JPS63126551A - Catalyst for reforming methanol - Google Patents

Catalyst for reforming methanol

Info

Publication number
JPS63126551A
JPS63126551A JP26987286A JP26987286A JPS63126551A JP S63126551 A JPS63126551 A JP S63126551A JP 26987286 A JP26987286 A JP 26987286A JP 26987286 A JP26987286 A JP 26987286A JP S63126551 A JPS63126551 A JP S63126551A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
methanol
activity
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26987286A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujita
浩 藤田
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26987286A priority Critical patent/JPS63126551A/en
Publication of JPS63126551A publication Critical patent/JPS63126551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance low-temp. activity and selectivity of a methanol decomposition reaction by depositing Rh and Pt or Rh and Pd on a carrier obtd. by precoating alumina with an alkali metal oxide. CONSTITUTION:Rh and Pt or Rh and Pd are deposited on the carrier obtd. by precoating the alumina with the alkali metal oxide (e.g., Na2O). As a result, the selectivity of the methanol decomposition reaction is enhanced and the low temp. activity is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノール改質用触媒に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a methanol reforming catalyst.

〔従来の技術〕[Conventional technology]

メタノールは石炭、天然ガスなどから合成ガスを経由し
て大規模に製造することができ、しかも輸送が容易であ
ることから将来石油に代るエネルギー源あるいは種々化
学工業原料として大きな関心がもたれている。
Methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas, and is easy to transport, so it is attracting great interest as a future energy source to replace petroleum or as a raw material for various chemical industries. .

その利用法の一つとしてメタノールを水素と一酸化炭素
を含むガスに分解し、これを自動車用無公害燃料あるい
は還元ガス製造用原料として利用する方法がある。又、
この分解ガスから水素を分離し、この水素を燃料電池発
電用燃料として、又石油精製工業における各種有機化合
物の水素化などの水素源として利用する方法、一方一酸
化炭素についても各種有機化合物のカルボニル化プロセ
スに利用する方法がある。
One method of using it is to decompose methanol into a gas containing hydrogen and carbon monoxide, and use this as a pollution-free fuel for automobiles or as a raw material for producing reducing gas. or,
A method of separating hydrogen from this cracked gas and using this hydrogen as a fuel for fuel cell power generation and as a hydrogen source for hydrogenation of various organic compounds in the oil refining industry. There is a method that can be used in the conversion process.

メタノールの分解反応は熱力学的には比較的低温で起シ
うるが、これを経済的に行わせるためKは触媒の存在が
不可欠である。
Although the decomposition reaction of methanol can occur thermodynamically at a relatively low temperature, the presence of K as a catalyst is indispensable in order to carry out this reaction economically.

従来、メタノールを分解する触媒としてはアルミナ(以
下r hp2o3Jと記す)などの担体に白金などの白
金族元素又は銅、ニッケル、クロム、亜鉛などの卑金属
元素及びその酸化物などを担持した触媒が提案されてい
る。
Conventionally, catalysts for decomposing methanol have been proposed in which platinum group elements such as platinum or base metal elements such as copper, nickel, chromium, and zinc and their oxides are supported on a carrier such as alumina (hereinafter referred to as RHP2O3J). has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の触媒は、低温活性に乏しく、耐熱
比がなく、かつまな寿命が短いなど、現在までのところ
多くの間咀点を残している。
However, conventional catalysts have poor low-temperature activity, no heat resistance ratio, and short lifespan, and have left many problems to date.

上記、従来の触媒の中で、例えばr −AI!20. 
Ic白金を担持した触媒については下記目的の反応■の
みでなくメタン、炭酸ガス、水及びエーテル、アルデヒ
ド等の生成する副反応■が起りやすいという問題がある
Among the conventional catalysts mentioned above, for example, r-AI! 20.
A problem with catalysts supporting Ic platinum is that they tend to cause not only reaction (1) below, but also side reactions (2) in which methane, carbon dioxide, water, ether, aldehyde, etc. are produced.

