JPS6311702Y2 - - Google Patents

Info

Publication number
JPS6311702Y2
JPS6311702Y2 JP1981007624U JP762481U JPS6311702Y2 JP S6311702 Y2 JPS6311702 Y2 JP S6311702Y2 JP 1981007624 U JP1981007624 U JP 1981007624U JP 762481 U JP762481 U JP 762481U JP S6311702 Y2 JPS6311702 Y2 JP S6311702Y2
Authority
JP
Japan
Prior art keywords
hole
internal electrode
holes
multilayer ceramic
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981007624U
Other languages
Japanese (ja)
Other versions
JPS57121128U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981007624U priority Critical patent/JPS6311702Y2/ja
Publication of JPS57121128U publication Critical patent/JPS57121128U/ja
Application granted granted Critical
Publication of JPS6311702Y2 publication Critical patent/JPS6311702Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は積層セラミツクコンデンサ、特に、大
容量の積層セラミツクコンデンサに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a multilayer ceramic capacitor, particularly a large capacity multilayer ceramic capacitor.

(従来の技術) 一般に、積層セラミツクコンデンサは、誘電体
セラミツクグリーンシートの上に内部電極となる
白金、パラジウムなどの高融点金属を主体とする
導電ペーストと印刷し、このセラミツクグリーン
シートを内部電極の表出方向が互い違いになるよ
うに積み重ねて圧着した後、焼成し、その焼結積
層体の側面に外部引出電極を形成して該側面に表
出する内部電極と電気的に接続するようにしたも
のである。
(Prior art) In general, multilayer ceramic capacitors are manufactured by printing a conductive paste mainly made of a high-melting point metal such as platinum or palladium, which serves as the internal electrodes, on a dielectric ceramic green sheet, and then using this ceramic green sheet as the internal electrode. After stacking and crimping so that the exposed directions are alternated, it is fired, and an external extraction electrode is formed on the side surface of the sintered laminate to electrically connect with the internal electrode exposed on the side surface. It is something.

この構造のセラミツクコンデンサは小形で大容
量が得られるという利点を有するが、1〜100μF
の大容量の積層セラミツクコンデンサを製造する
場合、セラミツクグリーンシーを大きくしてその
表面に形成する内部電極の面積を大きくする一
方、セラミツクグリーンシートの積層枚数を多く
して内部電極の枚数を増やすことが行なわれてい
る。
Ceramic capacitors with this structure have the advantage of being small and providing large capacitance;
When manufacturing a multilayer ceramic capacitor with a large capacity, it is necessary to increase the size of the ceramic green sheet to increase the area of the internal electrodes formed on its surface, and at the same time increase the number of ceramic green sheets laminated to increase the number of internal electrodes. is being carried out.

しかし、前記構造の積層セラミツクコンデンサ
では、セラミツク層の大型化や積層枚数の増加に
伴つて歩留りが悪くなり、また、静電容量に大き
なバラツキを生ずるという問題があつた。このた
め、第1図に示すように、ある程度の大きさの角
型積層セラミツクコンデンサ1を複数個並列に配
置して、はんだ2などで電気的に並列に接続し、
これを直方体の樹脂ケース3に収容し、さらに樹
脂で封止するか、あるいは全体を樹脂で塗装被覆
し、リード線4,5をケース3から外部へ導出さ
せるようにした構造の積層セラミツクコンデンサ
が提案されている。
However, the laminated ceramic capacitor having the above-mentioned structure has problems in that as the size of the ceramic layers increases and the number of laminated layers increases, the yield deteriorates and large variations in capacitance occur. For this reason, as shown in FIG. 1, a plurality of rectangular multilayer ceramic capacitors 1 of a certain size are arranged in parallel and electrically connected in parallel with solder 2 or the like.
This is a multilayer ceramic capacitor that is housed in a rectangular parallelepiped resin case 3, further sealed with resin, or coated entirely with resin, and with lead wires 4 and 5 led out from the case 3. Proposed.

