JPS63114923A - Non-deformation cooling method for high temperature rail - Google Patents

Non-deformation cooling method for high temperature rail

Info

Publication number
JPS63114923A
JPS63114923A JP26234786A JP26234786A JPS63114923A JP S63114923 A JPS63114923 A JP S63114923A JP 26234786 A JP26234786 A JP 26234786A JP 26234786 A JP26234786 A JP 26234786A JP S63114923 A JPS63114923 A JP S63114923A
Authority
JP
Japan
Prior art keywords
rail
cooling
head
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26234786A
Other languages
Japanese (ja)
Other versions
JPH0366371B2 (en
Inventor
Keiji Fukuda
福田 敬爾
Takefumi Suzuki
鈴木 孟文
Yoshiaki Makino
牧野 由明
Manabu Sato
学 佐藤
Michiaki Ishii
石井 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26234786A priority Critical patent/JPS63114923A/en
Publication of JPS63114923A publication Critical patent/JPS63114923A/en
Publication of JPH0366371B2 publication Critical patent/JPH0366371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To stably restrain the bending at the time of cooling a rail under a simple method by executing the cooling of the bottom face of rail under the specific condition at the way of cooling the head top face and head side face of rail heated at austenitic range temp. or higher. CONSTITUTION:The high temp. rail 1 holding heat of austenitic range temp. or higher by heating is charged in the cooling apparatus in the right standing state toward longitudinal and the heat top face temp. is measured by a thermometer 8 to output to a control device 9. Next, the head top face and heat side face of the rail 1 are adjusted, so as to be positioned at a prescribed distance H from nozzles 11, 12 and the cooling is executed by injecting air to the head top part and the head side part of rail 1 from the nozzles 11, 12 by an upper nozzle header. In passing the prescribed time, when pearlite transformation becomes 40-60% by progression of cooling of rail head part, the control device 9 is worked to the adjusting valve 7, to execute the cooling by injecting 1/2-1/5 quantity of the air to the rail head part and, to the bottom part of rail from a lower part nozzle header 3. In this way, the temp. difference between the head part and the bottom part of rail 7 is minimized and cooling with non-deformation is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間圧延を終えあるいは熱処理する目的で加
熱されたオーステナイト域温度以上の熱を保有する高温
度のレールを冷却する場合において、発生する湾曲形状
を矯正し冷却する高温レールの無変形冷却方法に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for cooling a high-temperature rail that has a temperature higher than the austenite range temperature that has been heated for the purpose of finishing hot rolling or for heat treatment. The present invention relates to a method for cooling a high-temperature rail without deformation, which corrects the curved shape that occurs and cools the rail.

(従来の技術) 近年、鉄道輸送は高軸荷重化、高速化を指向し、それに
伴いレール頭部の摩耗や疲労が激しく、レールに要求さ
れる性質も一層きびしく耐摩耗性、耐疲労性のより優れ
た高強度レールが要求されている。
(Conventional technology) In recent years, rail transportation has become more oriented toward higher axle loads and higher speeds, which has led to severe wear and fatigue on the rail heads.The properties required for rails have also become more demanding, with improved wear resistance and fatigue resistance. Better high-strength rails are required.

その一般的な製造法としてこれまでの研究で、熱処理に
よる微細パーライト組織を有する鋼レールは優れた耐摩
耗性、耐損傷性を示すことが知られている 例えば、特開昭59−74227号公報に示される様に
オーステナイト温度域以上のレールを、ローラ型拘束シ
ステムで搬送しながら、レール頭部を制御冷却する熱処
理レールがある。また特開昭61−60827号公報に
示される様に、冷却中のレールの形状変化を曲り検出器
で検出し、得た信号で下部冷却風量を制御し、曲りを最
小にする熱処理方法がある。
As a general manufacturing method, it is known from previous research that steel rails with a fine pearlite structure produced by heat treatment exhibit excellent wear resistance and damage resistance. As shown in Figure 2, there is a heat treatment rail that transports rails with temperatures above the austenite temperature range using a roller restraint system while controlling and cooling the rail head. Furthermore, as shown in Japanese Patent Application Laid-Open No. 61-60827, there is a heat treatment method in which changes in the shape of the rail during cooling are detected by a bend detector, and the lower cooling air volume is controlled using the obtained signal to minimize bending. .

