JPS63120244A - Device for inspecting body and method of improving signal-to-noise ratio - Google Patents

Device for inspecting body and method of improving signal-to-noise ratio

Info

Publication number
JPS63120244A
JPS63120244A JP62219295A JP21929587A JPS63120244A JP S63120244 A JPS63120244 A JP S63120244A JP 62219295 A JP62219295 A JP 62219295A JP 21929587 A JP21929587 A JP 21929587A JP S63120244 A JPS63120244 A JP S63120244A
Authority
JP
Japan
Prior art keywords
electromagnetic energy
generating
magnitude
signals
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62219295A
Other languages
Japanese (ja)
Inventor
ダグラス・スコット・スティール
ジェームズ・マーカス・ブラウン,ジュニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS63120244A publication Critical patent/JPS63120244A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の分野 この発明は全般的に物体を検査する装置と方法に関する
。更に特定して云えば、この発明は信号対雑音比を高め
且つぼけを少なくして、物体の像を発生する様な、物体
を検査する装置及び方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates generally to apparatus and methods for inspecting objects. More particularly, the present invention relates to an apparatus and method for inspecting an object that produces images of the object with increased signal-to-noise ratio and reduced blur.

発明の背景 従来、タービン羽根の様な製造部品は、種々の欠陥やき
ずを視覚及び光学的に検査1、ていた。この検査方法は
部品の内部にあるきずを突止めることが出来ない。
BACKGROUND OF THE INVENTION Traditionally, manufactured parts, such as turbine blades, have been visually and optically inspected for various defects and flaws. This inspection method cannot locate flaws inside the part.

部品の内部を検査する必要に応じて、X線の様な貫通性
電磁放射を用いる種々の検査装置が開発された。こうい
う検査装置は貫通性電子放射のビームを製造部品に通し
、医学の分野で使われているのと多少似たX線写真法又
は断層写真法を使うことにより、部品の像を発生する。
In response to the need to inspect the interior of a component, various inspection devices have been developed that use penetrating electromagnetic radiation, such as X-rays. Such inspection equipment passes a beam of penetrating electron radiation through the manufactured part and generates an image of the part using radiography or tomography techniques somewhat similar to those used in the medical field.

多くの用途では、複雑な形を持つ部品を極めて厳密な許
容公差に製造することが要求される。極く僅かなきずで
も許容することが出来ない。これは例えば航空機用機関
の分野で特にそうである。
Many applications require parts with complex shapes to be manufactured to very tight tolerances. Even the slightest scratch cannot be tolerated. This is particularly the case, for example, in the field of aircraft engines.

航空機用機関で高い性能及び燃料効率を達成する為に、
複雑な外部の形状及び内部の冷却通路を持つタービン羽
根が開発されている。羽根の寸法が、製造時に、非常に
厳密な許容公差の範囲内で達成されることが重要である
。この為、極く僅かなきずや仕様からのずれを突止める
様に、羽根を精密に検査することが必要である。医療の
分野で使われるものを基本とした検査装置は、信号対雑
音比及び像のぼけの点で不適切であることが判った。
In order to achieve high performance and fuel efficiency in aircraft engines,
Turbine blades with complex external geometries and internal cooling passages have been developed. It is important that the dimensions of the vanes are achieved within very tight tolerances during manufacture. For this reason, it is necessary to precisely inspect the blades to identify even the slightest flaws or deviations from specifications. Examination devices based on those used in the medical field have been found to be inadequate in terms of signal-to-noise ratio and image blur.

従って、貫通性電磁放射を利用し、信号対雑音比を高め
ると共に、ぼけが少ない被検査物体の像を発生する様な
検査装置に対する要望がある。
Accordingly, there is a need for an inspection apparatus that utilizes penetrating electromagnetic radiation to provide a high signal-to-noise ratio and a less blurred image of an inspected object.

発明の要約 1実施例の装置は、貫通性電磁放射のビームを発生する
手段を有する。電磁エネルギのビームが、電磁エネルギ
のビーム中に保持されている、検査しようとする物体の
予定の一部分を通過する。検出手段が、物体を通過した
電磁エネルギの強度に関係する信号を発生する。装置が
、物体をビームに対して予定の速度で移動する手段、及
び検出手段からの信号の大きさを時間的に相次いで且つ
予定の速度で標本化して貯蔵する手段を持っている。
SUMMARY OF THE INVENTION One embodiment of the apparatus includes means for generating a beam of penetrating electromagnetic radiation. A beam of electromagnetic energy passes through a predetermined portion of the object to be inspected that is held in the beam of electromagnetic energy. Detection means generates a signal related to the intensity of electromagnetic energy that has passed through the object. The apparatus has means for moving the object relative to the beam at a predetermined velocity and means for sampling and storing the magnitude of the signal from the detection means successively in time and at a predetermined velocity.

処理手段が標本化して貯蔵した大きさに応答して、信号
対雑音比を高めると共に、検査装置による像のぼけを少
なくする。
The processing means is responsive to the sampled and stored magnitude to increase the signal-to-noise ratio and to reduce blurring of the image by the inspection device.

発明の詳細な説明 第1図はこの発明の物体検査装置の1例の略図である。Detailed description of the invention FIG. 1 is a schematic diagram of an example of an object inspection apparatus according to the present invention.

検査装置がコンベヤ2を持ち、これがタービン翼部又は
ベーンの様な入って来る部品4を、遮蔽されていて、通
常は完全に密閉された検査室6の内部に運ぶ。室の内部
にある部品マニピュレータが入って来る部品を治具8に
移送し、この治具が部品をしっかりと保持する(検査室
内では4′で表わす)。部品マニピュレータが室の内部
で治具をx、  y及びZ軸に沿って移動する。部品マ
ニピュレータは部品をy軸の周りに回転もさせる。
The inspection device has a conveyor 2 which conveys an incoming part 4, such as a turbine blade or vane, into a screened and usually completely enclosed inspection chamber 6. A part manipulator inside the chamber transfers the incoming part to a jig 8, which holds the part firmly (represented by 4' in the inspection chamber). A part manipulator moves the fixture inside the chamber along the x, y, and z axes. The part manipulator also rotates the part about the y-axis.

室の内部の検査装置が、貫通性放射エネルギ源10を存
する。電磁エネルギ源が線12に沿って、X線の様な好
ましくは不動で平面状の電磁エネルギのビームを発生す
る。このビームはX−Z平面と平行な平面内にあり、既
知の強度を持っている。
The inspection device inside the chamber includes a penetrating radiant energy source 10 . An electromagnetic energy source generates a preferably stationary, planar beam of electromagnetic energy, such as x-rays, along line 12. This beam lies in a plane parallel to the X-Z plane and has a known intensity.

ビームが部品の薄いスライス13を通過して、電磁エネ
ルギ検出器16の細長い溝孔又は窓14に向かう。この
溝孔は電磁エネルギのビームを透過する。これはX軸と
平行な方向に細長く、平面状ビームが溝孔を通過する様
にする。
The beam passes through a thin slice 13 of the part to an elongated slot or window 14 in an electromagnetic energy detector 16 . This slot is transparent to the beam of electromagnetic energy. This is elongated in a direction parallel to the X-axis so that the planar beam passes through the slot.

