JPS63113140A - Decelerating decrement control device for electronic control fuel injection system internal combustion engine - Google Patents

Decelerating decrement control device for electronic control fuel injection system internal combustion engine

Info

Publication number
JPS63113140A
JPS63113140A JP25848686A JP25848686A JPS63113140A JP S63113140 A JPS63113140 A JP S63113140A JP 25848686 A JP25848686 A JP 25848686A JP 25848686 A JP25848686 A JP 25848686A JP S63113140 A JPS63113140 A JP S63113140A
Authority
JP
Japan
Prior art keywords
deceleration
fuel injection
engine
correction
decelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25848686A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP25848686A priority Critical patent/JPS63113140A/en
Publication of JPS63113140A publication Critical patent/JPS63113140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent overleanness at the time of deceleration from throttle valve low opening as as overrichness at the time of that from throttle valve full-open, both from occurring, by compensating the fuel injection quantity decrement compensation value at the time of deceleration for increment according to an increase in engine load prior to decelerating drive. CONSTITUTION:A control unit 6 operates a fundamental fuel injection quantity on the basis of suction air quantity out of an air flow meter 8 and engine speed out of an engine speed sensor 5, and it performs varieties of compensation on the basis of each detected value of a throttle opening sensor 5, a water temperature sensor 9 or the like. And, the control unit 6 judges to be at time of deceleration when throttle opening is closed at a rate of more than the specified one, and it performs the decrement compensation of a fuel injection quantity at the time of deceleration on the basis of a water temperature dependent decelerating decrement correction factor to be set the larger, the lower in water temperature, a speed dependent decelerating decrement correction factor to be set the larger, the higher in engine speed and a load dependent decelerating decrement correction factor to be set the bigger, the larger in the fundamental fuel injection quantity, namely, load.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電子制御燃料噴射式内燃機関の減速減量制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a deceleration/reduction control device for an electronically controlled fuel injection type internal combustion engine.

〈従来の技術〉 電子制御燃料噴射式内燃機関としては従来以下のような
ものがある。
<Prior Art> There are the following conventional electronically controlled fuel injection internal combustion engines.

即ち、エアフローメータにより検出される吸入空気流i
Qとクランク角センサや点火コイル等によって検出され
る機関回転速度Nとから基本燃料噴射量Tp (−Kx
Q/NHKは定数)を演算し、更に、機関温度等の機関
運転状態に応じた各種補正係数C0EFと空燃比フィー
ドバック補正係数αとバッテリ電圧による補正分子sと
を演算した後、前記基本燃料噴射ITpをこれらにより
補正演算して、最終的な燃料噴射量Ti(=TpXCO
EFXα+Ts)を設定する。
That is, the intake air flow i detected by the air flow meter
The basic fuel injection amount Tp (-Kx
Q/NHK is a constant), and furthermore, after calculating various correction coefficients C0EF according to engine operating conditions such as engine temperature, air-fuel ratio feedback correction coefficient α, and correction numerator s depending on battery voltage, the basic fuel injection ITp is corrected using these calculations to obtain the final fuel injection amount Ti (=TpXCO
EFXα+Ts).

そして、設定された燃料噴射量Tiに相当するパルス巾
の噴射パルス信号を電磁式燃料噴射弁に出力することに
より、機関に所定量の燃料を噴射供給するようにしてい
た(特開昭59−203828号公報等参照)。
Then, by outputting an injection pulse signal with a pulse width corresponding to the set fuel injection amount Ti to the electromagnetic fuel injection valve, a predetermined amount of fuel was injected and supplied to the engine. (See Publication No. 203828, etc.).

また、特に吸気マニホールドの上流部(例えばスロット
ル弁よりも上流側)に燃料噴射弁を備えた電子制御燃料
噴射式内燃機関においては、機関減速時に、スロットル
弁が全閉(アイドル位置)になってから吸気通路内壁に
、付着した燃料(壁流)が遅れてシリンダ内に供給され
て、空燃比がオーバーリッチ化する惧れがあるため、定
常運転時の燃料噴射量Tiよりも減量補正することによ
り空燃比のオーバーリッチ化を防止するようにしたもの
がある。
In addition, especially in electronically controlled fuel injection internal combustion engines that have a fuel injection valve upstream of the intake manifold (for example, upstream of the throttle valve), the throttle valve is fully closed (idle position) during engine deceleration. There is a risk that the fuel (wall flow) adhering to the inner wall of the intake passage may be supplied into the cylinder with a delay, causing the air-fuel ratio to become over-rich. Some systems are designed to prevent the air-fuel ratio from becoming overrich.

