JPS63115010A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPS63115010A
JPS63115010A JP25993686A JP25993686A JPS63115010A JP S63115010 A JPS63115010 A JP S63115010A JP 25993686 A JP25993686 A JP 25993686A JP 25993686 A JP25993686 A JP 25993686A JP S63115010 A JPS63115010 A JP S63115010A
Authority
JP
Japan
Prior art keywords
interference
signals
displacement
signal
interference signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25993686A
Other languages
Japanese (ja)
Inventor
Susumu Kozuki
上月 進
Tetsuji Nishimura
西村 哲治
Akira Ishizuka
公 石塚
Masaaki Tsukiji
築地 正彰
Tsutomu Sato
力 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25993686A priority Critical patent/JPS63115010A/en
Publication of JPS63115010A publication Critical patent/JPS63115010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To measure displacement with high accuracy by extracting plural interference signals which are given a specific phase difference and correcting error signals that the interference signals contain when the interference signals are extracted by making diffracted light beams generated by a diffraction grating interfere with each other. CONSTITUTION:Luminous flux from a laser light source 1 is diffracted by a diffraction grating 2, reflected by corner cubes 31 and 32, and made incident on the grating 2 again. The positive and negative diffracted light beams which are diffracted again are made incident on a beam splitter 5 one over the other and divided into four by half-mirrors 51-54 to impinge on photodetecting elements 71-74 through polarizing plates 61-64. Here, the polarizing plates 61-64 are arranged having polarizing directions made different by 45 deg. respectively, so interference signals E1-E4 obtained from the photodetecting elements 71-74 have 90 deg. phase differences. Then their sum signals E13=E1+E3 and E24=E2+E4 are obtained by adders and corrected signals, the inversion of E13=E1/E13 and the inversion of E24=E2/E24 are obtained by dividers. Those corrected signals are inputted to a counting circuit to count light and shade parts of interference fringes, thereby finding the displacement of a body to be measured and its displacement direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被測定物体の回転状態や移動状態等の変位を測
定する変位測定装置に関し、特に被測定物体に連絡した
チャート板上に設けた周期的若しくは所定模様の回折格
子に可干渉性の光束を入射させ、該回折格子から生ずる
回折光を互いに干渉させて干渉縞を形成し、この干渉縞
の明暗を計数することにより被測定物体の変位を求める
変位測定装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a displacement measuring device for measuring the displacement of an object to be measured in its rotational state, moving state, etc. A coherent light beam is incident on a periodic or predetermined pattern of diffraction gratings, the diffracted lights generated from the diffraction gratings are made to interfere with each other to form interference fringes, and by counting the brightness and darkness of these interference fringes, the object to be measured can be measured. This invention relates to a displacement measuring device for determining displacement.

(従来の技術) 従来より産業用工作機械における移動物体の移動量検出
やロボットアームの回転、移動9位置等の検出や回転機
構の回転量1回転速度等の検出を行う為の変位測定装置
として光電的なロータリーエンコーダーやりニアエンコ
ーダーか多く利用されている。
(Prior art) Conventionally, it has been used as a displacement measuring device for detecting the amount of movement of a moving object in an industrial machine tool, the rotation of a robot arm, the nine positions of movement, etc., and the amount of rotation per rotation speed of a rotating mechanism. Photoelectric rotary encoders and near encoders are often used.

このうち被測定物体に回折格子を設け、該回折格子より
生ずる回折光を利用して、被測定物体の移動量や回転量
等の変位量を求める回折方式の変位測定装置が種々と提
案されている。この変位測定装置は高精度な測定が比較
的容易である為、特にNC工作機械や半導体焼付装置等
の精密機械用に多く用いられている。
Among these, various diffraction-type displacement measuring devices have been proposed, in which a diffraction grating is provided on the object to be measured, and the amount of displacement, such as the amount of movement or rotation, of the object to be measured is determined by using the diffracted light generated by the diffraction grating. There is. Since this displacement measuring device is relatively easy to measure with high precision, it is often used especially for precision machines such as NC machine tools and semiconductor printing equipment.

この回折方式の変位測定装置においては回折格子から生
ずる回折光を互いに干渉させて干渉縞を形成し、この干
渉縞の明暗を受光手段により計数して変位に関する干渉
信号を得ている。
In this diffraction type displacement measuring device, diffracted lights generated from a diffraction grating are caused to interfere with each other to form interference fringes, and the brightness and darkness of these interference fringes are counted by a light receiving means to obtain an interference signal regarding displacement.