エネルギ検出器は、XIIIIキ平行に溝にわたって1
列に配置された複数個の検出素子を持っていて、源10
からの電磁エネルギの平面状ビームを受取ることが好ま
しい。エネルギ検出器はこの様な検出素子640個の1
列を持っていてよい。検出素子が、加圧電離性ガスを収
容した密封室の中に配置されている。検出素子は、溝孔
】4を横切って1列に配置された誘電体基板上に沈積し
た導電材料のス!・リップで構成されている。溝孔を通
過する電磁エネルギのビームによって加圧ガスが電離す
る時、検出素子及び誘電体基板がその時発生する電荷に
対する集電板を形成する。電圧源に接続された別の板が
集電板の近くに配置されていて、集電板とこの電圧板の
間に電位差を生ずる。この電位差により、加圧ガスの電
離によって発生された電荷が集電板」二の検出素子の方
へ移動し、そこに収集される。
The energy detector is installed across the groove in parallel to
The source 10 has a plurality of detection elements arranged in a row.
Preferably, the device receives a planar beam of electromagnetic energy from the device. The energy detector is one of 640 such detection elements.
It’s okay to have columns. A detection element is disposed within a sealed chamber containing a pressurized ionizing gas. The sensing element consists of strips of conductive material deposited on a dielectric substrate arranged in a row across the slots.・Consists of a lip. When the pressurized gas is ionized by a beam of electromagnetic energy passing through the slot, the sensing element and dielectric substrate form a current collector for the charge then generated. Another plate connected to a voltage source is placed near the current collector plate to create a potential difference between the current collector plate and the voltage plate. Due to this potential difference, the charge generated by ionization of the pressurized gas moves toward the detection element of the current collector plate and is collected there.

γ11磁エネルギのビームが通過する部品4′のスライ
ス13が、若干の電磁エネルギを吸収又は散乱11、残
りが検出器1Bへ通過出来る様にする。
The slice 13 of the component 4' through which the beam of γ11 magnetic energy passes absorbs or scatters some of the electromagnetic energy 11 and allows the remainder to pass to the detector 1B.

スライスによって吸収されたエネルギ量が部品の措造と
、スライスの化学的な組成、スライスの厚さくZ軸と平
行なスライスの寸法)全体にわたる化学的な組成の一様
性及びスライスの厚さを含めたスライスを構成する材料
の性質とに関係する。
The amount of energy absorbed by a slice depends on the structure of the part, the chemical composition of the slice, the uniformity of the chemical composition throughout the slice (the thickness of the slice, the dimension of the slice parallel to the Z axis), and the thickness of the slice. It relates to the nature of the materials that make up the included slices.

各々の検出素子が、X軸に沿ったその位置で、スライス
13を通過した電磁エネルギの量を感知する。この為、
集電板には、スライス13を通過した電磁エネルギの量
に関係する様な、X軸位置の関数としての電荷がたまる
。入射する電磁エネルギのビームの大きさが判っている
から、集電板にたまる電荷は、X軸位置の関数として、
スライス13によって吸収又は散乱されたエネルギ量の
表示であり、従って、X軸位置の関数として、スライス
の減衰係数の表示でもある。
Each sensing element senses the amount of electromagnetic energy that has passed through slice 13 at its location along the X-axis. For this reason,
The current collector plate accumulates a charge as a function of X-axis position, which is related to the amount of electromagnetic energy that passes through the slice 13. Since the size of the incident electromagnetic energy beam is known, the charge accumulated on the current collector plate is expressed as a function of the X-axis position.
It is an indication of the amount of energy absorbed or scattered by the slice 13, and thus also of the attenuation coefficient of the slice as a function of the X-axis position.

部品(4′で示す)が検査された後、それが治具8から
部品マニピュレータによってコンベヤ17へ移送される
。その後検査結果に従って、第1図に示す様に分類され
る。
After the part (indicated by 4') has been inspected, it is transferred from the fixture 8 to the conveyor 17 by the part manipulator. Thereafter, they are classified as shown in FIG. 1 according to the test results.

コンピュータ・システム18が次の様に、上に述べた装
置と連絡する。コンピュータ・システムが母線20を介
して、検査室の中での部品の移動を含めた検査過程全体
を制御する様に接続されている。コンピュータ・システ
ムが母線22を介して検出器16から検査データを受取
る。コンピュータは24に示す様に部品の分類をも行な
い、26及び28に示ず様に、検査データを持つファイ
ルと連絡し、その内容を表示する。コンピュータ・シス
テムは、30に示す様にオペレータが入力した指示をも
受取り、32に示す様に、システムの状態データをオペ
レータに表示する。コンピュータ・システムが像発生装
置を持っており、これはアナロジツク640チヤンネル
・データ収集装置で構成することが出来、それが検出素
子の出力を周期的に標本化して貯蔵する。各サンプルに
関連して、データ収集装置が、(1)各々の検出素子に
サンプル時間の間に累積した電荷量をこの電荷量に関係
する電圧に変換し、(2)各々の電圧を増幅し、(3)
各々の電圧をディジタル化して貯蔵する。コンピュータ
・システムは、ディジタル形蛍光透視法及び計算機式断
層写真法を実施する様にデータ収集装置に応答する像発
生器をも持っている。ディジタル形蛍光透視法はアナロ
ジツクAP400アレー・プロセッサによって実施する
ことが出来る。計算機式断層写真法は、断層写真法の像
の畳込み積分を行なうアナロジツクAP400アレー・
プロセッサと、逆投影を行なうアナロジツク・モジュー
ル形像プロセッサとによって実施することが出来る。上
に説明した装置は、ディジタルΦイクイップメントφコ
ーボレイションによって製造されるVAXI 1/78
0コンピユータの形をした中央処理装置によって制御す
ることが出来る。
Computer system 18 communicates with the devices described above as follows. A computer system is connected via busbar 20 to control the entire testing process, including the movement of parts within the testing room. A computer system receives test data from detector 16 via bus 22 . The computer also sorts the parts as shown at 24, communicates with the file containing the inspection data, and displays its contents, as shown at 26 and 28. The computer system also receives instructions entered by the operator, as shown at 30, and displays system status data to the operator, as shown at 32. The computer system has an image generator, which can be configured with an Analog 640 channel data acquisition device, which periodically samples and stores the output of the sensing elements. Associated with each sample, a data acquisition device (1) converts the amount of charge accumulated on each sensing element during the sample time into a voltage related to this amount of charge, and (2) amplifies each voltage. ,(3)
Each voltage is digitized and stored. The computer system also has an image generator responsive to the data acquisition device to perform digital fluoroscopy and computed tomography. Digital fluoroscopy can be performed with the Analogix AP400 array processor. Computed tomography uses an analog AP400 array that performs convolution integration of tomographic images.
It can be implemented by a processor and an analog modular image processor that performs the backprojection. The device described above is a VAXI 1/78 manufactured by Digital Φ Equipment Φ Cooperation.
It can be controlled by a central processing unit in the form of a zero computer.

物体検査装置の具体例が1986年2月25日に出願さ
れた係属中の米国特許出願通し番号第832.511号
に記載されているr、電磁エネルギの検出器の具体例が
米国特許第4. 570. 071号に記載されている
An example of an object inspection device is described in pending U.S. Patent Application Ser. 570. It is described in No. 071.