具体的には、例えば吸気通路に介装されたスロットル弁
の開度変化率Δθによって機関の減速運転を検出し、機
関回転速度N、スロットル弁開度“θ及び機関冷却水温
度Twそれぞれに対応させて記憶させた回転速度依存減
速減量係数NKDC。
Specifically, for example, the deceleration operation of the engine is detected based on the rate of change in the opening degree Δθ of a throttle valve installed in the intake passage, and the deceleration operation is detected based on the engine rotational speed N, the throttle valve opening degree ``θ,'' and the engine cooling water temperature Tw. The rotational speed dependent deceleration reduction coefficient NKDC that was stored in memory.

スロットル弁開度依存減速減量係数θKDC(第5図参
照)、水温依存減速減量係数TwKDCを検索し、これ
らを相互に乗算して得られる減速減量係数KDC(←N
KDCxθKDCXTwKDC)を、前記各種補正係数
C0EFに含めるようにして(例えば、C0EF−1+
水温補正係数Ktw十始動補正係数Kas+アイドル後
増量補正係数Kai十空燃比補正係数Kmr−減速減量
係数KDC)、機関の減速状態に応じた減量補正を行い
、壁流による空燃比のオーバーリッチ化を回避するよう
にしていた。
Search for the throttle valve opening dependent deceleration loss coefficient θKDC (see Figure 5) and the water temperature dependent deceleration loss coefficient TwKDC, and multiply these by each other to obtain the deceleration loss coefficient KDC (←N
KDCxθKDCXTwKDC) is included in the various correction coefficients C0EF (for example, C0EF-1+
Water temperature correction coefficient Ktw (starting correction coefficient Kas + post-idle increase correction coefficient Kai (10) air-fuel ratio correction coefficient Kmr - deceleration reduction coefficient KDC), performs a reduction correction according to the deceleration state of the engine, and prevents over-riching of the air-fuel ratio due to wall flow. I was trying to avoid it.

尚、前記回転速度依存減速減量係数NKDCは、機関回
転速度Nが大きいときほど大きく設定され、また、前記
水温依存減速減量係数TWKDCは、機関冷却水温度T
wが低いときほど大きく設定され、壁流が増大し易い冷
機時により多く減量補正できるようにしである。
The rotational speed dependent deceleration reduction coefficient NKDC is set to be larger as the engine rotational speed N is higher, and the water temperature dependent deceleration reduction coefficient TWKDC is set as the engine cooling water temperature T increases.
The lower w is, the larger the setting is, so that more weight loss correction can be made when the machine is cold, when wall flow tends to increase.

〈発明が解決しようとする問題点〉 ところで、スロットル弁開度θに対応させて記憶させた
前記スロットル弁開度依存減速減量係数θKDCは、機
関の要求からすると、スロットル弁の全開状態からの減
速では第5図中で実線で示したようになるが、スロット
ル弁の低開度状態からの減速では図中点線で示したよう
に全開からの減速のときよりも小さくなり、機関要求の
減量補正量はスロットル弁の開度が小さい状態からの減
速はど少量で良い。即ち、減速前の機関負荷状態(スロ
ットル弁開度θは機関負荷を正確比表すものではないが
、機関回転速度N一定の条件下では負荷としてみること
ができる)によって、機関要求の減速tJIii補正量
が異なるものである。
<Problems to be Solved by the Invention> Incidentally, the throttle valve opening dependent deceleration reduction coefficient θKDC, which is stored in correspondence with the throttle valve opening θ, is a deceleration reduction coefficient θKDC that is stored in correspondence with the throttle valve opening θ. Then, as shown by the solid line in Figure 5, deceleration from a low throttle valve opening state is smaller than when decelerating from full throttle valve opening, as shown by the dotted line in the diagram, and the reduction correction of the engine request is The amount of deceleration from a state where the opening degree of the throttle valve is small is sufficient. In other words, the engine demand deceleration tJIii is corrected based on the engine load state before deceleration (the throttle valve opening θ does not accurately represent the engine load, but under the condition that the engine speed N is constant, it can be seen as a load). The amounts are different.