反応■ 0H30H−4co + 2H2反応■ O)
t、OH+ H240H4+ H2O0HO)f +G
o −40H4+Co20H30H434(H,0(j
H3+3A H2O0H30H→C+H2+H20 以上の反応のうち■はメタノール分解の主反応で、この
際生成した分解ガスは分解反応の吸熱量相当分(約22
 Kcar / mol)だけ、分解ガスの発熱量が増
加するという利点があシ熱効率の改善につながる。
Reaction ■ 0H30H-4co + 2H2 reaction ■ O)
t, OH+ H240H4+ H2O0HO)f +G
o -40H4+Co20H30H434(H,0(j
H3+3A H2O0H30H→C+H2+H20 Of the above reactions, ■ is the main reaction of methanol decomposition, and the cracked gas generated at this time is equivalent to the endothermic amount of the decomposition reaction (approximately 22
The advantage is that the calorific value of the cracked gas increases by Kcar/mol), which leads to an improvement in thermal efficiency.

しかし、反応■のような副反応が起ると、この反応はい
ずれも発熱反応であるため熱効率の面からは、むしろ損
失となる。さらにこの分解ガスを各種プロセスの水素源
などに利用する場合反応■によって副生する水、エーテ
ル類などは分離、精製を困難にする要因となる。
However, if a side reaction such as reaction (2) occurs, this reaction is an exothermic reaction, and therefore results in a loss in terms of thermal efficiency. Furthermore, when this cracked gas is used as a hydrogen source for various processes, water, ethers, etc. produced as by-products of reaction (2) become a factor that makes separation and purification difficult.

また反応■のうち、カーボン生成反応は触媒の劣化ある
いはりアクタ−の閉塞などを来たし、長期安定操業の妨
げとなる。
Furthermore, among reactions (2), the carbon production reaction causes deterioration of the catalyst or blockage of the actor, which impedes long-term stable operation.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題を解決し、低温活性が高くメタノー
ルからの水素、−酸化炭素への分解反応において活性、
選択性、寿命とも極めて優れた触媒を提供するものであ
る。
The present invention solves the above problems, has high low-temperature activity, and is active in the decomposition reaction of methanol to hydrogen and carbon oxide.
This provides a catalyst with extremely excellent selectivity and lifetime.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、アルミナと活性金属との間に第三物質を介在
させることによって、即ち通常酸性触媒として作用する
r −AI!203に、あらかじめアルカリ金属酸化物
を担持し、担体を塩基性の性質に変換させ脱水素反応を
起させれば■の副反応が抑制されること、更に活性金属
としての白金又はパラジウムに第二成分としてロジウム
を加えれば白金、パラジウムの高温下でのシンタリング
が防止でき、低温活性及び耐熱性の向上効果が発現する
ことに着目して完成されたものである。
The present invention is achieved by interposing a third substance between alumina and an active metal, that is, r -AI! which normally acts as an acidic catalyst. 203, by supporting an alkali metal oxide in advance and converting the support to basic properties to cause a dehydrogenation reaction, the side reaction (2) can be suppressed. This product was developed based on the fact that adding rhodium as a component can prevent platinum and palladium from sintering at high temperatures and improve low-temperature activity and heat resistance.

即ち本発明はメタノール分解触媒として、あらかじめ、
アルカリ金属酸化物で被覆したアルミナ担体上にロジウ
ムと白金、又はロジウムとパラジウムを担持させてなる
ことを特徴とする触媒に関するものである。
That is, in the present invention, as a methanol decomposition catalyst, in advance,
The present invention relates to a catalyst characterized in that rhodium and platinum, or rhodium and palladium are supported on an alumina carrier coated with an alkali metal oxide.

