86108970A CN1013646B (en) 1985-12-27 1986-12-27 Method for vapor-phase intermolecular dehydration of alkanolamines
US07/126,351 US4841061A (en) 1985-12-27 1987-11-30 Process for producing cyclic amines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271969A JPS63126557A (en) 1986-11-17 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Publications (1)

Publication Number Publication Date
JPS63126557A true JPS63126557A (en) 1988-05-30

Family

ID=17507331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271969A Pending JPS63126557A (en) 1985-12-27 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Country Status (1)

Country Link
JP (1) JPS63126557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290255A (en) * 1989-02-27 1990-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Regnerating process of catalyst for manufacturing aziridine compound
JPH05202027A (en) * 1991-11-29 1993-08-10 Nippon Shokubai Co Ltd Production of alkylene sulfide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152350A (en) * 1982-12-20 1984-08-31 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Condensation of organic compound
JPS61266586A (en) * 1985-05-22 1986-11-26 Sumitomo Light Metal Ind Ltd Method for preventing corrosion of copper pipe for water or hot water supply piping
JPS61266585A (en) * 1985-05-22 1986-11-26 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Sputtering apparatus
JPS61266587A (en) * 1985-05-22 1986-11-26 Kawasaki Steel Corp Production of cold rolled austenitic stainless steel strip having less surface defects
JPS61271970A (en) * 1985-05-25 1986-12-02 Shuzo Nakazono Nutritious drinking water
JPS61271968A (en) * 1985-05-27 1986-12-02 Samii Kogyo Kk Production of food

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152350A (en) * 1982-12-20 1984-08-31 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Condensation of organic compound
JPS61266586A (en) * 1985-05-22 1986-11-26 Sumitomo Light Metal Ind Ltd Method for preventing corrosion of copper pipe for water or hot water supply piping
JPS61266585A (en) * 1985-05-22 1986-11-26 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Sputtering apparatus
JPS61266587A (en) * 1985-05-22 1986-11-26 Kawasaki Steel Corp Production of cold rolled austenitic stainless steel strip having less surface defects
JPS61271970A (en) * 1985-05-25 1986-12-02 Shuzo Nakazono Nutritious drinking water
JPS61271968A (en) * 1985-05-27 1986-12-02 Samii Kogyo Kk Production of food

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290255A (en) * 1989-02-27 1990-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Regnerating process of catalyst for manufacturing aziridine compound
JPH0745014B2 (en) * 1989-02-27 1995-05-17 株式会社日本触媒 Method for regenerating catalyst for producing aziridine compound
JPH05202027A (en) * 1991-11-29 1993-08-10 Nippon Shokubai Co Ltd Production of alkylene sulfide
JP2712136B2 (en) * 1991-11-29 1998-02-10 株式会社日本触媒 Method for producing alkylene sulfide

Similar Documents

Publication Publication Date Title
KR910004073B1 (en) Catalyst for vapor-phase intramolecularar dehydration reaction of alkanolamines
US4841060A (en) Vapor-phase intramolecular dehydration reaction of alkanolamines
KR910004074B1 (en) Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
RU2266784C2 (en) Catalytic composition (options) and a olefin conversion process involving it
JP2001079408A (en) Catalyst
JPS6126419B2 (en)
KR20090082936A (en) Process for producing catalyst for methacrylic acid synthesis
JPS63126557A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPH0576344B2 (en)
JPS63123441A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPS6323744A (en) Catalyst for vapor-phase intermolecular dehydrating reaction of alkanolamine
JPS62152539A (en) Catalyst for gaseous phase intramolecular dehydrating action of alkanolamines
JPH0513699B2 (en)
JPS63126556A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPH0516905B2 (en)
JPS63123442A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
KR970011453B1 (en) Process for producing acrylonitrile
JPS63126558A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63126553A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63303964A (en) Production of aziridine compound
JPH0576346B2 (en)
JP2712136B2 (en) Method for producing alkylene sulfide
JPH0576347B2 (en)
JPH0275349A (en) Catalyst for gaseous intramolecular dehydrating reaction of alkanolamines
JP3279946B2 (en) Catalyst for alkylene sulfide production