JPS63114032A - Microwave ion source - Google Patents

Microwave ion source

Info

Publication number
JPS63114032A
JPS63114032A JP25820686A JP25820686A JPS63114032A JP S63114032 A JPS63114032 A JP S63114032A JP 25820686 A JP25820686 A JP 25820686A JP 25820686 A JP25820686 A JP 25820686A JP S63114032 A JPS63114032 A JP S63114032A
Authority
JP
Japan
Prior art keywords
plasma chamber
plasma
wall
magnetic field
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25820686A
Other languages
Japanese (ja)
Other versions
JP2804024B2 (en
Inventor
Katsumi Tokikuchi
克己 登木口
Kuniyuki Sakumichi
訓之 作道
Hidemi Koike
英巳 小池
Takayoshi Seki
孝義 関
Osami Okada
岡田 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61258206A priority Critical patent/JP2804024B2/en
Publication of JPS63114032A publication Critical patent/JPS63114032A/en
Application granted granted Critical
Publication of JP2804024B2 publication Critical patent/JP2804024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To improve the efficiency of polyvalent ion generation by providing multiple solenoid coils or permanent magnets different from a main solenoid coil, near the outer wall of a plasma chamber. CONSTITUTION:A plasma chamber is fed with microwaves and generates the plasma of the sample gas, and a solenoid coil 1 generates the magnetic field in the plasma chamber. An ion beam from the plasma chamber is extracted by an extracting electrode system 5. Magnet trains 6 made of permanent magnets are arranged in four columns in the circumferential direction near the outer wall of the plasma chamber. The magnet trains 6 generate the circumferential magnetic field, and its magnetic field strength is weakest at the center portion of the plasma chamber and becomes larger toward the tube wall. Accordingly, the plasma grain loss for the wall is suppressed, and the polyvalent ion generation efficiency in the plasma chamber can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大電流イオンビームが容易に取得できるマイク
ロ波イオン源に係り、特に多価に電離したイオンビーム
を効率良く取得するに好適なマイクロ波イオン源に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microwave ion source that can easily obtain a large current ion beam, and in particular a microwave ion source that is suitable for efficiently obtaining a multivalent ionized ion beam. Regarding wave ion sources.

〔従来の技術〕[Conventional technology]

磁場中のマイクロ波放電で高温、高密度のプラズマを生
成し、これからイオンビームを引出すマイクロ波イオン
源は、大電流ビームを長時間安定に取得できるイオン源
として、半導体用イオン打込み装置を初めとする広範な
産業分野で利用されている。そのプラズマ室構造として
は、特公昭57−11094 、特公昭57−1109
3.特公昭59−8959.特公昭57−4056 な
どに見られるように同軸構造、リッジ構造などかあシ、
−!た特公昭53−34461のように円筒構造もある
Microwave ion sources, which generate high-temperature, high-density plasma using microwave discharge in a magnetic field and extract ion beams from it, are used as ion sources that can stably obtain high-current beams over long periods of time, including ion implantation equipment for semiconductors. It is used in a wide range of industrial fields. As for the plasma chamber structure, the Japanese Patent Publication No. 57-11094, the Special Publication No. 57-1109
3. Special Publication Showa 59-8959. Coaxial structure, ridge structure, etc. as seen in Tokuko Sho 57-4056 etc.
-! There is also a cylindrical structure, as shown in Japanese Patent Publication No. 53-34461.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術ではマイクロ波放電プラズマを構成するイ
オンの殆どが1価に電離したイオンで、1価の大電流ビ
ーム取得が主として重要となる利用分野(例えばイオン
打込み装置)に応用されていた。言いかえれば、イオン
ビームによる物質輸送の特性を活用する分野である。こ
のためマイクロ波イオン源の改良に関する考案は、1価
イオンの生成効率を維持し大電流化を図るものが多い。
In the above-mentioned conventional technology, most of the ions constituting the microwave discharge plasma are monovalently ionized ions, and the technology is applied to fields of use where acquisition of a large monovalent current beam is primarily important (for example, ion implantation equipment). In other words, it is a field that utilizes the characteristics of mass transport by ion beams. For this reason, many ideas for improving microwave ion sources aim to maintain the production efficiency of singly charged ions while increasing the current.