とこでアルカリ金属酸化物とは、周期律表のIa  族
の元素の酸化物であり、例えばNa2O,に20などが
挙げられる。これらをアルミナに被覆するKは、アルミ
ナをアルカリ金属の硝酸塩水溶液に浸漬したのち焼成す
ることで容易に得られる。アルミナに担持するアルカリ
金属酸化物の@度は0.5重t%以下であるとr−^/
20.を塩基性の性質に変換させるための効果がなく、
10重量%以上であると活性金属の担持工程において、
その金属塩例えば硝酸塩、塩化物などが塩基性担体のア
ルカリ成分と反応し活性成分の分散が悪くなり活性が低
下するので、アルカリ金属酸化物のr −k1203へ
の担持濃度は0.5〜10重t x s好ましくは3〜
5重t%の範囲とすることが好ましい。
Here, the alkali metal oxide is an oxide of an element in group Ia of the periodic table, and includes, for example, Na2O, 20, and the like. K, which coats alumina with these, can be easily obtained by immersing alumina in an aqueous solution of alkali metal nitrate and then firing it. The concentration of alkali metal oxide supported on alumina is 0.5% by weight or less.
20. It has no effect on converting into basic properties,
When the amount is 10% by weight or more, in the active metal supporting step,
Metal salts such as nitrates and chlorides react with the alkali component of the basic carrier, resulting in poor dispersion of the active ingredient and a decrease in activity. Weight t x s preferably 3~
It is preferable to set it as the range of 5 weight t%.

次にこのようにして得られた担体に、ロジウム、白金又
はロジウム、パラジウムを担持させる方法は従来から用
いられている含浸法が適用でき、例えば硝酸塩又は塩化
物、アンミン錯体などの化合物の水溶液に担体を浸漬し
たのち乾燥、焼成することにより容易に得られる。
Next, a conventional impregnation method can be applied to support rhodium, platinum, or rhodium or palladium on the carrier obtained in this way. It can be easily obtained by immersing the carrier, then drying and firing.

活性体としての白金、パラジウムの担持量は0.1〜S
 wt%が好ましく、これに第二成分として添加するロ
ジウムは白金、パラジウムに対しtowt%以下では効
果がなく、sowt%以上ではコスト高となるため10
〜50 wt%の範囲とすることが好ましい。
The supported amount of platinum and palladium as active substances is 0.1 to S.
wt% is preferable, and rhodium added as a second component has no effect on platinum or palladium if it is less than towt%, and if it is more than sowt%, it becomes expensive.
It is preferable to set it as the range of 50 wt%.

以上のようにしてロジウムと白金、又はロジウムとパラ
ジウムを担持させた後水素還元処理を行うことが好まし
い。水素還元処理を行うとRh、Pt、Pd  が酸化
物状態から金属状態に変わり、初期活性が発現する。
It is preferable to carry out hydrogen reduction treatment after supporting rhodium and platinum or rhodium and palladium as described above. When hydrogen reduction treatment is performed, Rh, Pt, and Pd change from an oxide state to a metal state, and initial activity is expressed.

またRh、Pt、Pd  の酸化状態でもメタノールと
反応させると初期活性は低いが、生成するH2゜COに
よって数時間後にはph、pt、paは還元され活性が
発現する。但し、この場合メタノールとの反応条件によ
っては急激な発熱を起す場合がありこれKよって失活す
ることがある。
Furthermore, even in the oxidized state of Rh, Pt, and Pd, when reacted with methanol, the initial activity is low, but after several hours, ph, pt, and pa are reduced by the generated H2°CO, and the activity is expressed. However, in this case, depending on the reaction conditions with methanol, rapid heat generation may occur, and K may cause deactivation.

従ってこの発熱を防止する丸めにも予め水素還元を行う
ことが好ましい。
Therefore, it is preferable to perform hydrogen reduction in advance for rounding to prevent this heat generation.

このようにして得られた触媒は、メタノールを原料とし
て、水素−酸化炭素を含むガスに改質する反応に対し、
高選択性でかつ活性が高く、耐久性にも極めて優れた性
能を有するものである。
The catalyst obtained in this way is effective for the reaction of reforming methanol as a raw material into a gas containing hydrogen and carbon oxide.
It has high selectivity, high activity, and extremely excellent durability.

この時の反応温度は200C以上、好ましくは250t
l:’ 〜600C,反応圧力はOkg / cN2G
以上、好ましくは0〜100kt/crIr2Gとする
ことが望ましい。
The reaction temperature at this time is 200C or higher, preferably 250t.
l:' ~600C, reaction pressure is Okg/cN2G
As mentioned above, it is preferable to set it to preferably 0 to 100 kt/crIr2G.

以下実施例によシ本発明を具体的に説明する。The present invention will be specifically explained below using examples.