(考案が解決しようとする問題点) しかしながら、第1図の構造の積層セラミツク
コンデンサでは、外部引出電極がコンデンサの表
面に形成されるため、必ず外部絶縁を施さなけれ
ばならず、樹脂ケースに収容するか樹脂を塗布し
てコンデンサの全表面に絶縁皮膜を形成しなけれ
ばならない。しかも、樹脂ケースを用いたり樹脂
で被覆しなければ、個別の積層セラミツクコンデ
ンサを互いに強固に接続できないという欠点があ
り、それらの構造とするために余分の処理工程が
増加することを避けられないという問題があつ
た。
(Problem that the invention aims to solve) However, in the multilayer ceramic capacitor with the structure shown in Figure 1, the external lead electrode is formed on the surface of the capacitor, so external insulation must be provided and the capacitor is housed in a resin case. An insulating film must be formed on the entire surface of the capacitor by applying resin. Moreover, there is the disadvantage that individual multilayer ceramic capacitors cannot be firmly connected to each other without using a resin case or coating with resin, and it is inevitable that extra processing steps will be required to create such a structure. There was a problem.

従つて、本考案は、外部絶縁のためのケースや
絶縁皮膜を必要としない構造からなる大容量の積
層セラミツクコンデンサを提供することを目的と
する。
Therefore, an object of the present invention is to provide a large-capacity multilayer ceramic capacitor having a structure that does not require a case or an insulating film for external insulation.

(問題点を解決するための手段) 本考案は、前記問題点を解決する手段として、
誘電体セラミツク層と内部電極層とが交互に積層
され、それらの積層方向に貫通する二つの貫通孔
を有し、前記各内部電極層が隣あう他の内部電極
層と互い違いに一方の貫通孔に表出し、該貫通孔
の壁面に形成された外部引出電極と電気的に接続
された複数の積層体からなり、該複数の積層体が
それらの積層方向に、かつ、それらの対応する貫
通孔がそれぞれ同軸上に位置するように積層して
一体化され、前記貫通孔にそれぞれ挿入され前記
外部引出電極に接続された一対のリード線により
電気的に並列接続されていることを特徴とする積
層セラミツクコンデンサを提供するものである。
(Means for solving the problems) The present invention provides the following as means for solving the problems mentioned above.
Dielectric ceramic layers and internal electrode layers are alternately laminated and have two through holes penetrating in the direction of lamination, and each of the internal electrode layers has one through hole alternately with the other adjacent internal electrode layer. The plurality of laminates are exposed in the through-hole and electrically connected to the external extraction electrode formed on the wall surface of the through-hole, and the plurality of laminates are connected in the stacking direction and in the corresponding through-hole. are laminated and integrated so that they are located coaxially, and are electrically connected in parallel by a pair of lead wires inserted into the through holes and connected to the external extraction electrodes. The company provides ceramic capacitors.

(作 用) 積層セラミツクコンデンサをそれ自体コンデン
サを構成する複数の積層体で構成することによ
り、小さなセラミツク層の採用を可能にし、従つ
て、コンンサの歩留りの向上および静電容量のバ
ラツキの低減化を可能にする。また、外部引出電
極を積層体の貫通孔の内壁に設けることにより、
外部との絶縁を容易に達成でき、貫通孔に挿通さ
れ外部引出電極に接続されたリード線は、積層体
を一体化すると共に、各積層体による構成される
コンデンサを並列接続する役割を果たすため、リ
ード線に通す積層体の個数を増加させるだけでコ
ンデンサの大容量化を可能にしている。
(Function) By configuring a multilayer ceramic capacitor with multiple laminates that themselves constitute a capacitor, it is possible to use small ceramic layers, thereby improving the yield of capacitors and reducing variations in capacitance. enable. In addition, by providing an external lead electrode on the inner wall of the through hole of the laminate,
Insulation from the outside can be easily achieved, and the lead wire inserted through the through hole and connected to the external extraction electrode plays the role of integrating the laminates and connecting the capacitors constituted by each laminate in parallel. , it is possible to increase the capacitance of a capacitor simply by increasing the number of laminates passed through the lead wires.

