JPS6311509A - Production of graphite monochromator - Google Patents

Production of graphite monochromator

Info

Publication number
JPS6311509A
JPS6311509A JP61156667A JP15666786A JPS6311509A JP S6311509 A JPS6311509 A JP S6311509A JP 61156667 A JP61156667 A JP 61156667A JP 15666786 A JP15666786 A JP 15666786A JP S6311509 A JPS6311509 A JP S6311509A
Authority
JP
Japan
Prior art keywords
substrate
graphite
carbon
temp
thermally decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156667A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Yasuhiro Aiba
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61156667A priority Critical patent/JPS6311509A/en
Publication of JPS6311509A publication Critical patent/JPS6311509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively obtain the title graphite monochromator at a lower temp. than before by introducing a hydrocarbon-contg. gas onto a substrate which has been heated to a specified temp. under specified pressure to form thermally decomposed carbon, releasing the carbon, and heating the carbon under pressure. CONSTITUTION:A gas contg. hydrocarbons such as methane and propane is mixed with a carrier gas of N2, Ar, etc., the gaseous mixture is introduced onto the substrate such as an artificial graphite substrate which has been heated to 1,000-1,300 deg.C in a nonoxidizing atmosphere at >=100Torr, for example, by directly passing an electric current through the substrate, and thermally decomposed carbon is deposited at the rate of >=50mu/hr. The thermally decomposed carbon is released from the substrate, charged in a graphite mold, and heat-treated at 2,500-3,000 deg.C while exerting pressure in the direction vertical to the deposition surface by a public-known method, and a graphite monochromator is produced. The thermally decomposed carbon can be formed at a temp. at least 700 deg.C lower than that in the conventional method wherein the substrate is indirectly heated, the lower limit of the heating temp. can be lowered by about 300 deg.C in the heating and compression, and hence the power consumption and the cost of equipment can be remarkably reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、黒鉛モノクロメータの製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a graphite monochromator.

(従来の技術) 高配向性黒鉛は、気相炭化水素の高温熱分解堆積物を熱
間加工して得られる。黒鉛の六方基底面が配向した準単
結晶と呼び得るもので、C軸(六方基底面と垂直方向)
の配向分布の鋭さに関しては、一般の金属単結晶におけ
るモザイク構造を上まわるものである。このような高配
向性黒鉛は。
(Prior Art) Highly oriented graphite is obtained by hot processing a high temperature pyrolysis deposit of gas phase hydrocarbons. It can be called a quasi-single crystal in which the hexagonal basal planes of graphite are oriented, and the C axis (perpendicular to the hexagonal basal planes)
The sharpness of the orientation distribution exceeds that of the mosaic structure of general metal single crystals. This kind of highly oriented graphite.

黒鉛結晶の強い(002)回折線を利用してX線モノク
ロメータとして使われている。また、最近では中性子線
モノクロメータあるいは高エネルギーフォトン用偏光子
としても使用されている。
It is used as an X-ray monochromator by utilizing the strong (002) diffraction line of graphite crystal. Recently, it has also been used as a neutron beam monochromator or a polarizer for high-energy photons.

これらの黒鉛モノクロメータは、現在まで主としてA−
W−Moore(Chemistry  and Ph
ysicsof Carbony vo/、 11.1
973 )らによって開発された米国Union Ca
rbide社製のものが主役を担っている。その作製方
法は、■炉よりの輻射熱で間接的に2000℃以上の高
温に加熱された黒鉛基材上に、減圧雰囲気で炭化水素ガ
スを導入することにより熱分解炭素を堆積させる過程と
■核熱分解炭素を3000℃付近の温度で堆積面と垂直
の方向に一軸性の圧力を加え、更に3300〜3600
℃に及ぶ高温で焼鈍する過程から成るものである。
Until now, these graphite monochromators have mainly been used as A-
W-Moore (Chemistry and Ph
ysicsof Carbony vo/, 11.1
Union Ca developed by 973) et al.
Products made by rbide are playing a leading role. The manufacturing method consists of (1) a process in which pyrolytic carbon is deposited by introducing hydrocarbon gas in a reduced pressure atmosphere onto a graphite substrate that is indirectly heated to a high temperature of over 2000°C by radiant heat from a furnace; Pyrolytic carbon is heated at a temperature of around 3000°C by applying uniaxial pressure in the direction perpendicular to the deposition surface, and then heated at a temperature of 3300 to 3600°C.
It consists of an annealing process at a high temperature of up to ℃.