〔実施例1〕 粒径2〜41IIIのr −A/205からなるベレッ
トを硝酸カリウムの水溶液に浸漬後乾燥し、500Cで
3時間焼成してアルミナに対し5 wt%担持された担
体を得た。このようにして得られた担体を塩化ロジウム
及び塩化白金酸の水溶液に浸漬し乾燥後500Cで3時
間焼成して、Pt Q、4wt%、Rh O,I wt
% を担持した触媒1を調製した。
[Example 1] A pellet made of r-A/205 having a particle size of 2 to 41III was immersed in an aqueous solution of potassium nitrate, dried, and calcined at 500C for 3 hours to obtain a carrier in which 5 wt% of alumina was supported. The support thus obtained was immersed in an aqueous solution of rhodium chloride and chloroplatinic acid, dried, and then calcined at 500C for 3 hours to obtain Pt Q, 4 wt%, Rh O, I wt.
% of catalyst 1 was prepared.

この触媒’1400Cで5時間、3.5 vo/ X水
素気流中で還元し表1に示す条件で活性評価試験を行い
、表2の結果を得た。なお比較触媒として、従来のアル
ミナ担体にPt O,4wt%、RhO,1wt%を担
持し九触媒を調製し、反応温度400Cでの活性評価を
行った結果を表2に併せて示しな。
This catalyst '1400C was reduced for 5 hours in a 3.5 vo/X hydrogen stream, and an activity evaluation test was conducted under the conditions shown in Table 1, and the results shown in Table 2 were obtained. As comparative catalysts, nine catalysts were prepared by supporting 4 wt% of PtO and 1 wt% of RhO on a conventional alumina carrier, and the results of activity evaluation at a reaction temperature of 400C are also shown in Table 2.

表  1 表  2 〔実施例2〕 実施例1で調製した触媒1と同じ方法でに2゜の濃度が
それぞれ0.2.1.0.3,0.5.0.10重量%
になるように担持し、各々を塩化ロジウム及び塩化白金
酸の水溶液に浸漬し、水素還元処理を行ってPt O,
4wt%、Rh 0.1ft%を担持した触媒2〜6を
調製した。
Table 1 Table 2 [Example 2] Using the same method as Catalyst 1 prepared in Example 1, the concentrations of 2° were 0.2, 1, 0.3 and 0.5, 0.10% by weight, respectively.
Pt O, Pt O,
Catalysts 2 to 6 were prepared in which 4 wt% and 0.1 ft% of Rh were supported.

これらの触媒について、反応温度13501:l’に以
外は表1に示す条件で活性評価試験を行い表3の結果を
得た。
Regarding these catalysts, an activity evaluation test was conducted under the conditions shown in Table 1 except that the reaction temperature was 13501:l', and the results shown in Table 3 were obtained.

表  5 〔実施例3〕 実施例1と同様の方法でr −k120.にHa205
wt%を担持した担体を塩化ロジウムと塩化白金酸及び
塩化ロジウムと塩化パラジウムの水溶液に各々浸漬し乾
燥後500 ccで3時間焼成して表4に示す組成の触
媒7〜18t−調製した。
Table 5 [Example 3] In the same manner as in Example 1, r -k120. to Ha205
The carrier supporting wt% was immersed in an aqueous solution of rhodium chloride, chloroplatinic acid, and rhodium chloride and palladium chloride, dried, and then calcined at 500 cc for 3 hours to prepare catalysts 7 to 18 tons having the compositions shown in Table 4.

これらの触媒について実施例1と同様にして水素還元処
理したのち反応温度’に550cにした以外は表1に示
す条件で活性評価試験を行い表4の結果を得た。
These catalysts were subjected to hydrogen reduction treatment in the same manner as in Example 1, and then an activity evaluation test was conducted under the conditions shown in Table 1, except that the reaction temperature was set to 550°C, and the results shown in Table 4 were obtained.

また白金及びパラジウム全書々0.5WtX担持しな触
媒19.20をv4展し、同様の活性評価を行い、結果
を表4に併せて示した。
In addition, a catalyst 19.20 carrying 0.5 WtX of platinum and palladium was subjected to v4 expansion, and the same activity evaluation was conducted, and the results are also shown in Table 4.