従って光源の出力が温度変化等の環境変化によフて変動
したり、回折格子の透過率(反射回折格子の場合は反射
率)が−様でなかったり、振幅型の回折格子を用いた場
合に透過部若しくは反射部の線幅の太さが均一でなかっ
たりすると受光手段からの干渉縞に関する出力値Eが例
えば第6図(A)に示すように不安定な波形となって出
力されてくる。
Therefore, if the output of the light source fluctuates due to environmental changes such as temperature changes, if the transmittance of the diffraction grating (reflectance in the case of a reflective diffraction grating) is not -like, or if an amplitude type diffraction grating is used. If the line width of the transmitting part or the reflecting part is not uniform, the output value E related to the interference fringes from the light receiving means will be output as an unstable waveform as shown in FIG. 6(A), for example. come.

特に回折格子は製作時のエツチングむらが生じやすく、
測定領域全域での線幅(位相型回折格子のときは段差等
の形状)の不均一を改善することが大変難しく、この傾
向が特に顕著に現われてくる。
In particular, diffraction gratings are prone to uneven etching during manufacturing.
It is very difficult to improve the non-uniformity of the line width (in the case of a phase-type diffraction grating, the shape of steps etc.) over the entire measurement area, and this tendency becomes particularly noticeable.

以上のような原因により受光手段からの出力値が第6図
(A)に示す如く変動し、後段の計数回路における比較
器のスライスレベル以下となったときは出力波形を積度
良く計数することができなくなってくる。又たとえスラ
イスレベル以上の出力値があフても振幅の中心レベルが
不安定な為、同図(B)に示す如く比較器の出力の“H
”レベルと“L”レベルの幅が不安定になってくる。
When the output value from the light receiving means fluctuates as shown in Fig. 6 (A) due to the above reasons and falls below the slice level of the comparator in the subsequent counting circuit, the output waveform must be counted in a well-integrated manner. It becomes impossible to do so. In addition, even if the output value exceeds the slice level, the center level of the amplitude is unstable, so the “H” output of the comparator as shown in the same figure (B)
The width between the "L" level and the "L" level becomes unstable.

この為後段の電気回路における電気分割が困難となり、
高精度で、かつ高い分解能で変位測定をするのが大変難
しくなってくる。
This makes it difficult to divide electricity in subsequent electrical circuits.
It becomes very difficult to measure displacement with high precision and high resolution.

(発明が解決しようとする問題点) 本発明は光源の出力変動や回折格子の製作上の誤差によ
り回折効率が変動しても回折光を互いに干渉させて形成
した干渉縞の明暗を受光手段で計数する際、受光手段か
らの出力値が一定となるようにし、常に高精度な変位測
定が可能な回折方式の変位測定装置の提供を目的とする
(Problems to be Solved by the Invention) The present invention uses a light receiving means to detect the brightness and darkness of interference fringes formed by making diffracted lights interfere with each other, even if the diffraction efficiency fluctuates due to fluctuations in the output of the light source or manufacturing errors in the diffraction grating. An object of the present invention is to provide a diffraction-type displacement measuring device that can always measure displacement with high precision by keeping the output value from a light receiving means constant during counting.

(問題点を解決する為の手段) 被測定物体に連結した回折格子から生ずる回折光を互い
に干渉させて、干渉縞を形成し、該干渉縞の明暗に対応
した干渉信号を前記被測定物体の変位に関する信号とし
て抽出する変位測定装置において、前記干渉信号を抽出
する際、光学手段により所定の位相差を付与した少なく
とも2つの干渉信号として抽出し、この2つの干渉信号
を利用して、該干渉信号に含まれる誤差信号を補正した
ことである。
(Means for solving the problem) Diffraction lights generated from a diffraction grating connected to an object to be measured are caused to interfere with each other to form interference fringes, and an interference signal corresponding to the brightness and darkness of the interference fringes is transmitted to the object to be measured. In a displacement measuring device that extracts a signal related to displacement, when extracting the interference signal, the interference signal is extracted as at least two interference signals with a predetermined phase difference given by an optical means, and these two interference signals are used to detect the interference signal. This is to correct the error signal contained in the signal.