近年、半導体イオン打込みのプロセス技術分野では打込
みエネルギーが高エネルギー化する方向にある。従来の
打込み装置を用いて高エネルギー化を行うには、電離し
たイオンの価数を上れば良い。即ち、2価イオンを便え
ば1価イオンの2倍のエネルギーが得られる。イオンビ
ームの持つ物質輸送の特性を保持し且つ上記高エネルギ
ー化を図るには、イオン源プラズマの多価イオン生成効
率を上げる必要がある。ところが、マイクロ波イオン源
の多価イオン生成効率は他の従来イオン源に比べ一般に
高いものの1例えば2価イオン生成量は1価イオンの高
々10チ程度である。3価。
In recent years, in the field of semiconductor ion implantation process technology, there has been a trend toward higher implantation energy. In order to increase the energy using conventional implantation equipment, it is sufficient to increase the valence of the ionized ions. That is, if a divalent ion is used, twice the energy of a monovalent ion can be obtained. In order to maintain the mass transport characteristics of the ion beam and to achieve the above-mentioned high energy, it is necessary to increase the multivalent ion production efficiency of the ion source plasma. However, although the multivalent ion production efficiency of microwave ion sources is generally higher than that of other conventional ion sources, for example, the amount of doubly charged ions produced is at most about 10 times the amount of monovalent ions. Trivalent.

4価と価数が増えるに伴い、その生成率は減少する。As the tetravalence and valence increase, the production rate decreases.

本発明の目的は、従来のマイクロ波イオン源に多価イオ
ン生成効率を上げる改良を加え、大電流の多価イオンビ
ームを効率良く取得することにある。
An object of the present invention is to add improvements to the conventional microwave ion source to increase the efficiency of producing multiply charged ions, and to efficiently obtain a large current multiply charged ion beam.

〔問題点を解決するための手段〕[Means for solving problems]

プラズマ中の多価イオン生成効率を上げるには以下の方
法がある。
The following methods can be used to increase the efficiency of multiply charged ion generation in plasma.

(1)  プラズマ中の電子温度を多価イオン生成に必
要な電離電圧(数10〜数100eV)以上に高める。
(1) Raise the electron temperature in the plasma to a level higher than the ionization voltage (several tens to hundreds of eV) required to generate multiply charged ions.

(2)  プラズマ内でのイオンとしての滞在時間(あ
るいは寿命)を伸ばし、イオンが電子と衝突して多価イ
オンになる頻度を高める。
(2) Extend the residence time (or lifetime) of ions in the plasma and increase the frequency with which ions collide with electrons and become multivalent ions.

(1)の電子温度を高めるには、入射マイクロ波の電力
を上げ成子に働く加速電界を上げたシ、ガス圧を下げて
電子が充分加速されるまではイオンやガス中性分子と衝
突しないようにする。また、イオンの滞在時間は中性分
子との衝突ひん度、壁への拡散による粒子損失などに強
く依存するため、(2)の方法としては放電体積を大き
くして壁への損失を平均的に減らす方法や、放電ガス圧
を低くしたりする工夫がなされる。本発明は、壁への衝
突による損失を減らして、実効的に多価イオン生成効率
の増加を図るものである。
In order to raise the electron temperature in (1), the power of the incident microwave is increased to increase the accelerating electric field acting on Naruko, and the gas pressure is lowered so that the electrons do not collide with ions or gas neutral molecules until they are sufficiently accelerated. do it like this. In addition, since the residence time of ions strongly depends on the frequency of collisions with neutral molecules and particle loss due to diffusion to the wall, method (2) increases the discharge volume to reduce the average loss to the wall. Efforts have been made to reduce the discharge gas pressure to a lower level, or to lower the discharge gas pressure. The present invention aims to effectively increase the efficiency of multiply charged ion production by reducing loss due to collision with walls.