ディジタル形蛍光透視法では、部品マニピュレータが治
具8及び部品4′をy軸に沿って垂直方向に、電磁エネ
ルギのビームに対して、予定の速度、例えば3.3秒毎
に1吋の速度で移動する。
In digital fluoroscopy, a component manipulator moves fixture 8 and component 4' vertically along the y-axis to a beam of electromagnetic energy at a predetermined rate, e.g., 1 inch every 3.3 seconds. Move with.

エネルギ検出器内にある全ての検出素子の出力を時間的
に相次いで、且つ予定の速度、例えば1/60秒毎に1
つのサンプルと云う速度で、標本化して貯蔵する。各サ
ンプルは、各々の検出素子がある場所でエネルギ検出器
の溝孔を通過した電磁エネルギの強度に関係する1mの
データである。
The outputs of all the detection elements in the energy detector are transmitted sequentially in time and at a predetermined rate, for example, once every 1/60 seconds.
sample and store at a rate of one sample. Each sample is 1 m of data relating to the intensity of electromagnetic energy passed through the energy detector slot at the location of each sensing element.

本質的には、各々のサンプル(「図」)は、部品の特定
の垂直位置及び角度方向の向きで、y軸と垂直にスライ
ス13を通る複数個の通路の減衰係数を示す部品のスナ
ップ写真である。コンピュータ・システム内の回路が複
数個の貯蔵されたサンプルを取出し、特定の角度方向の
向きに於ける部品の像を上から下まで構成する。部品を
他の方向から見る為に、他の角度方向の向きに対してこ
の過秤を繰返すことが出来る。
Essentially, each sample (“view”) is a snapshot of a part showing the attenuation coefficients of multiple passes through slice 13 perpendicular to the y-axis at a particular vertical position and angular orientation of the part. It is. Circuitry within the computer system takes a plurality of stored samples and constructs a top-to-bottom image of the part in a particular angular orientation. This overweighing can be repeated for other angular orientations to view the part from other directions.

計算機式断層写真法では、治具が部品をy軸に対して一
定の位置に保持し、部品をy軸の周りに一定の角速度、
例えば1″当たり約0.27秒の角速度で回転する。部
品が完全に1回転する間、時間的に相次いで且つ予定の
速度で、検出素子の出力を標本化して貯蔵することによ
り、複数個の図を収集する。この各々の図は、検出素子
を標本化した時点で、y軸と垂直にスライスを通る複数
個の通路の減衰係数を表わす、スライス13のスナップ
写真である。コンピュータ・システム内の回路が断層写
真法に従つて、電磁エネルギのビームが通過したスライ
ス13の像を取出す。この像は、y軸と平行な方向に見
たスライスの映像である。関心のあるスライスがビーム
を遮るまで、部品をy軸と平行に移動し、その後上に述
べた回転及び断層写真過程を繰返すことにより、異なる
スライスの像が得られる。
In computed tomography, a jig holds the part in a constant position relative to the y-axis, and the part is moved around the y-axis at a constant angular velocity,
For example, it rotates at an angular velocity of about 0.27 seconds per inch.During one complete rotation of the part, the output of the detection element is sampled and stored at a predetermined speed and in succession in time, so that a plurality of Collect pictures of the slice 13, each of which is a snapshot of slice 13, representing the attenuation coefficients of multiple passes through the slice perpendicular to the y-axis at the time the detector element is sampled. According to the tomographic method, circuitry within the section extracts an image of the slice 13 through which the beam of electromagnetic energy has passed.This image is an image of the slice viewed in a direction parallel to the y-axis. Images of different slices are obtained by moving the part parallel to the y-axis until it is occluded, and then repeating the rotation and tomography process described above.

この発明は、検出素子の出力を標本化する速度に比べて
、ディジタル蛍光透視法に於ける部品の垂直方向の移動
速度及び計算機式断層写真法に於ける部品の角度方向の
移動速度を下げる。1実施例では、検出素子から求めら
れた相次ぐ複数個のサンプルを平均することにより、平
均した図を求める。検出素子から得られた複数個のサン
プルをこの様に平均することによって得られた図では、
信号対雑音比が改善され、ぼけが減少した像が構成され
ることが判った。
The present invention reduces the speed of vertical movement of parts in digital fluoroscopy and the speed of angular movement of parts in computed tomography compared to the speed at which the output of the detection element is sampled. In one embodiment, an averaged diagram is obtained by averaging a plurality of successive samples obtained from the detection elements. In the diagram obtained by averaging multiple samples obtained from the detection element in this way,
It has been found that images with improved signal-to-noise ratio and reduced blur are constructed.

第2図はこの発明を実施するやり方を示したフローチャ
ートである。このフローチャートは前に述べたコンピュ
ータ・システムのコンピュータ・プログラム中のサブル
ーチンとして使うことが出来る。ブロック34で、残り
のルーチンを実行するのに必要なパラメータを収集する
。例えば、平均すべきサンプルの数CN)を収集する。
FIG. 2 is a flowchart showing how to implement the invention. This flowchart can be used as a subroutine in a computer program for the computer system described above. Block 34 collects the parameters necessary to execute the remaining routine. For example, collect the number of samples to be averaged (CN).

次に、ブロック36で図を収集する。図を収集するには
、特定の時点で、検出器16内にある全ての検出素子の
出力を標本化する。次にブロック38で、平均化作用を
行なうかどうかの判定を下す。平均化を行なうべき場合
、プログラムがブロック40へ進み、そこで今収集した
ばかりの図を表わすデータと、それまでに収集した多数
の図を表わすデータの和との加算が行なわれる。次にブ
ロック42で、N個のサンプルを加算したかどうかを判
定する。そうなっていれば、ルーチンが、ブロック40
で計算された和に、平均すべきサンプルの数の逆数を乗
する二とにより、ブロック44でサンプルの平均を計算
する。ブロック44に於ける動作によって得られたデー
タが、ブロック46で中央処理装置へ送られる。このデ
ータは平均した図を表わしており、一連の信号で構成さ
れる。その各々の信号は、サンプルの合間の時間中に1
つの検出素子にたまった電荷の大きさをN個のサンプル
の期間にわたって平均した値に関係する。その後プログ
ラムは、図を構成出来る程の十分な数の平均した図が貯
蔵されたかどうかを検査する。そうであれば、プログラ
ムはブロック50で示す様に、主プログラムに戻り、こ
の時像を構成して表示することが出来る。そうでなけれ
ば、プログラムが像を完成する為に更に多くの図を収集
する。最後に、ブロック38で、平均化を行なうべきで
ないと云う判定が下され、プログラムがNを1に設定し
、ブロック44に進む。その後プログラムは、平均化を
行なわないことを別とすれば、」二に述べた様に引続い
て作用する。
Next, at block 36, the figures are collected. To collect a diagram, the outputs of all detection elements in detector 16 are sampled at a particular point in time. A determination is then made at block 38 whether to perform an averaging operation. If averaging is to be performed, the program proceeds to block 40 where the data representing the figure just collected is added to the sum of the data representing the multiple figures previously collected. Block 42 then determines whether the N samples have been added. If so, the routine returns to block 40.
The mean of the samples is computed at block 44 by multiplying the sum computed by the reciprocal of the number of samples to be averaged. The data obtained from the operations in block 44 are sent to the central processing unit in block 46. This data represents an averaged picture and is composed of a series of signals. Each of the signals is
It relates to the average value of the charge accumulated in one detection element over a period of N samples. The program then checks whether a sufficient number of averaged figures have been stored to construct a figure. If so, the program returns to the main program, as indicated by block 50, at which time the image can be constructed and displayed. Otherwise, the program collects more figures to complete the image. Finally, at block 38, a determination is made that no averaging should be performed, and the program sets N to 1 and proceeds to block 44. The program then continues to operate as described in section 2, except that no averaging is performed.

