JPS63126175A - Closed type lead storage battery - Google Patents

Closed type lead storage battery

Info

Publication number
JPS63126175A
JPS63126175A JP61273243A JP27324386A JPS63126175A JP S63126175 A JPS63126175 A JP S63126175A JP 61273243 A JP61273243 A JP 61273243A JP 27324386 A JP27324386 A JP 27324386A JP S63126175 A JPS63126175 A JP S63126175A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
active material
closed type
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273243A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Kojiro Matsuo
松尾 光二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61273243A priority Critical patent/JPS63126175A/en
Publication of JPS63126175A publication Critical patent/JPS63126175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable a quick charge by making a water repellent macromolecular porous membrane to exist on the surface of negative electrode materials, at the same time, to enable lightening of a battery by decreasing a negative electrode active material quantity. CONSTITUTION:A positive electrode used lead dioxide as active materials, a negative electrode used a spongy lead as active materials, and a separator permeated with dilute sulfuric acid are provided, and an oxygen gas produced from the positive electrode is absorbed and eliminated in the negative electrode during charging in a closed type lead battery, and a water repellent porous macromolecular membrane is made to exist on the surface of the negative electrode active materials. This enables to promote an oxygen absorption reaction on a negative electrode plate, to constrain an oxygen producing during a quick constant-current charge, and to obtain the closed type lead battery available a small size, a lightweight, and a constant-current quick charge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポータプル機器用として、あるいは防災用と
して広く用いられている密閉式鉛蓄電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid battery that is widely used for portable equipment or for disaster prevention.

従来の技術 密閉式鉛蓄電池は、高い経済性と取り扱いの手軽さから
ポータプルVTR、ポータプルテレビをはじめとする多
くのポータプル機器の電源とじて用いられている。
BACKGROUND OF THE INVENTION Sealed lead-acid batteries are used as power sources for many portable devices such as portable VTRs and portable televisions because of their high cost efficiency and ease of handling.

この種の用法において電源に要求される特性は、電池に
ついては小形軽量であること、充電については、60分
以内の急速充電が可能であることの2つが主である。
The two main characteristics required of a power source in this type of usage are that the battery be small and lightweight, and that the battery be capable of rapid charging within 60 minutes.

小形軽量化の方法として、プラスチック部品をはじめ、
すべての部品を小形化・軽量化していく方法が取られる
が、その中でも正極活物質と負梧活物質との重量比を従
来の1:1.0〜1.2から1:0.66〜1.0に下
げ、負極活物質量を減少させる方法が効果的である。
As a way to reduce size and weight, plastic parts, etc.
Methods are being taken to reduce the size and weight of all parts, and among these methods, the weight ratio of the positive electrode active material and the negative active material has been changed from the conventional 1:1.0-1.2 to 1:0.66- An effective method is to lower the negative electrode active material amount to 1.0.

しかしながらこの方法によれば、定電圧法等の電圧制御
を行う充電方式では、正極に対する負担が大きくなり、
過充電耐久性に劣るという欠点がある。
However, according to this method, in charging methods that perform voltage control such as the constant voltage method, the burden on the positive electrode becomes large.
It has the disadvantage of poor overcharging durability.