プラズマ粒子の磁場を横切る拡散係数り、は−般に磁束
密度Bの自乗に逆比例する。即ち次式が成立つ。
The diffusion coefficient of plasma particles across a magnetic field is generally inversely proportional to the square of the magnetic flux density B. That is, the following equation holds true.

D1″戸 従って磁束密度を上げればD上が減少し、壁への拡散が
減ってプラズマ内でのイオンの平均的滞在時間が改善さ
れることになる。
Therefore, increasing the magnetic flux density will reduce D, which will reduce diffusion to the walls and improve the average residence time of ions in the plasma.

第2図は従来のマイクロ波イオン源の構造とその磁場分
布を示したものである。同図囚は構造図。
FIG. 2 shows the structure of a conventional microwave ion source and its magnetic field distribution. The same figure is a structural diagram.

■は軸方向の磁場分布図、(0は半径方向の磁場分布図
である。図に示されるように、軸方向磁場分布はコイル
1,1′の中心部で高い値を示しておシ、いわゆるミラ
ー磁場分布と言われるもので。
■ is an axial magnetic field distribution diagram, (0 is a radial magnetic field distribution diagram. As shown in the figure, the axial magnetic field distribution shows a high value at the center of the coils 1 and 1'. This is what is called the mirror magnetic field distribution.

プラズマの閉じ込め効果は高いことが知られている。プ
ラズマが壁と接触する絶縁物4と引出し電極系5で磁束
密度Bの値が最も大きいため、これらの部分への拡散係
数は小さく、従って粒子の軸方向の拡散損失も小さい。
It is known that the plasma confinement effect is high. Since the value of the magnetic flux density B is highest in the insulator 4 and the extraction electrode system 5 where the plasma contacts the wall, the diffusion coefficient to these parts is small, and therefore the diffusion loss in the axial direction of the particles is also small.

一方、0図の半径方向磁場分布からは、壁に向かうに伴
い磁束密度Bが減少するから、外周壁近傍での拡散係数
はかなシ大きいと言える。プラズマに接する外周壁面積
も広いことから、半径方向の拡散を抑えることが、プラ
ズマの閉じ込め効果を上げ、結果として多価イオン生成
効率改善に大きく寄与することになる。
On the other hand, from the radial magnetic field distribution in Figure 0, the magnetic flux density B decreases as it moves toward the wall, so it can be said that the diffusion coefficient near the outer peripheral wall is significantly large. Since the area of the outer peripheral wall in contact with the plasma is also large, suppressing radial diffusion increases the plasma confinement effect and, as a result, greatly contributes to improving the efficiency of multiply charged ion production.

半径方向の拡散を減らすには、外周壁で磁束密度が高く
なるようにすれば良い。
To reduce radial diffusion, the magnetic flux density can be increased at the outer peripheral wall.

第1図は本発明の詳細な説明する図である。同図囚は構
造図、(B)は付加した磁石列6によって作られる磁場
形状を説明する断面図である。(5)では同じ、原性で
小形磁石を軸方向に並べ、この磁石列をプラズマ室外円
筒の周囲に配置したものである。
FIG. 1 is a diagram illustrating the present invention in detail. The figure on the left is a structural diagram, and (B) is a cross-sectional view illustrating the shape of the magnetic field created by the added magnet array 6. In (5), similar small magnets are arranged in the axial direction, and this magnet array is arranged around the plasma outdoor cylinder.

〔作用〕[Effect]

第1図において、磁石列は管壁に設置されており、これ
が作る磁場は(至)図に示した様に円周方向磁場である
。その磁場強度はプラズマ室中心部分で最も弱く、管壁
に近づくにつれて大きくなる。
In FIG. 1, the magnet array is installed on the tube wall, and the magnetic field it creates is a circumferential magnetic field as shown in the figure. The magnetic field strength is weakest at the center of the plasma chamber and increases as it approaches the tube wall.

従って、壁へのプラズマ粒子損失が抑えられ、プラズマ
内での多価イオン生成効率が上昇する。
Therefore, plasma particle loss to the wall is suppressed, and the efficiency of multiply charged ion production within the plasma is increased.