出願人は、」一に述べた様にコンピュータ・システムに
対し、第2図のフローチャートに従って実施される実際
のコンピュータ・プログラムの例を付表1として提出す
る。勿論、この発明を実施するのに、第2図のフローチ
ャートを実施するこの他の方法も、結線回路を含めて利
用し得る。更に、この他のルーチンを実施してもよい。
The applicant submits as Appendix 1 an example of an actual computer program that is executed on a computer system according to the flowchart of FIG. 2 as described in 1. Of course, other methods of implementing the flowchart of FIG. 2, including wiring circuits, may be used to practice the invention. Additionally, other routines may be implemented.

例えば、上に述べた直接的な平均ルーチンの代りに、移
動平均、加重平均又は移動加重平均を用いてもよい。
For example, a moving average, a weighted average, or a moving weighted average may be used instead of the direct averaging routine described above.

どの場合も、この発明により、多数のサンプルが1つの
図に処理される為に、信号対雑音比が高くなる。更に、
部品が電磁エネルギのビームの中を移動する速度が、標
本化速度に比べて低下する為に、像のぼけが減少する。
In any case, the invention provides a high signal-to-noise ratio because a large number of samples are processed into one diagram. Furthermore,
Image blur is reduced because the speed at which the component moves through the beam of electromagnetic energy is reduced compared to the sampling speed.