以下、図面を参照して本考案の一実施例につい
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

(実施例) 本考案の一実施例を示す第2図および第3図に
おいて、積層セラミツクコンデンサ11は、円板
状の外観を有し、誘電体セラミツク層12と内部
電極層13,14とを交互に厚さ方向に積層して
なる複数の積層体15からなり、各積層体15
は、その積層方向にセラミツク層12および内部
電極層13,14を貫通する二つの貫通孔16,
17が形成されている。内部電極層13と内部電
極層14とは誘電体セラミツク層12を挾むよう
に交互に配置されている。
(Embodiment) In FIGS. 2 and 3 showing an embodiment of the present invention, a multilayer ceramic capacitor 11 has a disc-shaped appearance and includes a dielectric ceramic layer 12 and internal electrode layers 13 and 14. Consisting of a plurality of laminates 15 alternately laminated in the thickness direction, each laminate 15
are two through holes 16 that penetrate the ceramic layer 12 and the internal electrode layers 13 and 14 in the stacking direction.
17 is formed. Internal electrode layers 13 and internal electrode layers 14 are alternately arranged with dielectric ceramic layer 12 in between.

内部電極層13,14は、基本的には、セラミ
ツク層12をその縁部を除く全面を覆うように形
成されるが、内部電極層13は、第3図に示すよ
うに、一方の貫通孔16の内壁に表出するが、他
方の貫通孔17の内壁に表出せず、該貫通孔17
との間に所定のギヤツプ22が形成されるように
貫通孔17を包囲している。他方、セラミツク層
12を介在させて内部電極層13と隣合う他の内
部電極層14は、図には示してないが、内部電極
層13とは逆に、貫通孔17の内壁に表出する
が、貫通孔16の内壁には表出せず該貫通孔16
との間に所定のギヤツプ22が形成されるように
貫通孔16を包囲している。従つて、内部電極層
13,14はそれらが表出する貫通孔16,17
が互い違いになるように配設され、内部電極層1
3と内部電極層14とで誘電体セラミツク層12
を挾み込んだ状態となり、全体として大きな静電
容量を取り出すことができる。
The internal electrode layers 13 and 14 are basically formed to cover the entire surface of the ceramic layer 12 except for the edges, but the internal electrode layer 13 is formed in one through hole as shown in FIG. 16 is exposed on the inner wall of the other through hole 17, but not exposed on the inner wall of the other through hole 17.
The through hole 17 is surrounded so that a predetermined gap 22 is formed between the two. On the other hand, although not shown in the figure, another internal electrode layer 14 adjacent to the internal electrode layer 13 with the ceramic layer 12 interposed therebetween is exposed on the inner wall of the through hole 17, contrary to the internal electrode layer 13. However, the through hole 16 is not exposed on the inner wall of the through hole 16.
The through hole 16 is surrounded so that a predetermined gap 22 is formed between the two. Therefore, the internal electrode layers 13 and 14 are exposed through the through holes 16 and 17.
The internal electrode layers 1 and 1 are arranged alternately.
3 and the internal electrode layer 14 form the dielectric ceramic layer 12.
, and a large capacitance can be extracted as a whole.

この静電容量を取り出すため、貫通孔16,1
7の内壁には外部引出電極18,19が形成さ
れ、各外部引出電極18,19には貫通孔16,
17に表出する内部電極層13,14がそれぞれ
電気的に導通状態になるように接続されている。
また、3個の積層体15はそれらの対応する貫通
孔16,17がそれぞれ同軸上に位置するように
積層され、該貫通孔16,17にはリード線2
0,21が挿通され、それぞれ外部引出電極1
8,19にハンダ付け等により接続されている。
従つて、3個の積層体15は外部引出電極18,
19およびリード線20,21により一体化され
ると共に、電気的に並列接続されることになる。
In order to take out this capacitance, the through holes 16, 1
External extraction electrodes 18 and 19 are formed on the inner wall of 7, and through holes 16 and 19 are formed in each external extraction electrode 18 and 19, respectively.
Internal electrode layers 13 and 14 exposed at 17 are connected to each other so as to be electrically conductive.
Further, the three laminates 15 are stacked such that their corresponding through holes 16 and 17 are located coaxially, and the lead wires 2 are placed in the through holes 16 and 17.
0 and 21 are inserted, respectively, and the external lead electrodes 1
8 and 19 by soldering or the like.
Therefore, the three laminates 15 are connected to the external extraction electrodes 18,
19 and lead wires 20 and 21, and are electrically connected in parallel.