(発明が解決しようとする問題点) しかしながら、特開昭59−74227号公報記載の方
法は、レールの形状は上下非対称であるため、冷却中の
上下変形は避けることが出来ないとして、レールの頭部
と底部からローラーで拘束し、冷却をしているが、強力
な拘束装置を設置しているため、設備コストが高く、ま
た冷却時に拘束ローラーの影響を受け、材質のばらつき
が生じやすいという問題点がある。また特開昭61−6
0827号公報記載の方法は、曲り検出器から得た信号
で下部冷却風量を制御し、曲りを最小にする方法で、曲
り検出器の設置など設備コストが高く、また形状が変化
をしはじめてから制御を行うから、形状制御が遅れがち
になる問題点がある。
(Problems to be Solved by the Invention) However, the method described in JP-A-59-74227 is based on the assumption that since the shape of the rail is vertically asymmetric, vertical deformation during cooling cannot be avoided. Cooling is achieved by restraining the head and bottom with rollers, but since a powerful restraint device is installed, equipment costs are high, and the material is likely to vary due to the influence of the restraint rollers during cooling. There is a problem. Also, JP-A-61-6
The method described in Publication No. 0827 is a method that minimizes bending by controlling the lower cooling air volume using a signal obtained from a bending detector, but it requires high equipment costs such as installing a bending detector, and it is difficult to detect the problem after the shape starts to change. Since the control is performed, there is a problem that shape control tends to be delayed.

(問題点を解決するための手段) 本発明はこれまでの高強度レール製造法における耐摩耗
性、耐疲労性など諸性質を損なうことなく、レールの形
状問題を解決した高温レールの冷却法を提供するもので
、その要旨は、熱間圧延を終えあるいは熱処理する目的
で加熱されたオーステナイト域温度以上の熱を保有する
高温度のレールを冷却するにあたり、レール頭頂面およ
び頭側面は材質上の目標強度を満足する噴射量で冷媒を
噴射しながら冷却するとともに、レール頭部のパーライ
ト変atが40%乃至60%進行したとき、レール底部
をレール頭部冷却の172乃至115の冷媒噴射量で冷
却を開始し、レール頭部のパーライト変態がほぼ終了す
るまで冷却を行う高温レールの無変形冷却法である。
(Means for Solving the Problems) The present invention provides a method for cooling high-temperature rails that solves the problem of rail shape without impairing various properties such as wear resistance and fatigue resistance in conventional high-strength rail manufacturing methods. The gist is that when cooling a high-temperature rail that has heat above the austenite range temperature after hot rolling or for the purpose of heat treatment, the rail top surface and head surface are In addition to cooling the rail by injecting refrigerant with an injection amount that satisfies the target strength, when pearlite transformation at the rail head has progressed by 40% to 60%, the rail bottom is cooled with a refrigerant injection amount of 172 to 115 to cool the rail head. This is a non-deformation cooling method for high-temperature rails that starts cooling and continues cooling until the pearlite transformation of the rail head is almost completed.

以下、本発明について図面に示す実施態様例を参照しな
がら詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図および第2図は、本発明法を実施するために用い
る装置例を概略図で示す。第1図において1は高温度レ
ールで、熱間圧延を終えあるいは熱処理する目的で加熱
されたオーステナイト域温度以“上の熱を保有する。こ
の場合のオーステナイト域温度以上の熱は、加速冷却後
耐摩耗性に冨んだ微細パーライト組織を得るための温度
で、レール頭部で約700℃以上であればよい。
1 and 2 schematically illustrate an example of the apparatus used to carry out the method of the invention. In Figure 1, 1 is a high temperature rail, which holds heat above the austenite range temperature heated to finish hot rolling or for heat treatment.In this case, the heat above the austenite range temperature is heated after accelerated cooling. The temperature required to obtain a fine pearlite structure rich in wear resistance may be about 700° C. or higher at the rail head.