付表I IINTERNALLYoEtIHtDCLOIIIk
Ll!I!DIYMllOLi+IIGLOILIl蔦
1797PolN〒s+ 1       1Lll*olJTINtj+奮CL
OILC^%lAl.ffNlfiTI.COMV*T
.−DAil’+X.CNVDkT,IIEQNXV,
#LllIOFF,       DATA I1t8
0諷V  L^IEIJ+l (XTffll#ALL
r DErlWED GLOIALIl!D MVNa
OLSr       IEGLOIL+rINTIl
nFOINTS+ EGLOIL  r?IJIT.ODAIKIIilJ
@ROLITINIill 1      c訃1tLliL −■lOu+!CL
OIL  rcIFLJ I      DATA MfllOPW 一Ll&L
i+奪GLOIL  AU!P+?.  (OFIII
O.  CTI+:尻ふrAPt’LINeTIONI
DHljllIrL篇ENctD+oADF+   y
ou     tDII●II       I  I
D rOR −EQutST DAI − MCkH 
RUNI     LOCAL IYMIOL DEr
lN+T!ONS+AACIID+  ffiQtl 
    %Oコ%4          +  LOC
kL^VL  All An C^L. ILIrF!
脚IDAJilJLN+ggutoaelLOeALA
T/E.IUAICCALIUrrEILtNO丁MA
llllI+D+  EOtl    %Q2S)  
      IAVE.All CAL $LIl’f
lJ 10AIAILNI!QLI%I14401AV
LAlll(ALSUFFERt.llIGTMA??
IIDiiQIItozs21ATrtMUAT10M
DATAaUrrtRID付 表 l(続き) DuA)llXINsl.DA$lQDAOr.^PA
+lフ7+11 AT?lLN+lull&DIQOHATTEsuAT
IONDATAUIrrEIILENG丁KINDII
O+!QLI%D16HIMDI!AMHAIIDEN
INGDATAsurrE諷10mMlIJL4EOL
1100HllIrrEILENGTHDTNAMIC
(AIIIIlll+tou40251I(+jJuR
EN丁AIII−fFBWFEI10CAJIL+1+
tgu%oiolCuPJtHTAIR真Lrhurr
t*LENO丁N(rNllo+EQII%DI91)
cux*chtateTINtILlrrE員10’−
DEILIG−”CTFl&LH+toll%DSLコ
HCLIJKENTATC丁IFICBu#CIIJN
GTII4−DrJリG一oxCs+o+EOIJto
スSo+LOCALAVE.DATAAI11CALU
JrrE罠10DACILHIEOU%og−GolL
OCALAVE.OA丁AAlllCALILIrF(
jiLEHCTHDET101 KOu     so
24a           H  DET!CTOI
  DATA  ILIFFE員 10DETILll
+EOutcl600+DtTECTO乳DATABU
FFERLENGTHIOTIIQ+ 虻017   
  io2oo           1  1/O 
 XFt*  OrrStテ ?AIIJ  murr
E艮 IQ10丁ILNI!OLl%DOIsurr!
真gllcrllDYNMIC+200IL341CO
MPυ丁!DONrODLIIIO+zQutD2(ス
rCMJTPuTD^tAtlFPc*LrNffaT
JrrtRfD00LILN+  EOu      
%D4             H  OuTnT 
 DATA  LIPPC*  LIMI?  ILl
lEI  LENG?NOoShIO+EOLI%D2
41ICMJTPuTDA丁AficALtllLl#
l!RIQODjBLN+KQLItD41OLl?P
LITDATASC^L!IIIrF!RLEHG丁H
OrSllD+EOLI%o24フlOrrStTDA
丁AmWrt員10Or$iLN+IOLISD440
10FFSETDATAllIllrKILKNG丁H
乳o(llD+  tOU     %o244   
        H  夙EF!*fNCI  DET
tCTO*  COWT  hurrt真 10+ID
CILNI!OLIn41夙trt艮tNCLDffi
tEC?O真COu)ffSUFFERLENGTH夙
OMB1D+!OLllD23●I真EFE大EN(!
DtT!C?(nusK*urn*10%DMIILN
+KOU%DI61真trE*EHCLDETtCio
*WALKLffiNO丁N*IIJID+!OuSD
211HmECIFIIOCALOrINitORAT
IONVALUEDkTAILll’fEIIoI1(
llILll+tgu%D41*ECIF鼻0(ALO
rINTEGRATIONV^LUEDATAllJF
rclLE*NVIID+EOu%o246lII′V
IEWREALVALLItOkTk@urrHI10
舅NVmLNIEOuID41NVItlJREALv
ALLltDATABUFFERLENG丁N丁CDI
IID+EOII%I314Sl?EMP.COHVt
*TEDDfiTkSUFFERTO丁CDILNIE
ou%06461TEMP.COHVLRTLDDkT
kIりrrt*LENOTN付 表 I(続き) ,a^ODtTECTO夙SSETrRosCOHrl
OnuV26/δ5PROIIGl’K丁^艮丁OF真
ELOCji’AIICECODEINFIOGuFI
FIEMORYI  DffirlNI丁108  0
F  TIIE  rUNcTION  ID  ro
ll  THE  AP  !XtCMIME  ?I
JNC?ION  TAIIIJFLINC    D
ADF.ODADF      I  rllllcT
ION  Ill AND  !NT真Y  POIN
T  NAME付  表  I (続き) 付 表 I (続き) DLIA2 + (XIR5VS okl 1QDAl
lr、APAIIff)+37 ALLOCA7!DkSDATAINPuTIllrr
rJ181Gφ%0249+、IL!:N−4N−40
6721REQUESTVIEWOIIEr丁WED入
5IDISC八*oN、G、1ALLOCATETtM
P、C0NVEII51ONDATAlllrrl+A
IItlD−&D21Sl、+LEN−&D6101^
LLOeATKDETtCTORDATAIIIFFE
M+ll0−402481.ILEN4D4001^L
LOCATEATTENUA丁1ONDATASUFF
ER11110−%D2S21.ILEN−tD6QO
IALLOCA丁ff1CLllu!NTAIR勇ff
1F、BUrrE11+11D−$02111.11J
N−%01+11ALLOC^丁tDATAAIRCA
L、lI+JrF!1flIll−4N2%61.IL
EN−%D6001付 表 I(続き) ALLQCATEAnAnCAL扉11#01m+D−
%02So1.+LEN−%D101FIND丁MEA
VERAGEAllCAL、DA丁^診りrrt翼^o
a*tss付 表 I(続き) 一^工丁 Tom  1t011!jTEl)DAS 
 DIliTAJ!FI     At1XI011 
        1  WAX?  FOjl  Au
X  Ilo  丁OC0PIFLt丁t付 表 I(
続き) UEQuE3iVIEWTMOrRONTHEDA51
DISCARDN、G、ICIE入丁tIIIICIF
冶0CALOrlIffEGuTIONVALLIrl
’oICOHVJ丁lNG1.ATER#tn#LDO
FCOHT員0LSrORDIieAR1’1lNO+
NIVInSOGrDkTk貿^!TFog恥tOut
XTEDDA!DATA夙EQIIEST^VIEWO
FDATArllOMTM!DASlrlU丁VAIJ
DDA丁A)付表I(続き) i丁IME5丁八FT イ;1 表 1 (続き) IFNOTLOOPEND丁11+!NGo「H1CK
Ou丁EIL(KIPKNDHOTInVAXILlr
rERrlJLLLIFDA丁EI10DOIIBLE
ILI#ff1lCOII丁MOL付表I(続き) IPNOTLCIOPENOTHENRrPE^丁LO
OPLO(IPK+40+Ill+PLAS?VIE’
WOrDATAToVAXNO丁1rYVAX診urr
tRFRILL罠E丁uR11?0CALLIJ 胞丁HIII!TLIIINmCALLE真1    
   υTI+ITY  $LISROり丁INtS 
 ACID  rLINcTIONs  rORDAT
A CoLLtC丁Ion  真Ou丁111EC〇八
tυτ「^丁TtHυ^TTONDATへVALUES
l員A11    tETl    11−  +ut
uuN      I  SIT  rL^G  八6
o*t、ss付表1(続き) DL1112+I!1NJY1.DAjlol)ADr
、AFA+jffI37 付  表  I (続さ) *oC−1/ Nux*cr 付 表 l (続き) 0111+11+MSY5.DA$l0DLDF、AP
A197フ、11 CCWPuTtNO員+tALI!KDDE丁EC丁0
1DA丁AVALL+!5pA(Ill−1/AIR*
trCmECrOVI+。
Appendix I INTERNALLYoEtIHtDCLOIIIk
Ll! I! DIYMllOLi+IIGLOILIlTsuta1797PolN〒s+ 1 1Lll*olJTINtj+IkuCL
OILC^%lAl. ffNlfiTI. COMV*T
.. -DAil'+X. CNVDkT, IIEQNXV,
#LllIOFF, DATA I1t8
0 諷V L^IEIJ+l (XTffll#ALL
r DErlWED GLOIALIl! DMVNa
OLSr IEGLOIL+rINTIl
nFOINTS+ EGLOIL r? IJIT. ODAIKIIilJ
@ROLITINIill 1c訃1tLliL -■lOu+! C.L.
OIL rcIFLJ I DATA MfllOPW 1Ll&L
i+GLOIL AU! P+? .. (OFIII
O. CTI+: Ass frAPt'LINETIONI
DHljllIrLENctD+oADF+ y
out tDII●II I I
DrOR-EQutST DAI-MCkH
RUNI LOCAL IYMIOL DEr
lN+T! ONS+AACIID+ffiQtl
%Oko%4 + LOC
kL^VL All An C^L. ILIrF!
Leg IDAJilJLN+ggutoaelLOeALA
T/E. IUAICCALIUrrEILtNOdingMA
llllI+D+EOtl%Q2S)
IAVE. All CAL $LIl'f
lJ 10AIAILNI! QLI%I14401AV
LAllll(ALSUFFERt.llIGTMA??
IIDiiQIItozs21ATrtMUAT10M
Table l (continued) with DATAaUrrtRID DuA)llXINsl. DA$lQDAOr. ^PA
+lfu7+11 AT? lLN+lull&DIQOHATTEsuAT
ION DATA UIrrEIILENG Ding KINDII
O+! QLI%D16HIMDI! AMHAIIDEN
INGDATAsurrE 10mMlIJL4EOL
1100HllIrrEILENGTHDTNAMIC
(AIIIllll+tou40251I(+jJuR
EN Ding AIII-fFBWFEI10CAJIL+1+
tgu%oilCuPJtHTAIRTrueLrhurr
t*LENO ding N (rNllo+EQII%DI91)
cux*chtateTINtILlrrE member 10'-
DEILIG-”CTFl&LH+toll%DSLKOHCLIJKENTATCDingIFICBu#CIIJN
GTII4-DrJ ReG1oxCs+o+EOIJto
So+LOCALAVE. DATAAI11CALU
JrrE Trap 10DACILHIEOU%og-GolL
OCALAVE. OA DingAAlllCALILIrF(
jiLEHCTHDET101 Kou so
24a H DET! CTOI
DATA ILIFFE member 10DETILll
+EOutcl600+DtTECTO milk DATABU
FFERLENGTHIOTIIQ+ Ant 017
io2oo 1 1/O
XFt*OrrStte? AIIJ murr
E 艮 IQ 10 ILNI! OLl%DOIsurr!
True gllcrllDYNMIC+200IL341CO
MPυding! DONrODLIIIO+zQutD2(srCMJTPuTD^tAtlFPc*LrNffaT
JrrtRfD00LILN+ EOu
%D4 H OutTnT
DATA LIPPC* LIMI? ILl
lEI LENG? NOoShIO+EOLI%D2
41ICMJTPuTDADingAficALtllLl#
l! RIQODjBLN+KQLItD41OLl? P
LITDATASC^L! IIIrF! RLEHG Ding H
OrSllD+EOLI%o24FlOrrStTDA
DingAmWrt member 10Or$iLN+IOLISD440
10FFSETDATAAllIllrKILKNGDingH
Milk o(llD+tOU%o244
H EF! *fNCI DET
tCTO* COWT hurt true 10+ID
CILNI! OLIn41夙trt艮tNCLDffi
tEC? O true COu)ffSUFFERLENGTH夙OMB1D+! OLllD23●I true EFE Daien (!
DtT! C? (nusK*urn*10%DMIILN
+KOU%DI61TrE*EHCLDETtCio
*WALKLffiNO DingN*IIJID+! OuSD
211HmECIFIIOCALOrINitORAT
IONVALUEDkTAILll'fEIIoI1(
llILll+tgu%D41*ECIF nose 0 (ALO
rINTEGRATIONNV^LUEDATAAllJF
rclLE*NVIID+EOu%o246lII'V
IEWREALVALLItOkTk@urrHI10
father-in-law NVmLNIEOuID41NVItlJREALv
ALLltDATA BUFFER LENG Ding N Ding CDI
IID+EOII%I314Sl? EMP. COHVt
*TEDDfiTkSUFFERTODILNIE
ou%06461TEMP. COHVLRTLDDkT
kIrirrt*LENOTN Table I (continued) ,a^ODtTECTO夙SSETrRosCOHrl
OnuV26/δ5PROIIGl'Kding^艮ding OFtrue ELOCji'AIICECODEINFIOGuFI
FIEMORYI DffirlNI Ding108 0
F TIIE rUNcTION ID ro
ll THE AP! XtCMIME? I
JNC? ION TAIIIJFLINC D
ADF. ODADF I rlllllcT
ION Ill AND! NT Shiny POIN
Table I with T NAME (Continued) Table I (Continued) DLIA2 + (XIR5VS okl 1QDAl
lr, APAIIff) +37 ALLOCA7! DkSDATAINPuTIllrr
rJ181Gφ%0249+, IL! :N-4N-40
6721REQUESTVIEWOIIerDWED5IDISC8*oN,G,1ALLOCATETtM
P, C0NVEII51ONDATAAllllrrl+A
IItlD-&D21Sl, +LEN-&D6101^
LLOeATKDETtCTORDATAIIIFFE
M+ll0-402481. ILEN4D4001^L
LOCATEATTENUAD1ONDATASUFF
ER11110-%D2S21. ILEN-tD6QO
IALLOCA dingff1CLllu! NTAIR Yu ff
1F, BUrrE11+11D-$02111.11J
N-%01+11ALLOC^dATAAIRCA
L,lI+JrF! 1flIll-4N2%61. IL
With EN-%D6001 Table I (continued) ALLQCATEAnAnCAL Door 11#01m+D-
%02So1. +LEN-%D101FIND MEA
VERAGEAllCAL, DA ding ^ examination rrt wing ^o
Table I (continued) with a*tss Tom 1t011! jTEL) DAS
DIliTAJ! FI At1XI011
1 WAX? FOjl Au
X Ilo Ding OC0PIFLt Ding t Table I (
Continued) UEQuE3iVIEWTMOrRONTHEDA51
DISCARDN, G, ICIE entry tIIIICIF
用0CALOrlIffEGuTIONVALLIrl
'oICOHVJDinglNG1. ATER#tn#LDO
FCOHT member 0LSrORDIieAR1'1lNO+
NIVInSOGrDkTktrade^! TFog shame tOut
XTEDDA! DATA EQIIEST^VIEWO
FDAArllOMTM! DASlrlUting VAIJ
DDA Ding A) Appendix I (Continued) i Ding IME5 Chop 8 FT A;1 Table 1 (Continued) IFNOTLOOPEND Ding 11+! NGO “H1CK
OudingEIL(KIPKNDHOTInVAXILlr
rERrlJLLLIFDADINGEI10DOIIBLE
ILI#ff1lCOII Ding MOL Appendix I (continued) IPNOTLCIOPENOTHENRrPE^Ding LO
OPLO(IPK+40+Ill+PLAS?VIE'
WOrDATAToVAXNO 1rYVAX diagnosis urr
tRFRILL Trap EchouR11?0CALLIJ ShuchoHIII! TLIIINmCALLE true 1
υTI+ITY $LISRO RI DINtS
ACID rLINcTIONs rORDAT
A CoLLtC Ding Ion True Ou Ding 111EC〇8tυτ ``^DingTtHυ^TTONDAT TO VALUES
l member A11 tETl 11- +ut
uuN I SIT rL^G 86
o*t, ss Appendix 1 (continued) DL1112+I! 1NJY1. DAjlol)ADr
, AFA+jffI37 Appendix Table I (Continued) *oC-1/ Nux*cr Appendix Table I (Continued) 0111+11+MSY5. DA$l0DLDF, AP
A197fu, 11 CCWPuTtNO member +tALI! KDDE Ding EC Ding 0
1DADAVALL+! 5pA(Ill-1/AIR*
trCmECrOVI+.