このため、スロットル弁が全開状態からの減速にマツチ
ングさせて前記係数θKDCを設定しておくと、低゛開
度状態からの減速において減速減量補正が過剰となって
空燃比がオーバーリッチ化し、減速ショックが発生する
という問題があった。−方、スロットル弁の低開度状態
からの減速にマツチングさせて前記係数θKDCを設定
しておくと、全開状態からの減速において減速減量補正
が過少となって本来の目的である空燃比のオーバーリッ
チ化を回避することができなくなるという問題があった
Therefore, if the coefficient θKDC is set to match the deceleration from the throttle valve fully open state, the deceleration reduction correction will be excessive when decelerating from the low opening state, causing the air-fuel ratio to become overrich and decelerating. There was a problem with the occurrence of shock. On the other hand, if the coefficient θKDC is set to match the deceleration from the throttle valve's low opening state, the deceleration reduction correction will be too small when decelerating from the fully open state, resulting in the air-fuel ratio exceeding the original objective. There was a problem that enrichment could not be avoided.

また、低開度状態からの減速にマツチングさせて係数θ
KDCを設定しても、一般にスロットル弁の低開度を精
度良く検出することが困難であるため、実際のスロット
ル弁の開度に正確に対応した係数θKDCを設定するこ
とができずに、機関要求に見合った減速減量係数KDC
の設定ができなくなる惧れもあった。更に、第5図に示
したように、低回転時と高回転時で係数θKDCの要求
量が違うため、ある回転速度Nからの減速時の要求量に
マツチングさせておくと、異なる回転速度Nからの減速
時に機関要求量に見合った減速重量補正が行えなくなる
という問題もあった。
Also, by matching the deceleration from the low opening state, the coefficient θ
Even if KDC is set, it is generally difficult to accurately detect low throttle valve openings, so it is not possible to set a coefficient θKDC that accurately corresponds to the actual throttle valve opening, and the engine Deceleration reduction coefficient KDC that meets your requirements
There was also a fear that the settings would not be possible. Furthermore, as shown in Fig. 5, the required amount of the coefficient θKDC is different between low rotation and high rotation, so if it is matched with the required amount when decelerating from a certain rotation speed N, There was also the problem that it became impossible to perform deceleration weight correction commensurate with the amount required by the engine when decelerating from .

本発明は上記問題点に鑑みなされたものであり、機関要
求量に見合った減速減量補正が行えるようにして、機関
減速時における減速ショックの発生等を回避できるよう
にすることを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to make it possible to perform deceleration reduction correction commensurate with the engine requirement, thereby avoiding the occurrence of deceleration shock during engine deceleration.

〈問題点を解決するための手段) そのため本発明では、第1図に示すように、機関の運転
状態に応じて燃料噴射量を設定する燃料噴射量設定手段
と、機関の一$i速運転状態を検出する減速運転検出手
段と、前記燃料噴射量設定手段により設定された燃料噴
射量を検出された機関の減速運転状態に応じて減量補正
して設定する減速減量補正手段と、設定された燃料噴射
量に応じて燃料噴射弁を駆動制御する燃料噴射弁駆動制
御手段と、を備えた電子制御燃料噴射式内燃機関の減速
減量制御装置において、機関の負荷を検出する機関負荷
検出手段と、機関減速運転前に前記機関負荷検出手段に
より検出された機関負荷の増大に応じて前記減速減量補
正手段による燃料噴射量の減量補正量を増大補正設定す
る減速減量補正量可変手段と、を儒えて減速減量制御装
置を構成するようにした。
<Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. a deceleration operation detection means for detecting the state; a deceleration reduction correction means for setting the fuel injection amount set by the fuel injection amount setting means by reducing the amount according to the detected deceleration operation state of the engine; In a deceleration/reduction control device for an electronically controlled fuel injection internal combustion engine, the apparatus includes: a fuel injection valve drive control means for driving and controlling a fuel injection valve according to a fuel injection amount; a deceleration reduction correction amount variable means for increasing a reduction correction amount of the fuel injection amount by the deceleration reduction correction means in accordance with an increase in the engine load detected by the engine load detection means before engine deceleration operation; A deceleration reduction control device is configured.