(実施例) 第1図は本発明をリニアエンコーダーに適用したときの
一実施例の光学系の概略図である。同図において1は半
導体レーザー等の可干渉性の光束を放射する単色の光源
、2は矢印21方向に移動している不図示の被測定物体
に連結している回折格子、31.32はコーナーキュー
ブ、41゜42は%波長板、5は非偏光のビームスプリ
ッタ−161,62,63,64は偏光板で互いに90
度の位相差を付与するように構成している。
(Embodiment) FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to a linear encoder. In the figure, 1 is a monochromatic light source that emits a coherent light beam such as a semiconductor laser, 2 is a diffraction grating connected to an object to be measured (not shown) moving in the direction of arrow 21, and 31 and 32 are corners. Cube, 41° 42 is a % wavelength plate, 5 is a non-polarizing beam splitter, 161, 62, 63, 64 are polarizing plates and are 90 degrees apart from each other.
It is configured to provide a phase difference of degrees.

71.72,73.74は受光素子である。71.72, 73.74 are light receiving elements.

光源1からの光束は回折格子2によって回折される。こ
のとき正と負の次数の回折光は各々コーナーキューブ3
1.32で反射され、属波長板41.42を介して再度
、回折格子2に入射する。ここで再び回折された正と負
の回折光は重ね合わされ、ビームスプリッタ−5に入射
し、ハーフミラ−面51で反射光束と透過光束の2つの
光束に分割される。このうち透過光束は偏光板61を通
過し受光素子71に入射する。一方ハーフミラー51か
らの反射光束はハーフミラ−52で再び反射光束と透過
光束に分割され、このうち反射光束は偏光板62を通過
し受光素子72に入射する。以下同様にハーフミラ−5
2を通過した透過光束は各々2つの光束に分割されて偏
光板63゜64を介し各々受光素子73.74に入射す
る。
A light beam from a light source 1 is diffracted by a diffraction grating 2. At this time, the positive and negative order diffracted lights are each
1.32 and enters the diffraction grating 2 again via the wavelength plate 41.42. Here, the positive and negative diffracted lights diffracted again are superimposed, enter the beam splitter 5, and are split by the half mirror surface 51 into two light fluxes: a reflected light flux and a transmitted light flux. Of these, the transmitted light flux passes through the polarizing plate 61 and enters the light receiving element 71. On the other hand, the reflected light beam from the half mirror 51 is split again into a reflected light beam and a transmitted light beam by the half mirror 52, of which the reflected light beam passes through the polarizing plate 62 and enters the light receiving element 72. Similarly, half mirror 5
The transmitted light beams passing through the light receiving element 2 are each split into two light beams, and each of the light beams enters the light receiving elements 73 and 74 via the polarizing plates 63 and 64.

このとき受光素子71,72,73.74で受光される
光束は互いに干渉した干渉縞の明暗の強度に相当するも
のとなり、受光素子71,72゜73.74は干渉信号
El 、E2.E3 、E4を出力する。
At this time, the light beams received by the light-receiving elements 71, 72, 73.74 correspond to the intensity of the brightness and darkness of interference fringes that interfered with each other, and the light-receiving elements 71, 72, 73.74 receive interference signals El, E2, . Outputs E3 and E4.

即ち回折格子2のピッチをP、正と負の回折光の次数を
mとすれば受光素子71,72,73゜74は回折格子
2の移動’3 P / 4 m毎に1個の正弦波形の信
号を出力する。
That is, if the pitch of the diffraction grating 2 is P, and the order of the positive and negative diffracted lights is m, the light receiving elements 71, 72, 73° 74 produce one sine waveform every '3 P/4 m of movement of the diffraction grating 2. Outputs the signal.

第2図(A)〜(D)は第1図の実施例における受光素
子71〜74から得られる干渉信号El〜E4の説明図
である。本実施例では偏光板61〜64を各々の偏光方
位を互いに45度ずつ異なるように配置し、各偏光板6
1〜64を通過する光束間に90度の位相差を付与して
いる。この為、受光素子71〜74から得られる干渉信
号El −E4は各々 0度、90度、180度、27
0度の位相差を有している。
FIGS. 2A to 2D are explanatory diagrams of interference signals El to E4 obtained from the light receiving elements 71 to 74 in the embodiment of FIG. 1. In this embodiment, the polarizing plates 61 to 64 are arranged so that their polarization directions differ from each other by 45 degrees, and each polarizing plate 6
A phase difference of 90 degrees is provided between the light beams passing through the light beams 1 to 64. Therefore, the interference signals El -E4 obtained from the light receiving elements 71 to 74 are 0 degrees, 90 degrees, 180 degrees, and 27 degrees, respectively.
It has a phase difference of 0 degrees.