一方、ニッケルーカドミウム電池の急速充電方法の一例
であるーΔ■方式によれば、定電流で充電し、充電末期
の負極におけるガス吸収による電池電圧の電圧降下を検
知し、充電を終了させる方法であるため、負極における
ガス吸収能力により、電池性能は影響を受ける。すなわ
ち、充電末期に正極板から発生する酸素ガスを負極板が
完全に吸収除去できないと、負極板上で水素発生が促進
され、この水素発生により負極板中の電解液は極板群か
ら押し出される。さらに上記のガス吸収反応においては
、負極で発熱するため水分が蒸発し、負極板中の水分の
減少は促進される。このような傾向は、急速充電であれ
ばある程著しい。ところで、負極板が酸素ガスを吸収す
ると硫酸鉛が形成されるが、前述のように急速充電によ
って、負極板中の電解液の含液量が少なくなった場合、
硫酸鉛は充電されにくくなり、充放電を繰り返すと負極
板上に蓄積される硫酸鉛の絶対量は増加する。
On the other hand, according to the Δ■ method, which is an example of a rapid charging method for nickel-cadmium batteries, charging is performed with a constant current, and a voltage drop in the battery voltage due to gas absorption at the negative electrode at the end of charging is detected, and charging is terminated. Therefore, battery performance is affected by the gas absorption ability of the negative electrode. In other words, if the negative electrode plate cannot completely absorb and remove oxygen gas generated from the positive electrode plate at the end of charging, hydrogen generation will be promoted on the negative electrode plate, and this hydrogen generation will push the electrolyte in the negative electrode plate out of the electrode group. . Furthermore, in the above gas absorption reaction, water is evaporated because heat is generated at the negative electrode, and the reduction of water in the negative electrode plate is accelerated. This tendency is more pronounced the more rapid charging becomes. By the way, lead sulfate is formed when the negative electrode plate absorbs oxygen gas, but as mentioned above, when the electrolyte content in the negative electrode plate decreases due to rapid charging,
Lead sulfate becomes difficult to charge, and as charging and discharging are repeated, the absolute amount of lead sulfate accumulated on the negative electrode plate increases.

その結果、電解液中の硫酸の絶対量および、負極活物質
の絶対量が減少し、電池容量は低下していく。
As a result, the absolute amount of sulfuric acid in the electrolytic solution and the absolute amount of the negative electrode active material decrease, and the battery capacity decreases.

発明が解決しようとする問題点 上記のような従来の電池を急速定電流で充放電を繰り返
したり、過充電を行なった場合、電池内の電解液が減少
する。そのため、負極板の酸素ガス吸収反応によって生
成した硫酸鉛の充電が困難となり、電池容量が低下する
。同時に電解液量の減少により、電池の内部抵抗の増加
が生じ、電池容量の低下は加速されるという問題点があ
る。
Problems to be Solved by the Invention When a conventional battery as described above is repeatedly charged and discharged at a rapid constant current or overcharged, the electrolyte in the battery decreases. Therefore, it becomes difficult to charge the lead sulfate generated by the oxygen gas absorption reaction of the negative electrode plate, and the battery capacity decreases. At the same time, there is a problem in that the decrease in the amount of electrolyte causes an increase in the internal resistance of the battery, accelerating the decrease in battery capacity.

本発明は上記問題点を解決するものであり、密閉式鉛蓄
電池のサイクル寿命特性を向上させることを口約とする
ものである。
The present invention is intended to solve the above-mentioned problems and is intended to improve the cycle life characteristics of sealed lead-acid batteries.

問題点を解決するための手段 上記問題点を解決するために本発明は、定電流のサイク
ル寿命においても容量低下のない密閉式鉛蓄電池を提供
するものであり、負極活物質表面に撥水性高分子多孔膜
を存在させ、負極活物質の酸素ガス吸収能力の向上をは
かって、急速充電を可能とし、同時に負極活物質量を減
少させて電池の軽量化を可能にしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a sealed lead-acid battery that does not lose capacity even during a constant current cycle life. The presence of a molecular porous membrane improves the oxygen gas absorption ability of the negative electrode active material, enabling rapid charging, and at the same time reducing the amount of negative electrode active material, making it possible to reduce the weight of the battery.

作  用 負極活物質表面に撥水性高分子多孔膜を存在させること
により、負極板上での酸素吸収反応を促進することが可
能となり、急速定電流充電時における水素発生を抑制す
ることができる。
Function By providing the water-repellent porous polymer film on the surface of the negative electrode active material, it becomes possible to promote the oxygen absorption reaction on the negative electrode plate, and it is possible to suppress hydrogen generation during rapid constant current charging.