また、一方の内部電極層13は、第3図に示す
ように、貫通孔16の内壁に形成された外部引出
電極18を介してリード線20に接続され、他方
の貫通孔17の内壁に形成された外部引出電極1
9とはギヤツプ22をおいて電気的に絶縁されて
いる。このような構造は、内部電極層13に隣合
う他方の内部電極層14については、特に図示し
ないが、内部電極層13と全く逆の関係になるこ
とは明白である。この実施例のように、各内部電
極層を一方の貫通孔に表出させて該貫通孔の壁面
に設けた外部引出電極に接続する一方、電気的に
絶縁された他方の貫通孔を該貫通孔から所定のギ
ヤツプにおいて包囲するように形成すると、他方
の貫通孔の周囲を包囲させない場合よりも内部電
極層間の対向面積を大きくでき、従つて、静電容
量を増大させることができる。なお、貫通孔1
6,17の一端側は樹脂等の絶縁材23,24で
封止してある。
Further, as shown in FIG. 3, one internal electrode layer 13 is connected to a lead wire 20 via an external extraction electrode 18 formed on the inner wall of the through hole 16, and is connected to a lead wire 20 via an external lead electrode 18 formed on the inner wall of the other through hole 17. External extraction electrode 1
9 and is electrically insulated with a gap 22 therebetween. In such a structure, the other internal electrode layer 14 adjacent to the internal electrode layer 13 is not particularly illustrated, but it is clear that the relationship is completely opposite to that of the internal electrode layer 13. As in this embodiment, each internal electrode layer is exposed through one through hole and connected to an external lead electrode provided on the wall of the through hole, while the other electrically insulated through hole is exposed through the through hole. When the internal electrode layers are formed so as to be surrounded by a predetermined gap from the hole, the opposing area between the internal electrode layers can be made larger than when the periphery of the other through hole is not surrounded, and therefore the capacitance can be increased. In addition, through hole 1
One end side of each of 6 and 17 is sealed with an insulating material 23 and 24 such as resin.

前記構造の積層セラミツクコンデンサは、例え
ば、次のようにして製造することができる。
The multilayer ceramic capacitor having the above structure can be manufactured, for example, as follows.

即ち、誘電体セラミツクグリーンシートの上に
内部電極層となる導電ペーストを、所定のパター
ンに印刷して導電ペースト層を形成する。この導
電ペースト層は、貫通孔を形成する際、一方の貫
通孔には表出するように貫通孔形成部にも形成さ
れるが、他方の貫通孔の内壁には表出しないよう
に貫通孔形成部から所定間隔をおいて該貫通孔形
成部を包囲するように形成される。次いで、この
導電ペースト層を形成した誘電体セラミツクグリ
ーンシートを順次積み重ねて積層体を形成する。
このとき、奇数番目の層と隅数番目の層のセラミ
ツクグリーンシートとは、導電ペースト層の貫通
孔形成部を包囲する部分が互い違いの位置にくる
ように積層される。次いで、積層体の積層方向に
貫通する貫通孔を形成する。このとき、各導電ペ
ースト層は、一方の貫通孔にのみ表出し、他方の
貫通孔の内壁には表出しないことは勿論である。
That is, a conductive paste layer, which will become an internal electrode layer, is printed in a predetermined pattern on a dielectric ceramic green sheet to form a conductive paste layer. When forming a through hole, this conductive paste layer is also formed on the through hole forming part so that it is exposed on one through hole, but is not exposed on the inner wall of the other through hole. It is formed so as to surround the through-hole forming portion at a predetermined distance from the forming portion. Next, the dielectric ceramic green sheets with the conductive paste layer formed thereon are stacked one after another to form a laminate.
At this time, the odd-numbered layers and the corner-numbered ceramic green sheets are stacked such that the portions surrounding the through-hole forming portions of the conductive paste layer are at alternate positions. Next, a through hole penetrating the stack in the stacking direction is formed. At this time, it goes without saying that each conductive paste layer is exposed only in one of the through holes and not exposed on the inner wall of the other through hole.