2000℃以上の高温、圧力が数Torr、最高でも数
10 Torr以下の減圧下で気相炭化水素から熱分解
炭素を堆積させる場合、その堆積速度は毎時数100μ
mから最高で毎時1化種度にまですることができ、堆積
する熱分解炭素はC軸が基材面に対して垂直に配向した
層状構造を持つ。しかし、その配向性を示す目安となる
Δδ(堆積面の法線からδO#4いた方向にC軸をもつ
結晶子の相対的な総数を表わす配向密度関数η(δ)の
半価幅Δδをmosaic 5preadと呼び、この
値が小さいもの描記向性は良好である。)は2O2以上
であるため、さらに前記■のような処理を加えることに
より、Δδを5°以下にしたものがモノクロメータとし
て使用される。また、そのようにして得られる黒鉛モノ
クロメータの密度は理想値2.266 g/am’に極
めて近いλ25〜Z 26 g /cm”となり、黒鉛
化度を示す層間距離Co/2値も理想値3.354Aに
近い&360A以下となる。
When depositing pyrolytic carbon from gas-phase hydrocarbons at a high temperature of 2000°C or higher and a pressure of several Torr, or at most a reduced pressure of several tens of Torr or less, the deposition rate is several hundred microns per hour.
The pyrolytic carbon deposited has a layered structure in which the C-axis is oriented perpendicularly to the surface of the substrate. However, the half-value width Δδ of the orientation density function η(δ), which represents the relative total number of crystallites with the C-axis in the direction δO#4 from the normal to the deposition surface, is a measure of the orientation. It is called mosaic 5pread, and if this value is small, the writing property is good.) is 2O2 or more, so by further adding the treatment as described in (■) above, the one whose Δδ is 5° or less can be used as a monochromator. used. In addition, the density of the graphite monochromator thus obtained is λ25~Z26 g/cm'', which is extremely close to the ideal value of 2.266 g/am', and the interlayer distance Co/2 value, which indicates the degree of graphitization, is also the ideal value. It is close to 3.354A & less than 360A.

(発明が解決しようとする問題点) 従来の黒鉛モノクロメータ−は、前述したように製造す
る温度が極めて高い(熱分解炭素の析出が2000℃以
上、熱分解炭素の加圧熱処理が3000℃以上)のでコ
ストがLiFモノクロメータ−等に比較して術違いに高
いという問題がある。
(Problems to be Solved by the Invention) As mentioned above, conventional graphite monochromators are manufactured at extremely high temperatures (the precipitation of pyrolytic carbon is over 2,000°C, and the pressure heat treatment of pyrolytic carbon is over 3,000°C). ) Therefore, there is a problem that the cost is significantly higher than that of a LiF monochromator or the like.

本発明は、上記した問題を解消し、安価な黒鉛モノクロ
メータ−の製造法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an inexpensive method for manufacturing a graphite monochromator.

(問題点を解決するだめの手段) 本発明は、炭化水素を含むガスを100Torr以上の
非酸化性雰囲気で1000〜1300℃シて直接加熱さ
れた基材上に導き、毎時50μm以上の堆積速度で熱分
解炭素を形成させ1次いで基材から熱分解炭素を剥離し
、熱分解炭素に対しその堆積面と垂直な方向に圧力を加
えながら2500〜3000℃の熱処理をする黒鉛モノ
クロメータ−の製造法に関する。
(Another Means to Solve the Problems) The present invention involves directing a hydrocarbon-containing gas onto a heated substrate at 1000 to 1300° C. in a non-oxidizing atmosphere of 100 Torr or more to achieve a deposition rate of 50 μm or more per hour. Manufacture a graphite monochromator by forming pyrolytic carbon, then exfoliating the pyrolytic carbon from the base material, and heat-treating the pyrolytic carbon at 2500 to 3000°C while applying pressure in a direction perpendicular to the deposition surface. Regarding the law.

本発明でいう黒鉛モノクロメータ−とは、Δδが5°程
度以下、密度が2.25g/cm”程度以上、Co/2
が3.360A程度以下のもののことをいう。
The graphite monochromator referred to in the present invention is a Co/2
is about 3.360A or less.

本発明において炭化水素を含むガスは、メタン。In the present invention, the hydrocarbon-containing gas is methane.