表  4 〔実施例4〕 実施例1で調製した触媒1をステンレス族の反応管に5
 ce充てんし、350Cでメタノールfr:5 ce
 / h連続供給し1000時間の寿命試験を行った。
Table 4 [Example 4] Catalyst 1 prepared in Example 1 was placed in a stainless steel reaction tube.
Filled with ce and methanol fr: 5 ce at 350C
/h was continuously supplied and a life test was conducted for 1000 hours.

この結果メタノール反応率及び分解ガス組成とも初期と
殆んど変化がなく触媒表面へのカーボン析出もなりこと
を確認した。
As a result, it was confirmed that the methanol reaction rate and cracked gas composition were almost unchanged from the initial stage, and that carbon was not deposited on the catalyst surface.

以上の実施例では粒状触媒にりいて説明し九が、触媒の
形状を特に限定するものではなく、ハニカム板状などの
形状で用いて良いことは云うまでもない。また以上の実
施例ではメタノール単独の場合について説明しているが
、水蒸気、空気など金含有したガスとの共存下でメタノ
ール分解を行うこともできる。
Although the above embodiments have been explained using a granular catalyst, the shape of the catalyst is not particularly limited, and it goes without saying that a shape such as a honeycomb plate shape may be used. Furthermore, although the above embodiments describe the case where methanol is used alone, methanol decomposition can also be carried out in the coexistence of a gold-containing gas such as water vapor or air.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から判るように本発明はアルミナをあらか
じめアルカリ金属酸化物で被覆することでメタノール分
解反応の選択比を高め、また白金あるいはパラジウムに
第二成分としてロジウムを加え九ことで低温活性の高い
触媒を提供するものである。
As can be seen from the above examples, the present invention improves the selectivity of the methanol decomposition reaction by coating alumina with an alkali metal oxide in advance, and also adds rhodium as a second component to platinum or palladium, thereby improving low-temperature activity. It provides a highly efficient catalyst.

復代理人 内 1)  明 復代理人 萩 原 亮 − 復代理人 安 西 篤 夫Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara - Sub-agent Atsuo Annishi

Claims (1)

【特許請求の範囲】[Claims] アルミナをあらかじめアルカリ金属酸化物で被覆した担
体上にロジウムと白金又はロジウムとパラジウムを担持
させてなることを特徴とするメタノール改質用触媒。
A methanol reforming catalyst characterized in that rhodium and platinum or rhodium and palladium are supported on a carrier in which alumina is coated with an alkali metal oxide in advance.
JP26987286A 1986-11-14 1986-11-14 Catalyst for reforming methanol Pending JPS63126551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26987286A JPS63126551A (en) 1986-11-14 1986-11-14 Catalyst for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26987286A JPS63126551A (en) 1986-11-14 1986-11-14 Catalyst for reforming methanol

Publications (1)

Publication Number Publication Date
JPS63126551A true JPS63126551A (en) 1988-05-30

Family

ID=17478386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26987286A Pending JPS63126551A (en) 1986-11-14 1986-11-14 Catalyst for reforming methanol

Country Status (1)

Country Link
JP (1) JPS63126551A (en)

Similar Documents

Publication Publication Date Title
CA2341068C (en) A method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture with improved cold start behaviour and a catalyst therefor
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
KR20010092399A (en) A method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
KR100612956B1 (en) High Performance Water Gas Shift Catalysts and A Method of Preparing The Same
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
US7001867B2 (en) Rare earth aluminates and gallates supported rhodium catalysts for catalytic partial oxidation of hydrocarbons
JPS6082137A (en) Reforming catalyst of methanol
KR20090057554A (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using thereof
JPS60202740A (en) Catalyst for reforming methanol
GB2106415A (en) A method of preparing a supported catalyst
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
JPS6082136A (en) Reforming catalyst of methanol
JPS63126551A (en) Catalyst for reforming methanol
JPH0347894B2 (en)
JPH08176034A (en) Synthesis of methanol
JPH02307802A (en) Method for reforming methanol
JPS60137434A (en) Catalyst for reforming methanol
JPS637842A (en) Catalyst for reforming methanol
JPS6256788B2 (en)
JPS59199043A (en) Catalyst for reforming methanol
JPS6236001A (en) Reforming method for methanol
JPH0371174B2 (en)
JPH0347895B2 (en)