く作用〉 かかる減速減量制御装置によると、機関運転状態に応じ
て設定された燃料噴射量が、機関の減速時には減速状態
に応じて減量補正されるが、このときの減量補正量は減
速前の機関負荷の増大に応じて増大補正設定される。即
ち、減速前の機関負荷によって変動する機関要求の減速
減量補正量に対応することができるようにしたものであ
る。
According to this deceleration reduction control device, the fuel injection amount set according to the engine operating state is corrected to be reduced according to the deceleration state when the engine is decelerated, but the reduction correction amount at this time is equal to the amount before deceleration. An increase correction is set according to an increase in engine load. In other words, it is possible to correspond to the deceleration reduction correction amount of the engine request, which varies depending on the engine load before deceleration.

また、機関負荷としては、機関回転速度との関係からス
ロットル弁開度をみるようにしても良いが、上記のよう
にスロットル弁の低開度領域で一般に検出精度が悪いと
いう問題があるので、例えば機関回転速度Nと吸入空気
流i1Qから算出される基本燃料噴射1tTpや吸入負
圧を検出するようにすれば、精度の良い減速減量制御が
できる。
In addition, as the engine load, it is possible to look at the throttle valve opening in relation to the engine rotation speed, but as mentioned above, there is a problem that the detection accuracy is generally poor in the low opening range of the throttle valve. For example, if the basic fuel injection 1tTp and intake negative pressure calculated from the engine rotational speed N and the intake air flow i1Q are detected, accurate deceleration reduction control can be performed.

〈実施例〉 以下に本発明の一実施例法図面に基づいて説明する。<Example> An embodiment of the present invention will be described below based on the drawings.

第2図に本実施例のシステム概略を示す。FIG. 2 shows an outline of the system of this embodiment.

内燃機関1の吸気通路2に介装されたスロットル弁3の
開度θを検出するスロットル弁開度センサ4と、機関回
転速度Nを検出するクランク角センサ等の回転速度セン
サ5と、機関1の吸入空気流量Qを検出するエアフロー
メータ8と、機関冷却水温度Twを検出する水温センサ
9とを設け、これらからの各検出信号をマイクロコンピ
ュータを内蔵したコントロールユニット6に入力する。
A throttle valve opening sensor 4 that detects the opening θ of a throttle valve 3 installed in the intake passage 2 of the internal combustion engine 1, a rotation speed sensor 5 such as a crank angle sensor that detects the engine rotation speed N, and the engine 1. An air flow meter 8 for detecting the intake air flow rate Q and a water temperature sensor 9 for detecting the engine cooling water temperature Tw are provided, and respective detection signals from these are input to a control unit 6 incorporating a microcomputer.

コントロールユニット6は、これらの検出信号に基づい
て機関1の減速時には減量補正して燃料噴射11Tiを
設定し、この燃料噴射量Tiに対応するパルス巾の噴射
パルス信号を燃料噴射弁7に出力する。
Based on these detection signals, the control unit 6 performs a reduction correction when the engine 1 decelerates, sets the fuel injection 11Ti, and outputs an injection pulse signal with a pulse width corresponding to this fuel injection amount Ti to the fuel injection valve 7. .

即ち、本実施例において、(コントロールユニット6は
、燃料噴射量設定手段、減速減量補正手段。
That is, in this embodiment, (the control unit 6 includes fuel injection amount setting means and deceleration reduction correction means).

燃料噴射弁駆動制御手段、減速減量補正量可変手段を兼
ねると共に、スロットル弁開度センサ4とによって機関
減速運転検出手段を構成し、また、スロットル弁開度セ
ンサ4及び回転速度センサ5とによって機関負荷検出手
段を構成する(機関負荷を代表するものとしてQとNに
よって演算される基本燃料噴射量Tpを用いる)。
It serves as a fuel injection valve drive control means and a deceleration reduction correction amount variable means, and together with the throttle valve opening sensor 4 constitutes an engine deceleration operation detecting means. A load detection means is configured (using the basic fuel injection amount Tp calculated by Q and N as a representative of the engine load).

ここで、コントロールユニット6による燃料噴射量T1
の設定制御を第3図のフローチャートに基づいて説明す
る。
Here, the fuel injection amount T1 by the control unit 6
The setting control will be explained based on the flowchart of FIG.

ステップ(図中ではrSJとしてあり、以下同様とする
)1では、前記各センサによって検出された吸入空気流
@Q、機関回転速度N、スロットル弁開度θ及び機関冷
却水温度Twを入力する。
In step 1 (rSJ in the figure, the same applies hereinafter), the intake air flow @Q, engine rotational speed N, throttle valve opening θ, and engine cooling water temperature Tw detected by the sensors are input.