付 表 1 (続き) OLIJ+lXIMIYj、DA$l01)入DF、A
PAr97フ・17 CMtCXDATA$TATLISOrCLIIIA!
NTVI!41ABONTIFeALIAD−OeQN
VKMT  OLD  mLIFrE月RTNH*t?
1lIIH丁0CALLtllDATAjEPAIAT
IONllouTIN!付 表 I(続き) !ENDDkTkBUFFERToVAK付表I(続き
) FTIIDWNIJfDkSDA丁ASTAIIT5−
LCHEOLl?INF付 表 I(続き) Dtn21111MffY1.DAjlODADF^P
A19’1スCHECKCLIIJCNT#Urrff
ilDASXrtR3TATWANDA廖0訳丁HC人
LIIAD−+13、  REQUEST  NtXT
 vIr、W  Or  D入TA rROM  TH
E  DAM付 表 l(続き) OLIA2+lX+pljY!、DA!1Qoxor、
APA197塾、eOPYkIR真ErtRLNCEV
kLUESTOCklRtrAIIIAVtelll*
ENTAnIII!l’、1)ET    +11+ 
Rb        l  lLL+tL Nu Lu
rl  3L1 1Mrul  Aut+RL)M付表
I(続き) Dlllに2+111xS1’1.1)xj1%^or
、hth+9’lフ+II CMRfENDOrIN?ff1G−A丁1ONLoo
t*tOutSTNEXTD^丁AVIKIIrROI
ID鳥S付表1(続き) イ、l 表 1 (続き) CQFADD+  DS      O+  C0NT
夙OL  11010  Fox  Cory  OR
ADD  IN  +NTtGRλ丁!0村FLIDG
t+05snoooooo10rrSelro真DkS
OATkCONIIIJSION−−0101FLAG
 WQ*Ih FOI C0NT*OL OF ’0.
1  l101/AXMjG+or%DN、O(TII
ISVAXMSG、(A!l5ESkOkjkButr
lJLLfNT。
Appendix Table 1 (continued) OLIJ+lXIMIYj, DA$l01) Input DF, A
PAr97fu・17 CMtCXDATA$TATLISOrCLIIIA!
NTVI! 41ABONTIFeALIAD-OeQN
VKMT OLD mLIFrE month RTNH*t?
1lIIHd0CALLtllDATAjEPAIAT
IONllouTIN! Appendix Table I (continued)! ENDDkTkBUFFERToVAK Appendix I (Continued) FTIIDWNIJfDkSDA-ASTAIIT5-
LCHEOLl? With INF Table I (continued) Dtn21111MffY1. DAjlODADF^P
A19'1 SCHECKCLIIJCNT#Urrff
ilDASXrtR3TATWANDA廖0訳 TINGHC人LIIAD-+13, REQUEST NtXT
vIr, W Or D input TA rROM TH
E With DAM Table l (continued) OLIA2+lX+pljY! ,DA! 1Qoxor,
APA197 School, eOPYkIR True ErtRLNCEV
kLUESTOCklRtrAIIIAVtell*
ENTAnIII! l', 1) ET +11+
Rb l lLL+tL Nu Lu
rl 3L1 1Mrul Aut+RL)M Appendix I (continued) 2+111xS1'1.1)xj1%^or for Dlll
,hth+9'lfu+II CMRfENDOrIN? ff1G-Acho1ONLoo
t*tOutSTNEXTD^Ding AVIKIIrROI
ID Bird S Appendix Table 1 (Continued) A, l Table 1 (Continued) CQFADD+ DS O+ C0NT
夙OL 11010 Fox Cory OR
ADD IN +NTtGRλding! 0 village FLIDG
t+05snooooooo10rrSelro true DkS
OATkCONIIIJSION--0101FLAG
WQ*Ih FOI C0NT*OL OF '0.
1 l101/AXMjG+or%DN,O(TII
ISVAXMSG, (A!l5ESkOkjkButr
lJLLfNT.