プロパン、アセチレン、ベンゼン、ナフタレン等の炭化
水素のガスを窒素、アルゴン等のキャリアガスで混合し
たものであり、減圧された炉中の加熱された基材上に導
かれる。非酸化性雰囲気は炭化水素を含むガスで形成さ
れる。基材は1300℃までの温度に耐えるものであれ
ばよく制限はない。基材の加熱は黒鉛ヒーター等の輻射
熱を利用する間接加熱ではなく2人造黒鉛、耐熱金属等
の導電性基材に直接通電してもしくは誘導電流によう゛ り加熱するが、又はアルミナ、石英ガラス等の絶縁性の
基材の場合には赤外線を照射する等の直接加熱法による
。熱分解炭素を形成するに当って圧力が100 Tor
r未満であってかつ基材温度が1000℃未満であると
熱分解炭素が毎時50μm以上の速度で堆積することが
出来ず安価に製造するメリットがなくなる。基材温度が
1300℃を越えると(ただし2000℃未満)堆積す
る熱分解炭素の配向性が悪くなる。
It is a mixture of hydrocarbon gases such as propane, acetylene, benzene, and naphthalene with a carrier gas such as nitrogen and argon, and is introduced onto a heated substrate in a reduced pressure furnace. The non-oxidizing atmosphere is formed by a gas containing hydrocarbons. The base material is not limited as long as it can withstand temperatures up to 1300°C. Heating of the base material is not indirect heating using radiant heat such as a graphite heater, but heats the conductive base material such as artificial graphite, heat-resistant metal, etc. by directly passing electricity or using an induced current, or by heating the conductive base material such as alumina or quartz glass. In the case of an insulating base material such as, a direct heating method such as irradiation with infrared rays is used. The pressure is 100 Torr to form pyrolytic carbon.
If it is less than r and the substrate temperature is less than 1000° C., pyrolytic carbon cannot be deposited at a rate of 50 μm or more per hour, and there is no advantage of inexpensive manufacturing. When the substrate temperature exceeds 1300°C (but below 2000°C), the orientation of the deposited pyrolytic carbon deteriorates.

尚、圧力100Torr以上、基材温度1000〜13
00°Cの条件において基材を従来のように輻射熱等で
間接加熱する方法では、気相中でスートを生ずる副反応
が多くなり効率が悪い上長時間の運転が困難になり厚膜
を得ることはできない。
In addition, the pressure is 100 Torr or more, and the base material temperature is 1000 to 13
In the conventional method of indirectly heating the substrate using radiant heat at 00°C, there are many side reactions that produce soot in the gas phase, resulting in inefficiency and difficulty in long-term operation to obtain a thick film. It is not possible.

上記のようにして得られた熱分解炭素を基材から剥離し
黒鉛の型に入れ、公知の方法によりその堆積面と垂直な
方向に圧力を加えつつ、2500〜3000℃の温度で
熱処理を行って黒鉛モノクロメータ−とされる。熱処理
の温度が2500°C未満であるとC軸の配向性が不十
分であり(Δδが5°以下にならない)、3000℃を
越えると炉材の変形が著しくなり圧力の保持が困難とな
る。
The pyrolytic carbon obtained as described above is peeled from the base material, placed in a graphite mold, and heat-treated at a temperature of 2500 to 3000°C while applying pressure in a direction perpendicular to the deposition surface using a known method. It is called a graphite monochromator. If the heat treatment temperature is less than 2500°C, the orientation of the C-axis will be insufficient (Δδ will not be less than 5°), and if it exceeds 3000°C, the furnace material will be significantly deformed and it will be difficult to maintain pressure. .

圧力は特に制限しないが200〜500 kg/Cm’
が好ましい。
Pressure is not particularly limited, but 200 to 500 kg/Cm'
is preferred.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1.比較例1 フルフリルアルコール初期縮合物(日立化成工業−[V
F303)を硬化、焼成して得た硬質ガラス状カーボン
を基材とし、直接通電(でより該基材を1200°Cと
した。続いて窒素ガスをベンゼン液内にバブリングさせ
て発生する気相炭化水素を基材上に層流となるように導
入して6時間反応を継続し、厚さ1am+の熱分解炭素
を得た。尚2反応を行う装置内の圧力は大気圧とした。
Example 1. Comparative Example 1 Furfuryl alcohol initial condensate (Hitachi Chemical-[V
A hard glassy carbon obtained by hardening and firing F303) was used as a base material, and the base material was heated to 1200°C by direct current application (by which the gas phase generated by bubbling nitrogen gas into the benzene liquid) was used. Hydrocarbons were introduced onto the substrate in a laminar flow and the reaction was continued for 6 hours to obtain pyrolyzed carbon with a thickness of 1 am+.The pressure inside the apparatus for carrying out the two reactions was atmospheric pressure.