又客受光素子71〜74から得られる干渉信号El−E
4には光源1の出力変動や回折格子の製造誤差による回
折効率の違いによフて生ずる誤差信号が重畳され、干渉
信号は振幅の揃った正弦波形とならず、同図の点線で示
すように振幅方向にうねりが存在したものとなっている
−0このときのうねりの位相は同図に示すように各受光
素子71〜74間で一致している。本実施例はこの性質
を利用して互いに位相差が180度異なる2つの干渉信
号、例えば干渉信号El、E3若しくは干渉信号E2 
、E4を対で用いて、このときの誤差信号に基づくうね
りを補正し、振幅が一定となるような正弦波形を得てい
る。
Also, the interference signal El-E obtained from the customer light receiving elements 71 to 74
4 is superimposed with an error signal caused by differences in diffraction efficiency due to variations in the output of the light source 1 and manufacturing errors in the diffraction grating, and the interference signal does not have a sinusoidal waveform with uniform amplitude, as shown by the dotted line in the figure. -0 The phase of the waviness at this time is the same among the light receiving elements 71 to 74 as shown in the figure. This embodiment utilizes this property to generate two interference signals having a phase difference of 180 degrees, for example, interference signals El and E3, or interference signal E2.
, E4 are used in pairs to correct the waviness based on the error signal at this time, and obtain a sine waveform with a constant amplitude.

第3図はこのときの信号処理を示す電気回路のブロック
図である。同図では180度位相が異なる受光素子71
と73からの干渉信号ElとE3を加算器81で加算し
、加算信号EI3=EI +E3を得ている。このとき
の加算信号E13は第4図(A)に示すようにAC成分
が除去され、第2図の点線で示すうねりの振幅に相当す
る信号のみとなる。
FIG. 3 is a block diagram of an electric circuit showing signal processing at this time. In the figure, the light receiving elements 71 have a phase difference of 180 degrees.
The interference signals El and E3 from 73 and 73 are added by an adder 81 to obtain an added signal EI3=EI+E3. The AC component of the added signal E13 at this time is removed, as shown in FIG. 4(A), and only the signal corresponding to the amplitude of the waviness shown by the dotted line in FIG. 2 remains.

そこでこの加算信号E13を用いて振幅が不均一の干渉
信号Elを除算器83で割り、補正信号EI3=El 
/E13を求めている。
Therefore, using this addition signal E13, the interference signal El having non-uniform amplitude is divided by the divider 83, and the correction signal EI3=El
/E13 is required.

このときの補正信号豆13は第4図(B)に示すように
振幅が一定の正弦波形を有している。本実施例ではこの
補正信号百13を後段の計数回路85に入力して干渉縞
の明暗の計数を行っている。
The correction signal beam 13 at this time has a sine waveform with a constant amplitude as shown in FIG. 4(B). In this embodiment, this correction signal 113 is input to the counting circuit 85 at the subsequent stage to count the brightness and darkness of the interference fringes.

又受光素子72.74からの干渉信号E2゜E4につい
ても同様に加算器82により加算信号E24=E2 +
E4を得、そして除算器84で干渉信号E2を加算信号
E24で割って補正信号E24=E2/E24を求めて
いる。このときの補正信号百24は補正信号百13と位
相は異なるが第4図(B)と同様な一定の振幅を有した
正弦波形となっている。
Similarly, the adder 82 adds the interference signals E2゜E4 from the light-receiving elements 72 and 74 to the addition signal E24=E2 +
E4 is obtained, and a divider 84 divides the interference signal E2 by the addition signal E24 to obtain a correction signal E24=E2/E24. At this time, the correction signal 1024 has a different phase from the correction signal 13, but has a sine waveform with a constant amplitude similar to that shown in FIG. 4(B).

本実施例ではこのときの2つの補正信号E13゜百24
を用いて被測定物の変位及び変位方向を求めている。
In this embodiment, the two correction signals E13゜124
is used to find the displacement and displacement direction of the object to be measured.