2は上部ノズルへラダーで高温度レール1の長手方向に
沿って設けられ、かつ該レール1の頭頂面および頭側面
に冷媒(水、空気その低気体およびこれらの混合体)を
噴霧するように設けられている。上部ノズルヘッダー2
の形状は特に限定するものではないが、第2図に示す様
にレール頭頂面に向けて冷媒を噴射するノズル11とレ
ール頭側面と願下に向けて冷媒を噴射するノズル12で
構成し、冷媒を噴射するとレール頭部表面層の均一冷却
が計られるとともに効率的な冷却ができる。
2 is provided along the longitudinal direction of the high temperature rail 1 with a ladder to the upper nozzle, and is configured to spray a refrigerant (water, air, low gas, and a mixture thereof) onto the top and side surfaces of the rail 1. It is provided. Upper nozzle header 2
Although the shape is not particularly limited, as shown in FIG. 2, it is composed of a nozzle 11 that injects refrigerant toward the top surface of the rail, and a nozzle 12 that injects refrigerant toward the side surface of the rail head and the bottom. By injecting the refrigerant, the surface layer of the rail head can be cooled uniformly and efficiently.

3は下部ノズルヘッダーで、上部ノズルヘッダー2と同
様に高温度レール1の長手方向に沿って設けられ、該レ
ール1の底面に冷媒を噴射する。
A lower nozzle header 3 is provided along the longitudinal direction of the high temperature rail 1 like the upper nozzle header 2, and injects refrigerant onto the bottom surface of the rail 1.

また下部ノズルヘッダー3の冷媒噴射ノズルは、第3図
に示す様に高温度レールlの底面中央厚肉部に指向する
ように該レール1に接近する位置に集中して設けてもよ
く、冷媒が底面全面に分散して噴射するように設けても
よい。なお、上下部ノズルヘッダー2.3のノズル総断
面積比は下部ノズル面積/上部ノズル面積で172乃至
115が本発明のような目的の冷却において好ましい。
Further, the refrigerant injection nozzles of the lower nozzle header 3 may be concentrated at a position close to the high-temperature rail 1 so as to be directed toward the thick-walled central part of the bottom surface of the high-temperature rail 1, as shown in FIG. It may be provided so that it is dispersed and sprayed over the entire bottom surface. The total nozzle cross-sectional area ratio of the upper and lower nozzle headers 2.3 (lower nozzle area/upper nozzle area) is preferably 172 to 115 for cooling purposes such as the present invention.

4はレール頭部冷却用冷媒供給パイプで、導入側は冷媒
供給源(図示せず)に、また排出側は上部冷媒供給調整
弁5を介して上部ノズルヘッダーに連接されている。6
はレール底面冷却用冷媒供給パイプで、導入側は冷媒供
給源(図示せず)に、また排出側は下部冷媒供給調整弁
7を介して下部ノズルヘッダー3に連接されている。下
部冷媒供給調整弁7には、冷却装置入側に設置した冷却
開始温度測定用温度計8から、測定した結果を入力し、
下部冷却開始タイミングを計算し作動させる制御装置9
が連接されている。すなわち下部冷媒供給調整弁7は高
温度レール10頭部のパーライト変態量が40%乃至6
0%進行したとき、下部の冷媒が供給されるように構成
されている。
4 is a refrigerant supply pipe for cooling the rail head, and the inlet side is connected to a refrigerant supply source (not shown), and the discharge side is connected to the upper nozzle header via an upper refrigerant supply regulating valve 5. 6
1 is a refrigerant supply pipe for cooling the bottom surface of the rail, and the inlet side is connected to a refrigerant supply source (not shown), and the discharge side is connected to the lower nozzle header 3 via a lower refrigerant supply regulating valve 7. The lower refrigerant supply adjustment valve 7 is input with the measurement result from a thermometer 8 for measuring the cooling start temperature installed on the inlet side of the cooling device.
Control device 9 that calculates and operates the lower cooling start timing
are connected. In other words, the lower refrigerant supply regulating valve 7 has a pearlite transformation amount of 40% to 6% at the head of the high temperature rail 10.
The structure is such that when the progress is 0%, the lower refrigerant is supplied.