ステップ2では、ステップ1で入力した吸入空気流量Q
及び機関回転速度Nとによって基本燃料噴射ff1Tp
 (−KXQ/N:には定数)を演算する。尚、ここで
演算した基本燃料噴射ff1Tpは、ステップ12にお
ける最終的な燃料噴射量Tiの演算に用いられると共に
、機関負荷を代表するものとしてステップ8における減
速減量補正量設定に用いられる。
In step 2, the intake air flow rate Q input in step 1 is
The basic fuel injection ff1Tp is determined by
(−KXQ/N: is a constant) is calculated. The basic fuel injection ff1Tp calculated here is used to calculate the final fuel injection amount Ti in step 12, and is also used to set the deceleration reduction correction amount in step 8 as a representative of the engine load.

ステップ3では、前回入力したスロットル弁開度θ、と
今回入力したスロットル弁開度θとに基づいてスロット
ル弁3の開度変化率Δθを演算する(Δθ←(θ−01
)/Δt;Δtはかかるフローチャートの実行周期であ
る)。
In step 3, the opening change rate Δθ of the throttle valve 3 is calculated based on the throttle valve opening θ input last time and the throttle valve opening θ input this time (Δθ←(θ−01
)/Δt; Δt is the execution cycle of this flowchart).

ステップ4では、ステップ3で演算したΔθによって機
関1が減速状態であるか否かを判定する。
In step 4, it is determined whether the engine 1 is in a deceleration state based on Δθ calculated in step 3.

即ち、Δθがマイナスの所定値よりも小さい値で、スロ
ットル弁3が所定以上の割合(速度)で閉じられている
ことを示しているときには、機関1が減速状態であると
して次のステップ5へ進み、Δθが所定値よりも大きく
機関1が定常状態若しくは加速状態であって減速状態で
ないときにはステツブ13へ進む。
That is, when Δθ is a value smaller than a predetermined negative value, indicating that the throttle valve 3 is closed at a rate (speed) greater than the predetermined value, it is assumed that the engine 1 is in a deceleration state and the process proceeds to the next step 5. If Δθ is larger than a predetermined value and the engine 1 is in a steady state or an accelerating state but not in a decelerating state, the process advances to step 13.

機関1の減速状態が判定されてステップ5へ進むと、ス
テップ4における機関1の減速運転判定が初回であるか
否かを判定する。ここで、減速判定が初回であると判定
されるとステップ6〜9における減速減量係数KDCの
設定を行い、減速判定が初回でないと判定されたときに
はステップ10へ進み減速判定の初回において設定され
た減速減量係数KDCを用いて各種補正係数C0EFを
演算する。即ち、減速減量補正係数KDCは、減速判定
の初回に設定され、これに続く減速状態においては初回
に設定された減速減量補正係数KDCを継続して用いる
ようにする。
When the deceleration state of the engine 1 is determined and the process proceeds to step 5, it is determined whether or not the deceleration operation determination of the engine 1 in step 4 is the first time. Here, if it is determined that the deceleration determination is the first time, the deceleration reduction coefficient KDC is set in steps 6 to 9, and if it is determined that the deceleration determination is not the first time, the process proceeds to step 10 and the deceleration reduction coefficient KDC is set in the first deceleration determination. Various correction coefficients C0EF are calculated using the deceleration reduction coefficient KDC. That is, the deceleration reduction correction coefficient KDC is set at the first time of deceleration determination, and in the subsequent deceleration state, the initially set deceleration reduction correction coefficient KDC is continuously used.

次に減速判定初回における減速減量係数KDCの設定を
説明すると、ステップ6では、ステップ1で入力した機
関冷却水温度Twに基づき水温依存減速減量係数TwK
DCを検索する。この水温依存減速減量係数7wKDC
は、フローチャート中のグラフに示すように、機関冷却
水温度7’wが低く燃料の霧化性が悪化して壁流(吸気
通路2内壁に沿って流れる液状燃料)が増大するときに
、より増大設定されるようにしである。
Next, to explain the setting of the deceleration reduction coefficient KDC at the first time of deceleration determination, in step 6, the water temperature dependent deceleration reduction coefficient TwK is based on the engine cooling water temperature Tw input in step 1.
Search DC. This water temperature dependent deceleration loss coefficient 7wKDC
As shown in the graph in the flowchart, when the engine cooling water temperature 7'w is low and fuel atomization deteriorates and the wall flow (liquid fuel flowing along the inner wall of the intake passage 2) increases, It is set to increase.