このように本実施例ではうねりを含んだ干渉信号をうね
りの出力値そのものでレベル制御し、振幅レベルを一定
にした正弦波形の干渉信号を得、このときの正弦波形を
一定のスライスレベルで処理し、パルス信号を得て、こ
のパルス信号の数を係数することにより被測定物体の変
位状態を求めている。
In this way, in this example, the level of an interference signal containing undulations is controlled by the output value of the undulation itself, a sine waveform interference signal with a constant amplitude level is obtained, and this sine waveform is processed at a constant slice level. Then, the displacement state of the object to be measured is determined by obtaining pulse signals and multiplying the number of pulse signals by a coefficient.

尚第1図に示す実施例では4つの受光素子を用いた場合
について示したが、3つの受光素子71〜73を用いて
、互いの受光素子からの干渉信号E1〜E3が90度ず
つの位相差を有するように構成しても良い。
Although the embodiment shown in FIG. 1 shows the case where four light receiving elements are used, by using three light receiving elements 71 to 73, the interference signals E1 to E3 from each light receiving element are separated by 90 degrees. It may be configured to have a phase difference.

第5図はこのときの干渉信号El〜E3の処理に関する
電気回路のブロック図である。本実施例における基本的
な考え方は第3図に示す方法と全く同様である。
FIG. 5 is a block diagram of an electric circuit related to processing of the interference signals El to E3 at this time. The basic idea in this embodiment is exactly the same as the method shown in FIG.

第5図における干渉信号El 、E2 、E3は互いに
θ度、90度、180度の位相差を有している。
The interference signals El, E2, and E3 in FIG. 5 have phase differences of θ degrees, 90 degrees, and 180 degrees.

本実施例では180度の位相差を有する2つの干渉信号
El 、E3を加算器81で加算し、加算信号EI3を
得ている。そして除算器83.84により干渉信号El
とE2を加算信号E13で割り補正信号E13. E2
3を求めている。これにより第4図(B)に示したのと
同様な一定の振幅を存する正弦波形の補正信号を得てい
る。
In this embodiment, two interference signals El and E3 having a phase difference of 180 degrees are added by an adder 81 to obtain an added signal EI3. Then, the interference signal El is divided by the dividers 83 and 84.
and E2 are divided by the addition signal E13 to obtain the correction signal E13. E2
I'm looking for 3. As a result, a sinusoidal waveform correction signal having a constant amplitude similar to that shown in FIG. 4(B) is obtained.