ソレノイドコイル1と磁石列6で作られる合成磁場形状
をプラズマ側から見ると、軸方向及び半径方向共にプラ
ズマ中心部分で磁場強度が平均的に極小となり、プラズ
マ閉じ込めの点からも安定性にすぐれていることが知ら
れている。この為;安定なビーム引出しの効果も付加さ
れる。
When looking at the composite magnetic field shape created by the solenoid coil 1 and the magnet array 6 from the plasma side, the magnetic field strength is minimal on average at the center of the plasma in both the axial and radial directions, and it is highly stable from the standpoint of plasma confinement. It is known that there are For this reason, the effect of stable beam extraction is also added.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図の原理図を用いて説明
する。第1図でマイクロ波として2.45G Hzの周
波数のものを使い、同軸構造プラズマ室の寸法としては
、直径30non以上の大きいものを使った。プラズマ
室体積が大きい程、多価イオン生成効率が上ることが実
験的に確かめられた。
Hereinafter, one embodiment of the present invention will be explained using the principle diagram shown in FIG. In FIG. 1, a microwave with a frequency of 2.45 GHz was used, and a large coaxial structure plasma chamber with a diameter of 30 nanometers or more was used. It was experimentally confirmed that the larger the plasma chamber volume, the higher the efficiency of multiply charged ion production.

第1図では、磁石列を円周方向に4列に並べ、いわゆる
四重極磁場とした。円周方向の列数を増やした9、また
第1図では隣り合う磁石列の極性を交互に変えているの
を同極性にすることでも、同様な多価イオン生成効率改
善効果が得られた。磁石トシては、サマリウム・コバル
ト製の小形磁石を使った。ガス圧力で10”’〜1O−
3Paのアルゴンガスをプラズマ室に流し、数100W
〜数kWのマイクロ波を投入し、引出したビームを質量
分離器に入れてイオン種成分を調べた。磁石列6の設置
によシ、従来A r ++とAr+イオン量の比I (
Ar”)/I (Ar”)で約0.1で、6つだものが
0.2以上に改善され、3価、4価イオンについてもイ
オン量に著しい増加が見られた。
In FIG. 1, magnet rows are arranged in four rows in the circumferential direction, creating a so-called quadrupole magnetic field. A similar effect of improving multivalent ion production efficiency was obtained by increasing the number of rows in the circumferential direction9, or by changing the polarity of adjacent magnet rows to the same polarity instead of alternating in Figure 1. . For the magnet, I used a small magnet made of samarium cobalt. 10''~1O- at gas pressure
Flowing 3 Pa argon gas into the plasma chamber, several 100 W
A microwave of ~ several kW was input, and the extracted beam was placed in a mass separator to examine the ion species components. By installing the magnet array 6, the ratio I (
Ar'')/I (Ar'') was approximately 0.1, which was improved from 6 to 0.2 or more, and a significant increase in the amount of trivalent and quadrivalent ions was also observed.

第1図の実施例では補助磁石として永久磁石を用いたが
、これを小さなソレノイドコイルの列とし、ソレノイド
コイルに電流を流しても第1図の)の様な磁力線分布が
得られる。実際の実験でも。
In the embodiment of FIG. 1, a permanent magnet is used as the auxiliary magnet, but even if this is made into an array of small solenoid coils and a current is passed through the solenoid coils, a magnetic field line distribution as shown in FIG. 1) can be obtained. Even in actual experiments.

多価イオン生成効率に同様な向上が観測された。A similar improvement in multivalent ion production efficiency was observed.