ステップ7では、ステップ1で入力した機関回転速度N
に基づいて回転速度依存減速減量係数NKDCを検索す
る。この回転速度依存減速減量係数NKDCは、フロー
チャート中のグラフに示すように、機関回転速度Nが高
いときほど大きく設定されるようにしである。
In step 7, the engine rotation speed N input in step 1 is
The rotation speed dependent deceleration reduction coefficient NKDC is searched based on . As shown in the graph in the flowchart, this rotational speed dependent deceleration reduction coefficient NKDC is set to be larger as the engine rotational speed N becomes higher.

ステップ8では、機関1が減速状態になる前にステップ
2で演算された基本燃料噴射ITp(機関1の減速判定
の初回若しくは前回に演算された基本燃料噴射量Tpを
減速前のTpとする)に基づき機関負荷依存減速減量係
数TI)KDCを以下の式に従って演算する。
In step 8, the basic fuel injection ITp calculated in step 2 before the engine 1 enters the deceleration state (the basic fuel injection amount Tp calculated in the first or previous time of deceleration determination of the engine 1 is set as Tp before deceleration) Based on this, the engine load dependent deceleration reduction coefficient TI)KDC is calculated according to the following formula.

’rp KDC4−A−K 2 に2←(4/4Tp−減速前T p ) /(4/4T
 p −R/LT p ) 但し、Aは定数であり、4/4Tpはスロットル弁3の
全開時における基本燃料噴射mTp (機関回転速度N
に対応して決定される)、R/LTpはRoad L 
oadの基本燃料噴射!tTpを示す。尚、Road 
Load Tpの代わりに減速時の最小基本燃料噴射量
TpMINを用いるようにしても良(、また、K2は減
速前のTpに対応させて予め記憶させておくようにして
も良い。
'rp KDC4-A-K 2 to 2←(4/4Tp-Tp before deceleration) /(4/4T
p −R/LT p ) However, A is a constant, and 4/4Tp is the basic fuel injection mTp (engine rotation speed N
), R/LTp is determined according to Road L
OAD basic fuel injection! tTp is shown. Furthermore, Road
The minimum basic fuel injection amount TpMIN during deceleration may be used instead of Load Tp (and K2 may be stored in advance in correspondence with Tp before deceleration).

ここで、K2は基本燃料噴射ff1Tpの変動中に対す
る減速前の基本燃料噴射ff1Tpの割合を示すもので
あり、減速前の基本燃料噴射量Tpが小さいときほどに
2は大きく設定され、結果的にTp 。
Here, K2 indicates the ratio of the basic fuel injection ff1Tp before deceleration to the fluctuation of the basic fuel injection ff1Tp, and the smaller the basic fuel injection amount Tp before deceleration, the larger 2 is set, and as a result, Tp.

KDCは、減速前の基本燃料噴射量’rp即ち機関負荷
が大きいときほど大きく設定される。
KDC is set larger as the basic fuel injection amount 'rp before deceleration, that is, when the engine load is larger.

このため、減速前の機関負荷によって異なる(減速前の
機関負荷が大きいときほど減速減量補正量を増大する必
要がある)機関要求の減速減量補正量の変化に対応する
ことが可能となり、減速前の機関負荷によって空燃比が
オーバーリーン化若しくはオーバーリーン化することを
回避できる。
Therefore, it is possible to respond to changes in the deceleration reduction correction amount requested by the engine, which varies depending on the engine load before deceleration (the larger the engine load before deceleration, the greater the need to increase the deceleration reduction correction amount). It is possible to prevent the air-fuel ratio from becoming too lean or too lean due to the engine load.