この後、積層体を焼成し、さらに貫通孔の内壁
に外部引出電極が形成される。この外部引出電極
は、銀焼付法、真空蒸着法、無電解メツキ法など
によつて形成される。外部引出電極を形成した
後、積層体の貫通孔にリード線を挿通し、積層体
を複数個積層しながら順次ハンダ付け等により固
定することによつて積層セラミツクコンデンサを
製造することができる。
Thereafter, the laminate is fired, and an external lead electrode is further formed on the inner wall of the through hole. This external lead electrode is formed by a silver baking method, a vacuum evaporation method, an electroless plating method, or the like. After forming the external lead electrodes, a multilayer ceramic capacitor can be manufactured by inserting lead wires into the through holes of the laminate and sequentially fixing the laminate by soldering or the like while stacking a plurality of laminates.

なお、前記例では、生の積層体にしたのち貫通
孔を形成しているが、予めセラミツクグリーンシ
ートに貫通孔を形成しておき、貫通孔の位置合わ
せをしてセラミツクグリーンシートを積層するよ
うにしても良い。また、焼成した焼結体に貫通孔
を形成するようにしても良い。
In the above example, the through-holes are formed after the raw laminate is made, but it is also possible to form the through-holes in the ceramic green sheets in advance, align the through-holes, and then laminate the ceramic green sheets. You can also do it. Further, through holes may be formed in the fired sintered body.

(考案の効果) 前記構造の本考案に係る積層セラミツクコンデ
ンサは、外部引出電極が二つとも積層体の内部、
即ち、貫通孔の内壁に形成されているため、これ
らのコンデンサを複数積み重ね、対応する外部引
出電極を貫通孔に挿通したリード線で電気的に接
続することにより容易に並列接続でき、任意の大
容量のものを得ることができる。また、積層体は
円板状でも角板状でも良く、円板状にすると、ア
ルミニウムコンデンサのように円柱状の大容量セ
ラミツクコンデンサを得ることができる。
(Effect of the invention) In the multilayer ceramic capacitor according to the invention having the above structure, both of the external lead electrodes are located inside the laminate;
In other words, since these capacitors are formed on the inner wall of the through hole, they can be easily connected in parallel by stacking multiple of these capacitors and electrically connecting the corresponding external extraction electrodes with lead wires inserted through the through hole. You can get the capacity. Further, the laminated body may be in the shape of a disk or a square plate, and if it is formed into a disk shape, a columnar large capacity ceramic capacitor like an aluminum capacitor can be obtained.

さらに、外部引出電極がコンデンサ内部に形成
され、外表面は全てセラミツクであるため、外部
引出電極の保護あるいは外部との絶縁を図る目的
で樹脂ケースや絶縁皮膜を必要としないので、製
造コストを低減することができる。
Furthermore, since the external lead electrode is formed inside the capacitor and the entire outer surface is made of ceramic, there is no need for a resin case or insulating film to protect the external lead electrode or insulate it from the outside, reducing manufacturing costs. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の大容量積層セラミツクコンデン
サの構造を示す一部切欠斜視図、第2図は本考案
の一実施例を示す積層セラミツクコンデンサの縦
断面図、第3図は第2図の積層セラミツクコンデ
ンサの構造を示す横断面図である。 11……積層セラミツクコンデンサ、12……
導電体セラミツク層、13,14……内部電極
層、15……積層体、16,17……貫通孔、1
8,19……外部引出電極、20,21……リー
ド線。
FIG. 1 is a partially cutaway perspective view showing the structure of a conventional large-capacity multilayer ceramic capacitor, FIG. 1 is a cross-sectional view showing the structure of a ceramic capacitor. 11... Multilayer ceramic capacitor, 12...
Conductive ceramic layer, 13, 14... Internal electrode layer, 15... Laminate, 16, 17... Through hole, 1
8, 19... External extraction electrode, 20, 21... Lead wire.