上記実施例1に対し、比較例1として、2000°Cに
加熱された炉内に上記と同様の基材を配置した装置内に
、圧力10Torrでプロパンを導入して2時間反応を
継続して、やはり厚さ1皿の熱分解炭素を得た。
In contrast to Example 1 above, as Comparative Example 1, propane was introduced at a pressure of 10 Torr into an apparatus in which the same substrate as above was placed in a furnace heated to 2000°C, and the reaction was continued for 2 hours. , a plate of pyrolytic carbon was also obtained.

実施例1における熱分解炭素被覆基材の断面を偏光顕微
鏡で観察した結果は第1図に示す通りであり、熱分解炭
素の粒子はC軸配向により錐状組織を示しており、又第
2図に示す破面の走査型電子顕微鏡(SEM)写真から
明らかなように熱分解炭素の粒子は層状構造となってい
る。比較例1における熱分解炭素の粒子も第1図及び第
2図とほぼ同じ組織、構造を示した。
The cross-section of the pyrolytic carbon-coated substrate in Example 1 was observed with a polarizing microscope, and the results are as shown in FIG. As is clear from the scanning electron microscope (SEM) photograph of the fracture surface shown in the figure, the pyrolytic carbon particles have a layered structure. The pyrolytic carbon particles in Comparative Example 1 also showed almost the same structure and structure as in FIGS. 1 and 2.

上記のようにして得られた熱分解炭素を基材から剥離し
、黒鉛スペーサで挾んで黒鉛シリンダに入れ、黒鉛ピス
トンにより250 kg/cm’に加圧し。
The pyrolytic carbon obtained as described above was peeled from the base material, sandwiched between graphite spacers, put into a graphite cylinder, and pressurized to 250 kg/cm' by a graphite piston.

アルゴンガスを流しながら高周波誘導により黒鉛シリン
ダを加熱し、実施例1では2800℃て比較例1では3
000℃に熱処理して黒鉛モノクロメータ−を得た。
The graphite cylinder was heated by high frequency induction while flowing argon gas, and in Example 1 it was heated to 2800°C and in Comparative Example 1 it was 3°C.
A graphite monochromator was obtained by heat treatment at 000°C.

実施例2.比較例2 実施例1及び比較例1と同じ方法で熱分解炭素を得、各
熱分解炭素について圧力を400 kg/crn’ +
温度を2700’Cとした以外は実施例1及び比較例1
と同じ条件で加圧熱処理を行った。
Example 2. Comparative Example 2 Pyrolytic carbon was obtained in the same manner as in Example 1 and Comparative Example 1, and the pressure was set at 400 kg/crn'+ for each pyrolytic carbon.
Example 1 and Comparative Example 1 except that the temperature was 2700'C
Pressure heat treatment was performed under the same conditions as .

前記実施例及び比較例で得られた黒鉛モノクロメータ−
の特性を第1表に示す。
Graphite monochromator obtained in the above examples and comparative examples
The characteristics are shown in Table 1.

第1表 前述したように、実施例における熱分解炭素の生成温度
は比較例の場合よりsoo’c低いにもがかわらず、得
られる熱分解炭素の組成、構成は殆んど同一である。黒
鉛モノクロメータ−については実施例1では比較例1よ
り熱処理温度が200℃低いにもかかわらず、第1表か
ら明らかなようにその特性(配向性Δδ、密度及び眉間
距離(Co/2))は同一である。又、上記熱処理温度
が2700℃の場合は第1表から実施例2は黒鉛モノク
ロメータ−の特性を備えているが比較例2は黒鉛モノク
ロメータ−の具備条件を満足しないことがわかる。
Table 1 As mentioned above, although the generation temperature of the pyrolytic carbon in the examples is soo'c lower than that in the comparative example, the composition and structure of the pyrolytic carbon obtained are almost the same. Regarding the graphite monochromator, although the heat treatment temperature in Example 1 was 200°C lower than in Comparative Example 1, its characteristics (orientation Δδ, density, and glabellar distance (Co/2)) were clearly shown in Table 1. are the same. Further, when the heat treatment temperature is 2700 DEG C., it can be seen from Table 1 that Example 2 has the characteristics of a graphite monochromator, but Comparative Example 2 does not satisfy the requirements of a graphite monochromator.