第3図は1本発明に基づく別の実施例を説明する図であ
る。本実施例で1は永久磁石列の代りに、図に示した様
な直線状補助コイル7を置き、これに電流を流すことに
よって、等価な磁場分布を得ている。なお、図中にはソ
レノイドコイル1と補助コイル7の電流の向きを矢印で
示した。補助コイル7の曲りの部分での電流の向きとソ
レノイドコイルの通電電流の向きが一致するように励磁
した。本実施例でも多価イオン種成分を調べたところ、
第1図に示した実施例と同様な改良効果が得られた。
FIG. 3 is a diagram illustrating another embodiment based on the present invention. In this embodiment, instead of the permanent magnet array, a linear auxiliary coil 7 as shown in the figure is placed, and an equivalent magnetic field distribution is obtained by passing a current through this. In addition, in the figure, the directions of the currents in the solenoid coil 1 and the auxiliary coil 7 are indicated by arrows. The auxiliary coil 7 was energized so that the direction of the current at the bent portion coincided with the direction of the current flowing through the solenoid coil. In this example, when the multivalent ion species components were investigated,
The same improvement effect as the example shown in FIG. 1 was obtained.

本実施例では同軸構造のプラズマ室についての例を述べ
た。プラズマ室として円筒構造でも本発明の効果が得ら
れることは明らかである。また本実施例では磁石列をプ
ラズマ室の外壁の大気側に設置した。この磁石列を真空
側であるプラズマ室内壁近傍に取りつけても同様な効果
が得られることは1本発明の原理からして明らかである
In this embodiment, an example of a plasma chamber with a coaxial structure has been described. It is clear that the effects of the present invention can be obtained even when the plasma chamber has a cylindrical structure. Further, in this example, the magnet array was installed on the atmosphere side of the outer wall of the plasma chamber. It is clear from the principle of the present invention that the same effect can be obtained even if this magnet array is attached near the wall of the plasma chamber on the vacuum side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波イオン源プラズマ室におい
て、磁石列を壁近傍に配列することでプラズマ室内壁へ
の粒子の拡散損失を抑えることができるので、マイクロ
波イオン源の多価イオン生成効率の改善に著しい効果が
ある。また本発明を備えたイオン源をイオン打込み装置
用のイオン源として用いると、高エネルギー、大電流の
イオンビームが容易に得られ、高エネルギー打込みの実
用化に対し、その効果は著しく大である。
According to the present invention, in a microwave ion source plasma chamber, dispersion loss of particles to the plasma chamber wall can be suppressed by arranging the magnet array near the wall, thereby increasing the multivalent ion generation efficiency of the microwave ion source. It has a remarkable effect on improving. Furthermore, when the ion source equipped with the present invention is used as an ion source for an ion implantation device, a high-energy, large-current ion beam can be easily obtained, which has a significant effect on the practical application of high-energy implantation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理および実施例を説明する図、第2
図は従来技術のマイクロ波イオン源の構造を説明する図
、第3図は本発明に基づく別の実施例を説明する図であ
る。
Fig. 1 is a diagram explaining the principle and embodiments of the present invention;
This figure is a diagram explaining the structure of a microwave ion source of the prior art, and FIG. 3 is a diagram explaining another embodiment based on the present invention.

Claims (1)

【特許請求の範囲】 1、マイクロ波を供給し試料ガスのプラズマを生成する
プラズマ室、このプラズマ室内に磁場を発生させるソレ
ノイドコイル、プラズマ室からイオンビームを引出すた
めの引出し電極系とからなるマイクロ波イオン源におい
て、プラズマ室外壁近傍に上記ソレノイドコイルとは異
なる別のソレノイドコイルあるいは永久磁石を複数個設
けたマイクロ波イオン源。 2、プラズマ室が同軸構造あるいは円筒構造であること
を特徴とした特許請求の範囲第1項記載のマイクロ波イ
オン源。 3、外壁に設置する永久磁石を軸方向に沿つて一列に並
べると共にその極性を全て同極とし、且つこの様な磁石
列を外壁円周に沿つて複数列並べたことを特徴とする特
許請求の範囲第2項記載のマイクロ波イオン源。 4、隣り合う列の極性を交互に変えた配置を特徴とした
特許請求の範囲第2、第3項記載のマイクロ波イオン源
[Claims] 1. A microcomputer consisting of a plasma chamber that supplies microwaves to generate plasma of sample gas, a solenoid coil that generates a magnetic field in this plasma chamber, and an extraction electrode system that extracts an ion beam from the plasma chamber. A microwave ion source in which a plurality of different solenoid coils or permanent magnets are provided near the outer wall of the plasma chamber. 2. The microwave ion source according to claim 1, wherein the plasma chamber has a coaxial structure or a cylindrical structure. 3. A patent claim characterized in that the permanent magnets installed on the outer wall are arranged in a line along the axial direction and all have the same polarity, and a plurality of such magnet rows are arranged along the circumference of the outer wall. The microwave ion source according to item 2. 4. The microwave ion source according to claims 2 and 3, characterized in that the polarities of adjacent rows are alternately changed.
JP61258206A 1986-10-31 1986-10-31 Microwave ion source Expired - Lifetime JP2804024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258206A JP2804024B2 (en) 1986-10-31 1986-10-31 Microwave ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258206A JP2804024B2 (en) 1986-10-31 1986-10-31 Microwave ion source