OHt*urI Dr      %N1.OI ml
:X/NSN  INPLIT  Fox  l0II
ND  rllNc丁重0Nos%5lo0000+D
ATAVALLIErORmlIrrtA1.6pil
NIUr+DF%NI+、0+IE!/N5NVAL、
LIESETIEjOIELkCH&NDLC^LLD
jtsO(100011DATAVALLIEIIIM
INIPILIMILSalFOJ^bOvE6!!/
85NM+0001  o9     %sC,OII
EX/N5NDiisso(00GHD^丁^vALu
c3060.6or1132に+  Dr    to
s、o       + @tx、’H1Hro11r
Dismirrroo+DATAVALLIEl!、9
9902C丁112L+   DPINF、0    
   + 5cxfHsNFoxDStmtrrroo
ID^丁^VALut’J2j61.DDr5AklF
IA11AIIN+   ox   5xoooooo
    l ukl DAT−4lN FLAG 0−
No、 640−YesSiLIF+DrtNIJIS
EX/N5+11NFLITrolIOLINDFUN
CtlONostxoooooolDATAvALuE
roABurFE11.0
OHt*urI Dr %N1. OIml
:X/NSN INPLIT Fox l0II
ND rllNc respectful0Nos%5lo0000+D
ATAVALLIErORmlIrrtA1.6pil
NIUr+DF%NI+,0+IE! /N5NVAL,
LIESETIEjOIELkCH&NDLC^LLD
jtsO(100011DATAVALLIEIIIM
INIPILIMILSalFOJ^bOvE6! ! /
85NM+0001 o9 %sC, OII
EX/N5NDiisso (00GHD^Ding^vALu
c3060.6or1132 + Dr to
s, o + @tx, 'H1Hro11r
Dismirrroo+DATAVALLIEl! ,9
9902C-112L+ DPINF, 0
+ 5cxfHsNFoxDStmtrrroo
ID^D^VALut'J2j61. DDr5AklF
IA11AIIN+ ox 5xoooooo
l ukl DAT-4lN FLAG 0-
No, 640-YesSiLIF+DrtNIJIS
EX/N5+11NFLITrolIOLINDFUN
CtlONostxooooooolDATAvALuE
roABurFE11.0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の検査装置の略図、 第2図は第1図に示したコンビコータ・システムに貯蔵
されるプログラムのフローチャートで、第1図の検査装
置によって発生される信号対↑IL音比を高めると共に
像のぼけを減少する。 主な符号の説明 4;部品 8;治具 10:電磁エネルギ源 16:電磁エネルギ検出器 18:コンピュータ・システム
FIG. 1 is a schematic diagram of the inspection apparatus of the present invention. FIG. 2 is a flowchart of a program stored in the combicoater system shown in FIG. This increases the ratio and reduces image blur. Explanation of main symbols 4; Parts 8; Jig 10: Electromagnetic energy source 16: Electromagnetic energy detector 18: Computer system

Claims (1)

【特許請求の範囲】 1)貫通性電磁エネルギのビームを発生する手段と、 該電磁エネルギのビーム中に物体を保持する手段と、 電磁エネルギのビームに対して前記物体を予定の速度で
移動する手段と、 物体を通過する電磁エネルギの強度に関係する信号を発
生する検出手段と、 該検出手段からの信号の大きさを相次ぐ時刻に且つ予定
の速度で標本化して貯蔵する手段と、複数個の信号を発
生する処理手段とを有し、該複数個の信号の各々は物体
の予定の部分による電磁エネルギの減衰の大きさに関係
していて、何れも予め選ばれた複数個の時間的に相次ぐ
標本化されて貯蔵された値に応答して発生し、更に 該減衰に関係する信号に応答して物体の像を発生する手
段とを有する物体を検査する装置。 2)特許請求の範囲1)に記載した物体を検査する装置
に於て、前記複数個の減衰に関係する信号の各々が、前
記予め選ばれた複数個の標本化されて貯蔵された大きさ
の平均値である物体を検査する装置。 3)貫通性電磁エネルギのビームを発生する手段、該電
磁エネルギのビーム中に物体を保持する手段、前記電磁
エネルギのビームに対して物体を予定の速度で移動する
手段、物体を通過した電磁エネルギの大きさに関係する
信号を発生する手段、物体を通過する電磁エネルギの大
きさに関係する信号を予定の速度で繰返して標本化して
貯蔵する手段、及び標本化して貯蔵された大きさに応答
して、物体の少なくとも一部分の像を発生する手段で構
成される様な物体を検査する装置の信号対雑音比を高め
ると共に該装置によって発生される像のぼけを減少する
方法に於て、移動する手段が、電磁エネルギのビームに
対して物体を移動する速度を標本化速度に比べて下げる
工程を含む方法。 4)特許請求の範囲3)に記載した方法に於て、標本化
されて貯蔵された大きさの内の予め選ばれたものを平均
する工程を含む方法。 5)物体を検査する装置に於て、 物体を通る複数個の通路の電磁エネルギ減衰係数に関係
する複数個の信号を発生する手段と、該発生する手段に
接続されていて、複数個の信号の内の選ばれた信号を平
均する手段と、 該平均する手段に接続されていて、物体の像を発生する
手段とを有する装置。
Claims: 1) means for generating a penetrating beam of electromagnetic energy; means for holding an object in the beam of electromagnetic energy; and moving the object at a predetermined velocity relative to the beam of electromagnetic energy. means for detecting a signal related to the intensity of electromagnetic energy passing through the object; means for sampling and storing the magnitude of the signal from the detecting means at successive times and at a predetermined rate; processing means for generating a plurality of signals, each of the plurality of signals relating to the magnitude of attenuation of electromagnetic energy by a predetermined portion of the object, each of the plurality of signals being associated with a preselected plurality of temporal means for generating an image of the object in response to successive sampled and stored values and further in response to signals related to said attenuation. 2) In the apparatus for inspecting an object according to claim 1), each of the plurality of attenuation-related signals has a magnitude of the preselected plurality of sampled and stored magnitudes. A device that inspects objects that have an average value of . 3) means for generating a penetrating beam of electromagnetic energy, means for holding an object in the beam of electromagnetic energy, means for moving the object at a predetermined velocity relative to the beam of electromagnetic energy, and means for transmitting the electromagnetic energy through the object; means for generating a signal related to the magnitude of the electromagnetic energy passing through the object, means for repeatedly sampling and storing the signal related to the magnitude of electromagnetic energy passing through the object at a predetermined rate, and responding to the sampled and stored magnitude. in a method for increasing the signal-to-noise ratio of an apparatus for inspecting an object and reducing image blur produced by the apparatus, the apparatus comprising: means for generating an image of at least a portion of the object; the means for reducing the speed at which the object is moved relative to the beam of electromagnetic energy relative to the sampling speed. 4) A method according to claim 3, comprising the step of averaging preselected sizes of the sampled and stored sizes. 5) In an apparatus for inspecting an object, means for generating a plurality of signals related to electromagnetic energy attenuation coefficients of a plurality of paths through the object; and means connected to the averaging means for generating an image of the object.
JP62219295A 1986-09-19 1987-09-03 Device for inspecting body and method of improving signal-to-noise ratio Pending JPS63120244A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90974086A 1986-09-19 1986-09-19
US909,740 1986-09-19