10は搬送ローラー、13はレールガイドで高温度レー
ル1の底部両端に長手方向に並べて設けられている。
10 is a conveyance roller, and 13 is a rail guide, which are arranged at both ends of the bottom of the high temperature rail 1 in the longitudinal direction.

次に第1図に示す装置を用いて本発明の方法を実施する
場合について説明する。なお冷媒は、空気を使用する。
Next, the case where the method of the present invention is implemented using the apparatus shown in FIG. 1 will be explained. Note that air is used as the refrigerant.

熱間圧延を終えあるいは熱処理する目的で加熱されたオ
ーステナイト域温度以上の熱を保有する高温度レール1
は、王立の姿勢で長手方向に、第1図で示すような冷却
装置入側でレール頭頂面温度を温度計8で測定しながら
搬送され、冷却装置内を進行、または静止または往復運
動をしながら連続冷却される。ここで上部ノズルヘッダ
ー2をシフトアップ後、高温度レールlをレール長手横
方向で搬送し冷却装置内中央部に固定したのち、上部ノ
ズルヘッダー2をシフトダウンし冷却を行うようにして
もよい。
High-temperature rail 1 that has heat above the austenite range temperature heated for the purpose of finishing hot rolling or heat treatment
The rail is transported in the longitudinal direction in a royal position while measuring the temperature of the top surface of the rail with a thermometer 8 at the entrance side of the cooling device as shown in Figure 1, and is transported inside the cooling device, or moves at rest or in reciprocating motion. It is continuously cooled. Here, after the upper nozzle header 2 is shifted up, the high-temperature rail l is transported in the longitudinal and lateral direction of the rail and fixed in the central part of the cooling device, and then the upper nozzle header 2 may be shifted down to perform cooling.

この間、上部ノズルヘッダー2は所定の材質強度を得る
ことのできる空気噴射量(噴射圧力P)とノズルとレー
ル頭部表面との距離Hを一定に与えておく。
During this time, the upper nozzle header 2 is given a constant air injection amount (injection pressure P) and a distance H between the nozzle and the rail head surface that can obtain a predetermined material strength.

高温度レールlの頭部の冷却が開始され、レール頭部の
パーライト変態量が40〜60%進行するに要する所定
の時間だけ経過した時、下部冷媒供給調整弁7を作動さ
せ下部ノズルヘッダーから冷媒(空気)を噴射させるこ
とによって頭部との温度差を小さく保つことができ無変
形冷却ができる。
When cooling of the head of the high-temperature rail l has started and a predetermined period of time required for pearlite transformation of the rail head to progress by 40 to 60% has elapsed, the lower refrigerant supply regulating valve 7 is activated and the flow is carried out from the lower nozzle header. By injecting refrigerant (air), the temperature difference with the head can be kept small and cooling can be achieved without deformation.

以上のように冷却初期の段階で高温度レールの頭部のみ
の冷却でよいのは、圧延を終えあるいは熱処理する目的
で加熱された高温度レールは、冷却装置入側に到着する
自然冷却中は、レール底部の温度は−ル頭部の温度より
相対的に速く降下するため、低温度になる。この時、高
温度レールが横姿勢の場合、頭部と底部(頭部より温度
が低い)の温度差によって、第3図aに示す様な頭部が
凸の状態で湾曲(プラス曲り)するが、それを正立の姿
勢に起すと、第4図に示す様な熱間強度が小さい高温時
にはレールの自重のため、はぼ真直の状態になり冷却装
置内への搬送が可能で、レール頭部の冷却が開始できる
。レール頭部の冷却が開始されると頭部と底部の温度差
は急速に小さくなる。その状態を更に継続するとその温
度差は逆転し、温度の降下とともに熱間強度も増大しは
じめ、正立の姿勢でも第3図すに示す様な底部が凸の状
態に湾曲(マイナス曲り)してくる。そこでレール頭部
と底部の温度差が逆転するタイミングを捉え、底部から
も一定の冷媒量(レール規格によって相違するが、下/
上冷媒量比は、1/2〜115)で冷却を行うとレール
は真直の状態でパーライト変態が終了するまで熱処理す
ることが可能である。
As mentioned above, it is sufficient to cool only the head of the high-temperature rail at the initial stage of cooling. The temperature at the bottom of the rail decreases relatively faster than the temperature at the top of the rail, resulting in a low temperature. At this time, if the high temperature rail is in a horizontal position, the head will curve in a convex state (plus curve) as shown in Figure 3a due to the temperature difference between the head and the bottom (lower temperature than the head). However, when it is raised upright, as shown in Figure 4, at high temperatures where the hot strength is low, the rail becomes almost straight due to its own weight, making it possible to transport it into the cooling device. Head cooling can begin. When cooling of the rail head starts, the temperature difference between the head and the bottom rapidly decreases. If this state continues, the temperature difference will reverse, and as the temperature drops, the hot strength will begin to increase, and even in an upright position, the bottom will curve into a convex state (minus curve) as shown in Figure 3. It's coming. Therefore, by capturing the timing when the temperature difference between the top and bottom of the rail is reversed, a certain amount of refrigerant is also maintained from the bottom (although it differs depending on the rail standard,
When cooling is performed at an upper refrigerant amount ratio of 1/2 to 115), the rail can be heat-treated in a straight state until the pearlite transformation is completed.