Claims (1)

【実用新案登録請求の範囲】 (1) 誘電体セラミツク層と内部電極層とが交互に
積層され、それらの積層方向に貫通する二つの
貫通孔を有し、前記各内部電極層が隣あう他の
内部電極層と互い違いに一方の貫通孔に表出
し、該貫通孔の壁面に形成された外部引出電極
と電気的に接続された複数の積層体からなり、
該複数の積層体がそれらの積層方向に、かつ、
それらの対応する貫通孔がそれぞれ同軸上に位
置するように積層して一体化され、前記貫通孔
にそれぞれ挿入され前記外部引出電極に接続さ
れた一対のリード線により電気的に並列接続さ
れていることを特徴とする積層セラミツクコン
デンサ。 (2) 前記各内部電極層が他方の貫通孔を該貫通孔
から所定のギヤツプをおいて包囲するように形
成されている実用新案登録請求の範囲第1項記
載の積層セラミツクコンデンサ。
[Claims for Utility Model Registration] (1) Dielectric ceramic layers and internal electrode layers are alternately laminated, and there are two through holes penetrating in the direction of lamination, and each of the internal electrode layers is adjacent to the other. consisting of a plurality of laminates alternately exposed in one of the through holes and electrically connected to an external extraction electrode formed on the wall surface of the through hole,
The plurality of laminates are arranged in a direction in which they are stacked, and
The corresponding through holes are stacked and integrated so that they are located coaxially, and are electrically connected in parallel by a pair of lead wires inserted into the through holes and connected to the external extraction electrode. A multilayer ceramic capacitor characterized by: (2) The multilayer ceramic capacitor according to claim 1, wherein each of the internal electrode layers is formed to surround the other through hole with a predetermined gap from the other through hole.
JP1981007624U 1981-01-21 1981-01-21 Expired JPS6311702Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981007624U JPS6311702Y2 (en) 1981-01-21 1981-01-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981007624U JPS6311702Y2 (en) 1981-01-21 1981-01-21

Publications (2)

Publication Number Publication Date
JPS57121128U JPS57121128U (en) 1982-07-28
JPS6311702Y2 true JPS6311702Y2 (en) 1988-04-05

Family

ID=29805844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981007624U Expired JPS6311702Y2 (en) 1981-01-21 1981-01-21

Country Status (1)

Country Link
JP (1) JPS6311702Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214668Y2 (en) * 1979-05-24 1987-04-15

Also Published As

Publication number Publication date
JPS57121128U (en) 1982-07-28

Similar Documents

Publication Publication Date Title
KR101141457B1 (en) The multi-layerd ceramic condenser and fabricating method using thereof
US8633636B2 (en) Laminated ceramic electronic component and manufacturing method thereof
KR101141369B1 (en) A multi-layerd ceramic condenser and fabricating method using thereof
TW201837938A (en) Multilayer ceramic electronic component
JPS622449B2 (en)
JP3201309B2 (en) Laminated coil and method of manufacturing the same
JPS5814064B2 (en) monolithic ceramic capacitor
JPH1167554A (en) Laminated coil component and its manufacture
JP3093578U (en) Multilayer circuit board
JPS5924535B2 (en) Laminated composite parts
JP3158794B2 (en) Capacitor array
JP3554784B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPS6311702Y2 (en)
JP2001076952A (en) Laminated ceramic electronic component and manufacture thereof
JP2000049015A (en) Inductor array
JP2020167322A (en) Multilayer ceramic capacitor
JPH0993069A (en) Multiseries noise filter
JPH0420245B2 (en)
JP2000049035A (en) Laminated ceramic capacitor
JPS6228748Y2 (en)
JP7459812B2 (en) Multilayer ceramic capacitor and method for manufacturing the same
CN216773070U (en) Multilayer ceramic capacitor
JPH04165606A (en) Chip bead inductor and manufacture thereof
WO2024075427A1 (en) Multilayer ceramic capacitor
JPH11340088A (en) Manufacture of capacitor array