(発明の効果) 以上のように本発明によれば互いに180度の位相差を
有する2つの干渉信号を利用することにより、光源の出
力変動や回折格子の回折効率の変動等があっても、干渉
縞の明暗を計数する際の干渉信号が不安定にならず一定
とすることができる為、常に高精度な測定が可能の変位
測定装置な達成することができる。
(Effects of the Invention) As described above, according to the present invention, by using two interference signals having a phase difference of 180 degrees, even if there are fluctuations in the output of the light source, fluctuations in the diffraction efficiency of the diffraction grating, etc. Since the interference signal when counting the brightness and darkness of the interference fringes can be kept constant without becoming unstable, it is possible to achieve a displacement measuring device that can always perform highly accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2図は
第1図の各受光素子からの出力信号の説明図、第3図は
第1図の各受光素子からの出力信号の処理を示す電気回
路のブロック図、第4図は第3図のブロック図から得ら
れる出力信号の説明図、第5図は本発明の他の一実施例
の電気回路のブロック図、第6図は従来の変位測定装置
から得られる出力信号の説明図である。図中1は光源、
2は回折格子、31.32はコーナーキューブ、41.
42は属波長板、5はビームスプリッタ−161,62
,63,64は偏光板、71゜72.73.74は受光
素子、81.82は加算器、83.84除算器、85は
計数回路である。 特許出願人  キャノン株式会社 第  2  回 晃  3  回 夷  5  回 第  4  回 兆  6  図
Figure 1 is a schematic diagram of an optical system according to an embodiment of the present invention, Figure 2 is an explanatory diagram of output signals from each light receiving element in Figure 1, and Figure 3 is an output from each light receiving element in Figure 1. FIG. 4 is an explanatory diagram of an output signal obtained from the block diagram of FIG. 3; FIG. 5 is a block diagram of an electric circuit according to another embodiment of the present invention; FIG. FIG. 6 is an explanatory diagram of an output signal obtained from a conventional displacement measuring device. 1 in the figure is a light source,
2 is a diffraction grating, 31.32 is a corner cube, 41.
42 is a wavelength plate, 5 is a beam splitter-161, 62
, 63, 64 are polarizing plates, 71.degree., 72.73.74 are light receiving elements, 81.82 is an adder, 83.84 is a divider, and 85 is a counting circuit. Patent applicant Canon Co., Ltd. 2nd Akira 3rd Yi 5th 4th Trillion 6 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物体に連結した回折格子から生ずる回折光
を互いに干渉させて、干渉縞を形成し、該干渉縞の明暗
に対応した干渉信号を前記被測定物体の変位に関する信
号として抽出する変位測定装置において、前記干渉信号
を抽出する際、光学手段により所定の位相差を付与した
少なくとも2つの干渉信号として抽出し、この2つの干
渉信号を利用して、該干渉信号に含まれる誤差信号を補
正したことを特徴とする変位測定装置。
(1) Displacement in which diffracted lights generated from a diffraction grating connected to an object to be measured interfere with each other to form interference fringes, and an interference signal corresponding to the brightness and darkness of the interference fringes is extracted as a signal related to the displacement of the object to be measured. In the measuring device, when extracting the interference signal, the optical means extracts it as at least two interference signals with a predetermined phase difference, and the two interference signals are used to extract the error signal contained in the interference signal. A displacement measuring device characterized by being compensated.
(2)前記2つの干渉信号は互いに180度の位相差を
有していることを特徴とする特許請求の範囲第1項記載
の変位測定装置。
(2) The displacement measuring device according to claim 1, wherein the two interference signals have a phase difference of 180 degrees from each other.
JP25993686A 1986-10-31 1986-10-31 Displacement measuring instrument Pending JPS63115010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25993686A JPS63115010A (en) 1986-10-31 1986-10-31 Displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25993686A JPS63115010A (en) 1986-10-31 1986-10-31 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPS63115010A true JPS63115010A (en) 1988-05-19

Family

ID=17340981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25993686A Pending JPS63115010A (en) 1986-10-31 1986-10-31 Displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPS63115010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU175968U1 (en) * 2017-05-02 2017-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Optical design of an ultra-precision holographic linear displacement sensor with a controlled mirror unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529895A (en) * 1978-06-23 1980-03-03 Radiologie Cie Gle Machine for replacing film sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529895A (en) * 1978-06-23 1980-03-03 Radiologie Cie Gle Machine for replacing film sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU175968U1 (en) * 2017-05-02 2017-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Optical design of an ultra-precision holographic linear displacement sensor with a controlled mirror unit

Similar Documents

Publication Publication Date Title
US7375820B2 (en) Interference measuring apparatus for detecting a plurality of stable phase difference signals
EP2741058B1 (en) Displacement detecting device and scale
EP2219012B1 (en) Origin detection apparatus, displacement measurement apparatus and optical apparatus
JPS6391515A (en) Photoelectric angle gage
JPH0285715A (en) Encoder
JP3644687B2 (en) Photoelectric distance and angle measuring device for measuring the relative displacement of two objects
JPS58191907A (en) Method for measuring extent of movement
JPS63115012A (en) Displacement measuring instrument
EP0636240B1 (en) Angle detection
JPS63277926A (en) Length measuring instrument
JPH046884B2 (en)
US4725146A (en) Method and apparatus for sensing position
JPS63115011A (en) Displacement measuring instrument
JPS63115010A (en) Displacement measuring instrument
EP2955490B1 (en) Displacement detecting device
JP2014098619A (en) Linear encoder and method for processing workpiece
JP2004245634A (en) Rotation angle measuring device
JPH0462004B2 (en)
JPH0462003B2 (en)
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
JPH05107042A (en) Method and apparatus for detecting position using diffraction grating
JP5868058B2 (en) POSITION MEASURING DEVICE, OPTICAL COMPONENT MANUFACTURING METHOD, AND MOLD MANUFACTURING METHOD
JPH07117426B2 (en) Optical encoder
JPH0285717A (en) Encoder
JPS6097215A (en) Length measuring device