そのタイミングは各種規格のレールを用いて温度測定を
しながら冷却を行った結果、頭部のパーライト変態が4
0%乃至60%進行した時点で底部からの冷却を開始す
る場合が最もよくバランスし、真直の状態で熱処理する
ことが可能であることを見い出した。
As a result of cooling while measuring the temperature using rails of various standards, we found that the pearlite transformation of the head was 4.
It has been found that the best balance is achieved when cooling is started from the bottom when the progress is 0% to 60%, and it is possible to perform heat treatment in a straight state.

前記のレール頭部のパーライト変態が40%乃至60%
程度進行するタイミングTcは温度計8で測定されたレ
ール頭頂面温度θSとあらかじめ分析で得られている炭
素当量Ceqとレール頭部の製造目標強度の冷却強さ 
Fc = (,77/H)を用いて次の(11式で計算
される。
The pearlite transformation of the rail head is 40% to 60%.
The timing Tc at which the degree progresses is based on the rail top surface temperature θS measured by the thermometer 8, the carbon equivalent Ceq obtained in advance by analysis, and the cooling intensity of the manufacturing target strength of the rail head.
It is calculated using the following equation (11) using Fc = (,77/H).

Tc=a+θs・(b+C・ θs)+Fc−(d+e
−Fc)+f−Ceq  ・・ (11但し、 a + b + Ct d + e + f :レール
形状に係わる係数Tc:下部冷媒供給開始タイミング(
S)θS:冷却装置入側で測定したレール頭頂面温度(
”C) FC:レール頭部製造目標強度の冷却強さく J’F”
/ H) P:ヘラグー圧力(n+Aq) H:ノズルとレール頭表面からの距離(n)Ceq:レ
ールの炭素当量(C+Si/za+Mn八十Cr/ b
)以へ説明した本発明の方法によって冷却することによ
ってレールに要求される耐摩耗性などの各性質を損うこ
となく、形状のすぐれたレールを製造することができる
Tc=a+θs・(b+C・θs)+Fc−(d+e
-Fc)+f-Ceq... (11However, a + b + Ct d + e + f: Coefficient related to rail shape Tc: Lower refrigerant supply start timing (
S) θS: Rail top surface temperature measured at the entrance side of the cooling system (
"C) FC: Cooling strength of rail head manufacturing target strength J'F"
/ H) P: Hellagu pressure (n+Aq) H: Distance from nozzle to rail head surface (n) Ceq: Carbon equivalent of rail (C+Si/za+Mn80Cr/b
) By cooling according to the method of the present invention described below, rails with excellent shapes can be manufactured without impairing the properties required for rails, such as wear resistance.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

表1に示される化学成分を有した132ポンド/ヤード
の圧延熱を有した圧延レール(長さ:39フィート)を
本発明の方法で冷却を行った。
A rolling rail (length: 39 feet) having a rolling heat of 132 pounds per yard and having the chemical composition shown in Table 1 was cooled using the method of the present invention.