Publications (2)

Publication Number Publication Date
JPS63114032A true JPS63114032A (en) 1988-05-18
JP2804024B2 JP2804024B2 (en) 1998-09-24

Family

ID=17316985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258206A Expired - Lifetime JP2804024B2 (en) 1986-10-31 1986-10-31 Microwave ion source

Country Status (1)

Country Link
JP (1) JP2804024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160368A (en) * 1999-12-01 2001-06-12 Sumitomo Eaton Noba Kk Ion source
WO2012090464A1 (en) 2010-12-28 2012-07-05 株式会社日立ハイテクノロジーズ Charged particle beam microscope with diffraction aberration corrector applied thereto

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091600A (en) * 1983-08-30 1985-05-22 コミツサリア ア レネルジイ アトミツク Structure of ferromagnetic unit of ion source formed by permanent magnet and solenoid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091600A (en) * 1983-08-30 1985-05-22 コミツサリア ア レネルジイ アトミツク Structure of ferromagnetic unit of ion source formed by permanent magnet and solenoid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160368A (en) * 1999-12-01 2001-06-12 Sumitomo Eaton Noba Kk Ion source
WO2012090464A1 (en) 2010-12-28 2012-07-05 株式会社日立ハイテクノロジーズ Charged particle beam microscope with diffraction aberration corrector applied thereto
US9123501B2 (en) 2010-12-28 2015-09-01 Hitachi High-Technologies Corporation Device for correcting diffraction aberration of electron beam

Also Published As

Publication number Publication date
JP2804024B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
Oks et al. Elevated ion charge states in vacuum arc plasmas in a magnetic field
US6346768B1 (en) Low energy ion gun having multiple multi-aperture electrode grids with specific spacing requirements
EP0184812B1 (en) High frequency plasma generation apparatus
RU2344577C2 (en) Plasma accelerator with closed electron drift
US5266146A (en) Microwave-powered plasma-generating apparatus and method
US20040104683A1 (en) Negative ion source with external RF antenna
US6922019B2 (en) Microwave ion source
JP2010277871A (en) Electron cyclotron resonance ion source device
US9721760B2 (en) Electron beam plasma source with reduced metal contamination
JPS63114032A (en) Microwave ion source
JP3504290B2 (en) Method and apparatus for generating low energy neutral particle beam
US20020033446A1 (en) Neutral beam processing apparatus and method
JP2744188B2 (en) Microwave ion source and ion implantation device
JP2713692B2 (en) Ion implantation equipment
JP2838738B2 (en) Electron cyclotron resonance ion source
WO1994003919A1 (en) Process and device for generating beams of any highly charged ions having low kinetic energy
JP3213135B2 (en) Fast atom beam source
JPH0636735A (en) Substrate manufacturing device by polyvalent ion implanting method and manufacture of substrate
JPS6250941B2 (en)
JP2834147B2 (en) Method of forming charged particle beam
CN110868790A (en) Negative hydrogen ion extraction device
JP3341497B2 (en) High frequency type charged particle accelerator
Tokiguchi et al. New microwave ion source for multiply charged ion beam production
JPS63228549A (en) Microwave polyvalent ion source
RU2071137C1 (en) Ion source