前述のように、本発明では、密閉式鉛蓄電池の負極活物
質表面に撥水性高分子多孔膜を存在させることばより、
負極板上での酸素吸収反応を促進し、負極活物質の重量
減をはかりながらも定電流充電の充放電サイクル寿命の
向上をはかったものである。
As mentioned above, in the present invention, by providing a water-repellent porous polymer membrane on the surface of the negative electrode active material of a sealed lead-acid battery,
The purpose is to promote the oxygen absorption reaction on the negative electrode plate, reduce the weight of the negative electrode active material, and improve the charge/discharge cycle life of constant current charging.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

正極板として、Pb−Ca−3n合金よりなる格子に酸
化鉛、水、希硫酸等を練り合せたペーストを充填し、化
成した厚さ3 、5 fin s長さ5o關、幅201
11+のものを用意した。負極板としてはPb−Ca合
金よりなる格子に酸化鉛、水、希硫酸、硫酸バリウム、
有機繊維等を練り合せたペーストを充填し、その表面に
二軸延伸ポリプロピレンの多孔性。
As a positive electrode plate, a lattice made of Pb-Ca-3n alloy was filled with a paste made by kneading lead oxide, water, dilute sulfuric acid, etc., and was chemically formed to a thickness of 3.5 fins, a length of 5 mm, and a width of 20 mm.
I prepared one for 11+. As a negative electrode plate, lead oxide, water, dilute sulfuric acid, barium sulfate,
It is filled with a paste made by kneading organic fibers, etc., and its surface is made of porous biaxially stretched polypropylene.

撥水性フィルムを貼りつけ、化成した厚さ1.6mm、
長さ50fl、幅20.のものを用意し、それぞれ2枚
と3枚を組み合せ、極板間には微細なガラス繊維からな
るマット状セパレータを挿入し、電解液には比重1.3
0の希硫酸を用いた。(a水性フィルムとして用いたポ
リプロピレンフィルムは、厚さ100μm、多孔度30
%、最大細孔径5μmのフィルムである。また、その貼
りつけは、ペーストの充填時にペーストの脱落防止のた
めに貼りつけるペースト紙のかわりに用いることができ
る。
A water-repellent film is attached and chemically formed to a thickness of 1.6 mm.
Length 50fl, width 20. A mat separator made of fine glass fibers is inserted between the electrode plates, and the electrolyte has a specific gravity of 1.3.
0 dilute sulfuric acid was used. (a The polypropylene film used as the aqueous film has a thickness of 100 μm and a porosity of 30
%, and the maximum pore diameter is 5 μm. Further, the pasting can be used in place of paste paper that is pasted to prevent the paste from falling off when filling the paste.

セルあたりの正極活物質量は、26.0g、負極活物質
量は20.61である。このときの正極活物質と負極活
物質の比は1:0.82である。また、従来例として、
撥水性膜を用いていない活物質量の本発明品と同じ電池
(従来例1)と、撥水性膜を用いていなく、かつ正極活
物質と負極活物質の比を1:1.2とした電池(従来例
2)とを試作した。
The amount of positive electrode active material per cell was 26.0 g, and the amount of negative electrode active material was 20.61 g. At this time, the ratio of the positive electrode active material to the negative electrode active material was 1:0.82. In addition, as a conventional example,
A battery with the same amount of active material as the present invention without using a water-repellent film (Conventional Example 1), and a battery without using a water-repellent film with a ratio of positive electrode active material to negative electrode active material of 1:1.2. A battery (Conventional Example 2) was prototyped.

これらの電池は、従来例1を基準とした場合、電圧12
V、10時間率容量1.sAhとした。本発明品は約6
20gであるのに対し、従来例2は約6了Ogである。
These batteries have a voltage of 12 when conventional example 1 is used as a standard.
V, 10 hour rate capacity 1. It was set as sAh. The product of this invention is approximately 6
20g, whereas in Conventional Example 2 it is approximately 600g.