(発明の効果) 本発明によれば、従来の黒鉛モノクロメータ−の製造法
に比較して、熱分解炭素を少なくとも700℃低い温度
で形成でき、熱分解炭素の加熱圧縮においても加熱温度
の下限値を約300’C低くできるので、消費′成力、
装置等のコストを大幅に低減することが可能となる。
(Effects of the Invention) According to the present invention, pyrolytic carbon can be formed at a temperature that is at least 700°C lower than that of the conventional graphite monochromator manufacturing method, and the lower limit of the heating temperature is also reached in thermal compression of pyrolytic carbon. Since the value can be lowered by about 300'C, consumption power,
It becomes possible to significantly reduce the cost of equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例において製造された
熱分解炭素の粒子構造を示す偏光顕微鏡写真及びSEM
写真である。 代理人 弁理士 若 林 邦 彦   ・第1図 第2図 手続補正書1発) 昭lI]62年 、! 月17F3 〕急
Figures 1 and 2 are polarized light micrographs and SEM showing the particle structure of pyrolytic carbon produced in an example of the present invention.
It's a photo. Agent: Patent Attorney Kunihiko Wakabayashi (Figure 1, Figure 2, 1 procedural amendment)) 1962],! Month 17F3] Urgent

Claims (1)

【特許請求の範囲】[Claims] 1、炭化水素を含むガスを100Torr以上の非酸化
性雰囲気で1000〜1300℃に直接加熱された基材
上に導き、毎時50μm以上の堆積速度で熱分解炭素を
形成させ、次いで基材から熱分解炭素を剥離し、熱分解
炭素に対しその堆積面と垂直な方向に圧力を加えながら
2500〜3000℃で熱処理することを特徴とする黒
鉛モノクロメーターの製造法。
1. Gas containing hydrocarbons is introduced onto a substrate heated directly to 1000-1300℃ in a non-oxidizing atmosphere of 100 Torr or more, forming pyrolytic carbon at a deposition rate of 50 μm or more per hour, and then heat is removed from the substrate. A method for producing a graphite monochromator, which comprises peeling off decomposed carbon and heat-treating the pyrolytic carbon at 2,500 to 3,000°C while applying pressure in a direction perpendicular to its deposition surface.
JP61156667A 1986-07-03 1986-07-03 Production of graphite monochromator Pending JPS6311509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156667A JPS6311509A (en) 1986-07-03 1986-07-03 Production of graphite monochromator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156667A JPS6311509A (en) 1986-07-03 1986-07-03 Production of graphite monochromator

Publications (1)

Publication Number Publication Date
JPS6311509A true JPS6311509A (en) 1988-01-19

Family

ID=15632670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156667A Pending JPS6311509A (en) 1986-07-03 1986-07-03 Production of graphite monochromator

Country Status (1)

Country Link
JP (1) JPS6311509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028247A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Conjugate of graphite and silicon and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028247A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Conjugate of graphite and silicon and manufacturing method for the same

Similar Documents

Publication Publication Date Title
US4701317A (en) Highly electroconductive films and process for preparing same
Yang et al. Facile Synthesis of Large‐Area Ultrathin Hexagonal BN Films via Self‐Limiting Growth at the Molten B2O3 Surface
EP0305197B1 (en) Method for making a graphite film or sheet and radiation optical elements using the graphite sheet
JP3065896B2 (en) Manufacturing method of highly oriented graphite
JPS6311509A (en) Production of graphite monochromator
Bragg et al. Orientation dependence of structure in pyrolytic graphite
Yajima et al. Mechanism of the pyrolytic graphite formation
JPS6381300A (en) Manufacture of graphite monochromator
JPH04234001A (en) Radiation resisting optical product comprising single crystal diamond having high isotope purity
JPH01133916A (en) Production of high-density graphite film
Goela et al. High-thermal-conductivity SiC and applications
Liang et al. Microstructural evolution of amorphous Si2 BC 3N nanopowders upon heating at high temperatures: High pressures reverse the nucleation order of SiC and BN (C)
Wang et al. Synthesis of diamond from polymer seeded with nanometer-sized diamond particles
Goela et al. Postdeposition Process for Improving Optical Properties of Chemical‐Vapor‐Deposited Silicon
JPS60127210A (en) Production of high electrically conductive thin film
Matsumura et al. Structure and electric conductivity of vapor deposition polymerization products of cyanoacetylene
JPH0517117A (en) Production of graphite
CN88211152U (en) Low carbon pollution soi graphite heating component
CN114314659A (en) Two-dimensional inorganic molecular crystal Sb2O3Nano material, preparation method and application
JPH0283207A (en) Production of graphite
Collins et al. Investigation of CVD β-SiC Surfaces Produced VIA a “Novel” Surface Replication Process
Meenakshi et al. Medium-range order in pyrolyzed carbon films: Structural evidence related to metal–insulator transition
CN117512781A (en) Method for growing single crystal boron nitride on metal substrate by using solid boron nitrogen source
JPS63476A (en) Production of thermally decomposed isotropic carbon
JPH083144B2 (en) Pyrolysis boron nitride container