第5図はレール頭頂面温度(θsニア85℃)を測定し
たのち、レール全長を冷却装置に装入し、冷却を実施し
た状況を示す。
FIG. 5 shows a situation in which the rail top surface temperature (θs near 85° C.) was measured, and then the entire length of the rail was placed in a cooling device and cooled.

上部ノズルからは製造目標材質強度Hv : 350(
頭頂面中央下5鶴位置)を得る風量(Q下)レール長1
m当り約29 Nm3/min、m 、、を供給し、第
2図に示すようにノズルとの距離H:50fi−定を与
え連続冷却を行う。
From the upper nozzle, the manufacturing target material strength Hv: 350 (
Air volume (lower Q) rail length 1 to obtain 5 points below the center of the top of the head
About 29 Nm3/min, m2 per meter is supplied, and as shown in FIG. 2, continuous cooling is performed by giving a constant distance H to the nozzle of 50fi.

下部ノズルからは冷却装置装入後、表2に示す規格13
2ポンド/ヤードレールの係数を用い(1)式で計算さ
れた下部冷却開始タイミングTC:57秒の時刻に達し
たとき、空気を噴射した。下部ノズルの風量Q下は、規
格132ポンド/ヤードレールの場合、風量比Q下/Q
上は約173(下部風量Q下9 Nm’/min、+*
 )である。
After charging the cooling device from the lower nozzle, the standard 13 shown in Table 2
When the lower cooling start timing TC calculated by equation (1) using a coefficient of 2 pounds/yard rail reached 57 seconds, air was injected. The air volume Q lower of the lower nozzle is the air volume ratio Q lower/Q for standard 132 lb/yard rail.
Upper is approximately 173 (lower air volume Q lower 9 Nm'/min, +*
).

表   2 頭頂面表面温度785℃の圧延熱を保有したレールが横
姿勢のとき若干のプラス曲りが認められたが、正立の姿
勢に起すと、はぼ真直な状態になる。冷却装置内に装入
され上部ノズルにより冷却が開始されると頭部温度は底
部温度に次第に近づきほぼ同じタイミングで頭部と底部
のパーライト変態が始まり、レールはほぼ真直な状態が
保持されている。そこで頭部のパーライト変態が40%
〜60%進行したタイミング、すなわち(1)式で計算
された57秒後に下部ノズルから冷却が開始されると、
上部ノズルによる頭部と下部ノズルによる底部の冷却が
ほぼ等速の冷却速度で制御され、曲りは殆ど発生しない
ことが確認された。
Table 2 A slight positive bend was observed when the rail, which had been subjected to rolling heat with a top surface surface temperature of 785°C, was in a horizontal position, but when it was raised to an upright position, it became almost straight. When the rail is loaded into the cooling device and cooling is started by the upper nozzle, the head temperature gradually approaches the bottom temperature, and pearlite transformation begins at the top and bottom at approximately the same time, and the rail remains almost straight. . Therefore, the pearlite metamorphosis of the head is 40%.
When cooling starts from the lower nozzle at the timing when ~60% has progressed, that is, 57 seconds calculated by equation (1),
It was confirmed that the cooling of the head by the upper nozzle and the bottom by the lower nozzle was controlled at a substantially constant cooling rate, and almost no bending occurred.

こうして得られたレールの材質は、全断面−様な特に頭
部表層部近傍は微細なパーライト組織が得られ、ベーナ
イトやマルテンサイトの有害な組織は認められなかった
。またレール長手方向に亘っても均一な材質を得ること
ができる。
The material of the rail thus obtained had a fine pearlite structure throughout the cross section, especially near the surface layer of the head, and no harmful structures of bainite or martensite were observed. Moreover, uniform material quality can be obtained even over the longitudinal direction of the rail.