Publications (1)

Publication Number Publication Date
JPS63120244A true JPS63120244A (en) 1988-05-24

Family

ID=25427750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62219295A Pending JPS63120244A (en) 1986-09-19 1987-09-03 Device for inspecting body and method of improving signal-to-noise ratio

Country Status (6)

Country Link
JP (1) JPS63120244A (en)
CA (1) CA1301372C (en)
DE (1) DE3730506A1 (en)
FR (1) FR2604258A1 (en)
GB (1) GB2196220B (en)
IT (1) IT1226645B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3818542C2 (en) * 1988-05-31 1994-05-11 Gerhard Dipl Ing Hoeper Device for testing a technical body
EP2820286B8 (en) 2012-02-27 2019-12-11 Hytech Power Inc. Oxygen-rich plasma generators for boosting internal combustion engines
CN104730091B (en) * 2015-02-10 2018-01-16 西安交通大学 The extraction of gas turbine blades defect and analysis method based on region segmentation detection
KR20220123330A (en) 2016-03-07 2022-09-06 하이테크 파워, 인크. A method of generating and distributing a second fuel for an internal combustion engine
US20190234348A1 (en) 2018-01-29 2019-08-01 Hytech Power, Llc Ultra Low HHO Injection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1587643A (en) * 1977-06-16 1981-04-08 Siemens Ag Tomographic scanning apparatus
USRE32164E (en) * 1980-12-01 1986-05-27 The University Of Utah Radiographic systems employing multi-linear arrays of electronic radiation detectors
JPS5850453A (en) * 1981-09-21 1983-03-24 Mitsubishi Electric Corp Inspection system of article
US4506327A (en) * 1981-11-23 1985-03-19 General Electric Company Limited-angle imaging using multiple energy scanning
DE3325281C2 (en) * 1983-07-13 1985-09-26 Rheinisch-Westfälischer Technischer Überwachungsverein e.V ., 4300 Essen Method and device for continuous, non-destructive material testing on continuously moving strip material
US4583240A (en) * 1983-08-15 1986-04-15 General Electric Company Data acquisition circuitry for use in computerized tomography system
JPS60123754A (en) * 1983-12-08 1985-07-02 Nippon Kokan Kk <Nkk> Radiation fluoroscopic apparatus
US4803639A (en) * 1986-02-25 1989-02-07 General Electric Company X-ray inspection system

Also Published As

Publication number Publication date
DE3730506A1 (en) 1988-03-24
GB2196220B (en) 1991-02-06
IT8721931A0 (en) 1987-09-16
GB8721405D0 (en) 1987-10-21
FR2604258A1 (en) 1988-03-25
IT1226645B (en) 1991-01-31
GB2196220A (en) 1988-04-20
CA1301372C (en) 1992-05-19

Similar Documents

Publication Publication Date Title
LaManna et al. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography
Brenizer A review of significant advances in neutron imaging from conception to the present
JPS63120244A (en) Device for inspecting body and method of improving signal-to-noise ratio
Kemner et al. A low-temperature gas-flow total electron yield detector for XAFS measurements
Feldkamp et al. Compact x-ray microtomography system for element mapping and absorption imaging
Meckbach et al. Ratio of the effective charge of He beams traversing gaseous and metallic cadmium
Mulvey Conference on Electron Probe Microanalysis, Reading, September 1963: Recent advances in the instrumentation and technique of electron probe microanalysis
Kini Tomographic inspection system using X-rays
Thomas 50208 Performance in X-ray tomography application to the inspection of very strong absorbers (In French: English Abstract): Revue Pratique de Controle Industriel, Vol. 173, Iss. 2, pp. 72–78 (Mar. 1992)
Albert Large-area scanning x-ray source to maximize contrast sensitivity by minimizing scatter detection
Chessin et al. X-ray spectrometric determination of atmospheric aerosols
MAMCHEV A method of obtaining stereoscopic radiation images
Nagata et al. 50453 High energy high resolution monochromatic X-ray computed tomography using synchrotron radiation: Nondestructive Testing Evaluation, Vol. 7, No. 1–6, pp. 299–307 (1992)
Erre et al. 50714 Prospects of X-ray microscopy and X-ray microtomography for interface studies: Surface and Interface Analysis, Vol. 19, No. 1–12, pp. 89–92 (Jun. 1992)
Goebbels et al. 50448 Characterization of typical defect structures of advanced engineering materials by computerized tomography: Nondestructive Testing and Evaluation, Vol. 8–9, Pt. 2,(1992) Proceedings of the 5th International Symposium on Nondestructive Characterization of Materials, Karuizawa (Japan), 27–30 May 1991. pp. 769–778. Edited by T. Kishi, T. Saito, C. Ruud, and R. Green.
Gusev et al. 50710 Soviet combined and semiconductor detectors for X-ray computing tomography: Russian Journal of Nondestructive Testing, Vol. 28, No. 2, pp. 64–73 (Oct. 1992)
Masuda et al. 50447 Observation of fibers in long fiber reinforced metal matrix composites by X-ray computed tomography using synchrotron radiation: Nondestructive Testing and Evaluation, Vol. 8–9, Pt. 2,(1992) Proceedings of the 5th International Symposium on Nondestructive Characterization of Materials, Karuizawa (Japan), 27–30 May 1991. pp. 779–786. Edited by T. Kishi, T. Saito, C. Ruud, and R. Green.
Peyrin et al. 50700 Analysis of a cone beam X-ray tomographic system for different scanning modes: Journal of the Optical Society of America, Vol. 9, pp. 1554–1563 (Sep. 1992)
Yamauchi et al. 50452 Three-dimensional high resolution tomography for small objects: Nondestructive Testing Evaluation, Vol. 7, No. 1–6, pp. 309–318 (1992)
Bossi et al. 50706 Computed tomography analysis of casting: Boeing Defense and Space Group, Seattle, Washington (United States), AD-A249 099/3/GAR, 39 pp.(2 Jan. 1992)
Grover et al. Use of sticking coefficients for on-line chemical analysis of be beams of short lived nuclides
Bossi et al. X-Ray Microfocus Radioscopy and Computed Tomography for Failure Analysis
Kizaur INSPECTION APPARATUS
Hammersberg Improved image quality in computerised tomography with proper X-ray energy parameter settings
Stahle The development of high-resolution calorimetric x-ray detectors for compton scattering experiments