また、本実施例のように機関負荷を基本燃料噴射f!t
Tpによって検出するようにすれば、スロットル弁開度
θを機関回転速度Nとの関係から機関負荷として捉える
場合のように、機関の低負荷状態の検出誤差が大きくな
る(スロットル弁3の開度は一般に低開度領域で検出誤
差が大きい)ことがないため、機関負荷を精度良く検出
でき、減速前の機関負荷に正確に対応させて減速減量補
正を行える。。
In addition, as in this embodiment, the engine load is changed to basic fuel injection f! t
If it is detected by Tp, the detection error will be large when the engine is in a low load state, as when the throttle valve opening θ is regarded as the engine load from the relationship with the engine rotational speed N. Since the detection error is generally large in the low opening range), the engine load can be detected with high accuracy, and deceleration reduction correction can be performed in accordance with the engine load before deceleration. .

尚、上記定数Aを機関回転速度Nに応じて可変するよう
にしても良く、また、TpKDC−B/に2(但し、B
は定数)なる式を用いて機関負荷依存減速減量係数Tp
KDCを設定するようにしても良い、更に、減速前の基
本燃料噴射MTpに対応させて機関負荷依存減速減量係
数’rpKDCを予め設定しておくようにしても良い。
Incidentally, the above constant A may be varied according to the engine rotation speed N, and TpKDC-B/2 (however, B
is a constant) using the formula: engine load dependent deceleration reduction coefficient Tp
KDC may be set.Furthermore, the engine load dependent deceleration reduction coefficient 'rpKDC may be set in advance in correspondence with the basic fuel injection MTp before deceleration.

以上のようにして、水温依存減速減量係数TwKDC,
回転速度依存減速減量係数NKDC及び機関負荷依存減
速減量係数TpKDCを設定すると、ステップ9でこれ
らを相互に乗算して最終的な減速減量係数KDCを設定
する(KD(、−TwKDCxNKDCxTpKDC)
As described above, water temperature dependent deceleration loss coefficient TwKDC,
Once the rotational speed dependent deceleration reduction coefficient NKDC and the engine load dependent deceleration reduction coefficient TpKDC are set, they are multiplied together in step 9 to set the final deceleration reduction coefficient KDC (KD(,-TwKDCxNKDCxTpKDC)
.

そして、ステップ10では、ステップ9で演算した減速
減量係数KDCを含む各種補正係数C0EFを演算する
Then, in step 10, various correction coefficients COEF including the deceleration reduction coefficient KDC calculated in step 9 are calculated.

ここで、前記各種補正係数C0EFは、例えば水温補正
係数K tw、始動補正係数Kas、アイドル後増量補
正係数K a i*空燃比補正係数KIIlr、更に、
ステップ9′で演算された減速減量係数KDCによって
構成される(各種補正係数C0EF−1+水温補正係数
Ktw十始動補正係数Kas+アイドル後増量補正係数
Kai+空燃比補正係数Kmr−減速減量係数KDC)
Here, the various correction coefficients C0EF include, for example, a water temperature correction coefficient K tw, a starting correction coefficient Kas, an after-idle increase correction coefficient K a i *air-fuel ratio correction coefficient KIIlr, and further,
It is composed of the deceleration reduction coefficient KDC calculated in step 9' (various correction coefficients C0EF-1 + water temperature correction coefficient Ktw + starting correction coefficient Kas + post-idle increase correction coefficient Kai + air-fuel ratio correction coefficient Kmr - deceleration reduction coefficient KDC)
.

前記水温補正係数Ktwは、冷機時に燃料噴射量Tiを
増量して機関運転性を良くするためのものであり、冷却
水温度Twに反比例するように設定される。始動補正係
数Kasは、機関lの始動性を向上させるためにやはり
冷却水温度Twに反比例するように設定され、イグニッ
ションスイッチのON時に増量補正するようにしである
。アイドル後増量補正係数Kaiは、発進を滑らかにす
るため、発進直後に冷却水温度Twに応じた増量を行わ
せる。空燃比補正係数に紅は、基本燃料噴射量’rpと
機関回転速度Nとに対応させて記憶されており、高速・
高負荷時はど大きくなるようにして機関1の運転状態に
見合った空燃比補正がなされるようにしである。
The water temperature correction coefficient Ktw is used to improve engine operability by increasing the fuel injection amount Ti when the engine is cold, and is set to be inversely proportional to the cooling water temperature Tw. The start correction coefficient Kas is also set to be inversely proportional to the cooling water temperature Tw in order to improve the startability of the engine 1, and is designed to increase the amount when the ignition switch is turned on. The post-idle increase correction coefficient Kai causes the amount to be increased in accordance with the coolant temperature Tw immediately after starting, in order to smooth the start. The red color in the air-fuel ratio correction coefficient is stored in correspondence with the basic fuel injection amount 'rp and the engine rotation speed N.
When the load is high, the air-fuel ratio is increased so that the air-fuel ratio is corrected in accordance with the operating state of the engine 1.