(発明の効果) 本発明は曲がり検出器や特別の冷却装置を用いることな
しにレール頭部の冷却に対応してレール底部の冷却開始
のタイミングをおくらせるだけの簡単な方法でレールの
冷却時の曲がりを安定して′抑制することができまた設
備費を安くすることができる。
(Effects of the Invention) The present invention provides a simple method for delaying the start of cooling the rail bottom in response to the cooling of the rail head without using a bend detector or special cooling device. bending can be stably suppressed and equipment costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明を実施する装置の概略説明
図、第3図aはレールのプラス曲り、第3図すはレール
のマイナス曲りを説明する図、第4図は鋼材の熱間強度
の説明図、第5図はレール頭頂面温度を測定した後、レ
ール全長を冷却装置に装入して、冷却蕃実施した状況を
示す図表である。 1:レール、2:上部ノズルヘッダー、3:下部ノズル
ヘッダー、 4:レール頭部冷却用冷媒供給パイプ、5:上部冷媒供
給調整弁、 6:レール底面冷却用冷媒供給パイプ、7:下部冷媒供
給調整弁、 8:冷却開始温度測定用温度計、 9:制御装置、10:搬送ローラー、 11.12:ノズル、13;レールガイド、第2図 第3図
Figures 1 and 2 are schematic explanatory diagrams of the apparatus for carrying out the present invention, Figure 3a is a diagram explaining the positive bending of the rail, Figure 3 is a diagram explaining the negative bending of the rail, and Figure 4 is a diagram showing the heat of the steel material. FIG. 5 is a chart showing the situation in which after measuring the temperature of the top surface of the rail, the entire length of the rail was placed in a cooling device and subjected to cooling. 1: Rail, 2: Upper nozzle header, 3: Lower nozzle header, 4: Refrigerant supply pipe for cooling the rail head, 5: Upper refrigerant supply adjustment valve, 6: Refrigerant supply pipe for cooling the bottom of the rail, 7: Lower refrigerant supply Regulating valve, 8: Thermometer for measuring cooling start temperature, 9: Control device, 10: Conveyance roller, 11.12: Nozzle, 13: Rail guide, Figure 2, Figure 3

Claims (1)

【特許請求の範囲】[Claims] 熱間圧延を終えあるいは熱処理する目的で加熱されたオ
ーステナイト域温度以上の熱を保有する高温度のレール
を冷却するにあたり、レール頭頂面およびその頭側面は
材質上の目標強度を満足する噴射量で冷媒を噴射しなが
ら冷却するとともに、レール頭部のパーライト変態量が
40%乃至60%進行したとき、レール底部からレール
頭部の1/2乃至1/5の冷媒噴射量で冷却を行うこと
を特徴とする高温レールの無変形冷却法。
When cooling a high-temperature rail that has heat above the austenite range temperature after hot rolling or for the purpose of heat treatment, the rail top surface and its head side surface are sprayed with an injection amount that satisfies the target strength of the material. In addition to cooling while injecting refrigerant, when the amount of pearlite transformation at the rail head has progressed by 40% to 60%, cooling is performed from the bottom of the rail with an amount of refrigerant injection of 1/2 to 1/5 of the rail head. Features a non-deformation cooling method for high-temperature rails.
JP26234786A 1986-11-04 1986-11-04 Non-deformation cooling method for high temperature rail Granted JPS63114923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26234786A JPS63114923A (en) 1986-11-04 1986-11-04 Non-deformation cooling method for high temperature rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26234786A JPS63114923A (en) 1986-11-04 1986-11-04 Non-deformation cooling method for high temperature rail

Publications (2)

Publication Number Publication Date
JPS63114923A true JPS63114923A (en) 1988-05-19
JPH0366371B2 JPH0366371B2 (en) 1991-10-17

Family

ID=17374482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26234786A Granted JPS63114923A (en) 1986-11-04 1986-11-04 Non-deformation cooling method for high temperature rail

Country Status (1)

Country Link
JP (1) JPS63114923A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104824A (en) * 1989-09-20 1991-05-01 Nippon Steel Corp Heat treatment of long-sized welded rail
KR100339894B1 (en) * 2000-01-31 2002-06-10 백창기 Anticorrsion apparatus for heat treated rails
JP2006336043A (en) * 2005-05-31 2006-12-14 Mine Seisakusho:Kk Continuous hardening heat treatment method for head of rail with special section, and heat treatment apparatus
US7828917B2 (en) * 2004-01-09 2010-11-09 Nippon Steel Corporation Rail manufacturing method
WO2013115364A1 (en) * 2012-02-02 2013-08-08 Jfeスチール株式会社 Rail cooling method and rail cooling device
JP2014188573A (en) * 2013-03-28 2014-10-06 Jfe Steel Corp Rail manufacturing method
CN109182715A (en) * 2018-09-19 2019-01-11 武汉钢铁有限公司 Rail burning optimization on line method for controlling planeness
EP3597780A4 (en) * 2017-03-15 2020-01-22 JFE Steel Corporation Cooling device and production method for rail