これらの電池を1.8A(1CA)の定電流で60分充
電し、16Ωの定抵抗で電池電圧が10.5Vになるま
で連続放電する充放電サイクルを繰り返し寿命試験を行
なった。
These batteries were charged for 60 minutes at a constant current of 1.8 A (1 CA), and then subjected to a life test by repeating a charge/discharge cycle in which they were continuously discharged with a constant resistance of 16 Ω until the battery voltage reached 10.5 V.

図にその充放電サイクル寿命を示した。定電流の急速充
電時に本発明では撥水性膜の作用により、サイクル寿命
の向上がみられた。
The figure shows its charge/discharge cycle life. During constant current rapid charging, the cycle life of the present invention was improved due to the action of the water-repellent film.

発明の効果 本発明は、以上のように小形軽量で定電流急速充電の可
能な密閉式鉛蓄電池を提供するものである。
Effects of the Invention As described above, the present invention provides a sealed lead-acid battery that is small, lightweight, and capable of rapid constant current charging.

本発明の密閉式鉛電池によれば、ニッケルーカドミウム
電池に用いられる急速定電流充電器、すなわち−ΔV方
式の充電器を共用でき、小形軽量・安価な電池の提供が
可能となる。
According to the sealed lead-acid battery of the present invention, a rapid constant current charger used for nickel-cadmium batteries, that is, a -ΔV type charger can be shared, making it possible to provide a small, lightweight, and inexpensive battery.

【図面の簡単な説明】[Brief explanation of the drawing]

図は各種電池の充放電サイクル寿命特性を示す図である
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名泡状
CVイフ)ν&(回)
The figure shows the charge/discharge cycle life characteristics of various batteries. Name of agent: Patent attorney Toshio Nakao and one other person (if) ν & (times)

Claims (1)

【特許請求の範囲】[Claims] 二酸化鉛を活物質とした正極と、海綿状鉛を活物質とし
た負極と、希硫酸を浸みこませたセパレータとを備え、
充電時前記負極において、正極から発生した酸素ガスを
吸収除去する密閉式鉛蓄電池であって、負極活物質表面
に撥水性多孔性高分子膜を存在させたことを特徴とする
密閉式鉛蓄電池。
Equipped with a positive electrode using lead dioxide as an active material, a negative electrode using spongy lead as an active material, and a separator impregnated with dilute sulfuric acid.
A sealed lead-acid battery that absorbs and removes oxygen gas generated from the positive electrode at the negative electrode during charging, characterized in that a water-repellent porous polymer film is present on the surface of the negative electrode active material.
JP61273243A 1986-11-17 1986-11-17 Closed type lead storage battery Pending JPS63126175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273243A JPS63126175A (en) 1986-11-17 1986-11-17 Closed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273243A JPS63126175A (en) 1986-11-17 1986-11-17 Closed type lead storage battery

Publications (1)

Publication Number Publication Date
JPS63126175A true JPS63126175A (en) 1988-05-30

Family

ID=17525116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273243A Pending JPS63126175A (en) 1986-11-17 1986-11-17 Closed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS63126175A (en)

Similar Documents

Publication Publication Date Title
JP2004055323A (en) Control valve type lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPS63126175A (en) Closed type lead storage battery
JPS6030063A (en) Sealed type lead-acid battery
JPS63126174A (en) Closed type lead storage battery
JPS62193060A (en) Sealed lead storage battery
JP2734523B2 (en) Battery separator
JPH07130392A (en) Alkaline storage battery
JPS62170173A (en) Sealed lead-acid battery
SU720580A1 (en) Separator for lead storage battery
JP3114419B2 (en) Sealed storage battery
JPH01186572A (en) Sealed type lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JPH01189871A (en) Sealed type lead-acid battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2855677B2 (en) Sealed lead-acid battery
JPH07161342A (en) Separator for lead-acid battery
JPS5933758A (en) Sealed nickel cadmium battery
JPS63148546A (en) Sealed lead acid battery
JP2002367586A (en) Sealed lead-acid battery
JPS62193059A (en) Separator
JPH01176662A (en) Sealed lead-acid battery
JPH01186560A (en) Sealed type lead-acid battery
JPH01200558A (en) Sealed lead storage battery