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104824A (en) * 1989-09-20 1991-05-01 Nippon Steel Corp Heat treatment of long-sized welded rail
KR100339894B1 (en) * 2000-01-31 2002-06-10 백창기 Anticorrsion apparatus for heat treated rails
US7828917B2 (en) * 2004-01-09 2010-11-09 Nippon Steel Corporation Rail manufacturing method
JP2011073063A (en) * 2004-01-09 2011-04-14 Nippon Steel Corp Method of manufacturing rail
JP2006336043A (en) * 2005-05-31 2006-12-14 Mine Seisakusho:Kk Continuous hardening heat treatment method for head of rail with special section, and heat treatment apparatus
JP4675681B2 (en) * 2005-05-31 2011-04-27 株式会社峰製作所 Continuous head hardening heat treatment method and heat treatment apparatus for special cross-section rail
WO2013115364A1 (en) * 2012-02-02 2013-08-08 Jfeスチール株式会社 Rail cooling method and rail cooling device
WO2013114600A1 (en) * 2012-02-02 2013-08-08 Jfeスチール株式会社 Rail cooling method and rail cooling device
US9988696B2 (en) 2012-02-02 2018-06-05 Jfe Steel Corporation Rail cooling method and rail cooling device
US10100380B2 (en) 2012-02-02 2018-10-16 Jfe Steel Corporation Rail cooling device
JP2014188573A (en) * 2013-03-28 2014-10-06 Jfe Steel Corp Rail manufacturing method
EP3597780A4 (en) * 2017-03-15 2020-01-22 JFE Steel Corporation Cooling device and production method for rail
US11453929B2 (en) * 2017-03-15 2022-09-27 Jfe Steel Corporation Cooling device and production method for rail
CN109182715A (en) * 2018-09-19 2019-01-11 武汉钢铁有限公司 Rail burning optimization on line method for controlling planeness

Also Published As

Publication number Publication date
JPH0366371B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
KR900002195B1 (en) Method for heat treating rails
CA1193176A (en) Method for the production of improved railway rails by accelerated colling in line with the production rolling mill
RU2456352C1 (en) Procedure and device for thermal treatment of rails
CN1054642C (en) Process for heat treatment of steel rail
RU2484148C1 (en) Method and device for thermal treatment of rails
JPS63114923A (en) Non-deformation cooling method for high temperature rail
JPS60174833A (en) Cooling method of hot steel sheet
RU2272080C2 (en) Method of the thermal treatment of the rails
US5004510A (en) Process for manufacturing high strength railroad rails
WO2016027467A1 (en) Heat treatment rail manufacturing method and manufacturing apparatus
JP3811865B2 (en) Method and apparatus for heat treating deformed rolled material
JPH08239719A (en) Method and apparatus for cooling hot rolled shape material
RU2487177C2 (en) Method and installation for thermal treatment of rails
JP3945545B2 (en) Rail heat treatment method
CN107614708A (en) The manufacture method of steel, the cooling device of steel and steel
JPS6160827A (en) Shape straightening and cooling method of high temperature rail
JPS61149436A (en) Heat treatment of rail
US6689230B1 (en) Method and apparatus for cooling hot-rolled sections
EP0582180A1 (en) Heat treatment process for wire rods
JPH03166318A (en) Method for heat-treating rail
JPS6117886B2 (en)
JP2001300633A (en) Low temperature coiling method of high strength hot rolled steel strip
FR2302340A1 (en) Brief surface quenching hot rolled steel prod. - leaving a rolling mill, to obtain surface zone of tempered martensite or bainite
JPS56150127A (en) Direct normalizing method
JPH01104721A (en) Method for cooling high-temperature rail