ステップ11では、フラグを1に設定する。このフラグ
は、機関減速運転後の定常時に減速減量係数KDCを徐
々にゼロに近位させるための判定に用いるものであり、
後に詳細に説明する。
In step 11, the flag is set to 1. This flag is used to determine how to gradually bring the deceleration reduction coefficient KDC closer to zero during steady state after engine deceleration operation.
This will be explained in detail later.

ステップ12では、ステップ10で演算した減速減量係
数KDCを含む各種補正係数C0EFと空燃比フィード
バック補正係数αとバッテリ電圧による補正分子sとを
演算した後、ステップ2で演算した基本燃料噴射量Tp
をこれらにより補正演算(減速減量係数KDCによる減
量補正を含む)して最終的な燃料噴射量Ti  (=T
pxCOEFxα+Ts)を設定する。
In step 12, after calculating the various correction coefficients C0EF including the deceleration reduction coefficient KDC calculated in step 10, the air-fuel ratio feedback correction coefficient α, and the correction numerator s based on the battery voltage, the basic fuel injection amount Tp calculated in step 2 is calculated.
are corrected using these calculations (including reduction correction by the deceleration reduction coefficient KDC) to obtain the final fuel injection amount Ti (=T
pxCOEFxα+Ts).

燃料噴射ff1Tiが設定されると、コントロールユニ
ット6はこの燃料噴射量Tiに相当するパルス巾の噴射
パルス信号を燃料噴射弁7に出力することにより、機関
に所定量の燃料を噴射供給する。
When the fuel injection ff1Ti is set, the control unit 6 outputs an injection pulse signal with a pulse width corresponding to the fuel injection amount Ti to the fuel injection valve 7, thereby injecting and supplying a predetermined amount of fuel to the engine.

一方、ステップ4で機関が減速状態でないと判定された
−ときには、ステップ13へ進んで機関1が定常運転状
態であるか否かを判定する。具体的には、ステップ3で
演算したスロットル弁3の開度変化率Δθが略ゼロであ
るときには機関1が定常運転状態であるものとする。
On the other hand, if it is determined in step 4 that the engine is not in a deceleration state, the process proceeds to step 13 and it is determined whether or not the engine 1 is in a steady operating state. Specifically, when the opening change rate Δθ of the throttle valve 3 calculated in step 3 is approximately zero, the engine 1 is assumed to be in a steady operating state.

ここで、機関1が定常運転状態でないと判定されたとき
、即ち、機関1が加速状態であるときには、ステップ1
7へ進んで減速減量係数KDCを含まない(加速時であ
るので加速増量係数Kaccを含める場合もある)各種
補正係数C0EF (C0EF=1 +Ktw+Kas
+Kai+Kmr+Kacc)を演算し、ステップ18
でフラグをゼロにする。そして、ステップ12で、ステ
ップ17で演算した各種補正係数C0EFと空燃比フィ
ードバック補正係数αとバッテリ電圧による補正分子s
とを演算した後、ステップ2で演算した基本燃料噴射1
iT’pをこれらにより補正演算して最終的な燃料噴射
1Ti(” T p X COE F x a + T
 s )を設定する。
Here, when it is determined that the engine 1 is not in a steady operating state, that is, when the engine 1 is in an accelerating state, step 1
Proceed to step 7 and calculate the various correction coefficients C0EF (C0EF=1 +Ktw+Kas) which do not include the deceleration reduction coefficient KDC (because it is during acceleration, the acceleration increase coefficient Kacc may be included)
+Kai+Kmr+Kacc), and step 18
to set the flag to zero. Then, in step 12, the correction numerator s based on the various correction coefficients C0EF calculated in step 17, the air-fuel ratio feedback correction coefficient α, and the battery voltage.
After calculating the basic fuel injection 1 calculated in step 2,
By correcting iT'p using these calculations, the final fuel injection 1Ti ("T p X COE F x a + T
s).

また、ステップ13で機関1が定常運転状態であると判
定されたときには、ステップ14でフラグの判定を行う
、ここで、フラグが1であると判定されたときには、減
速運転状態でフラグが1に設定されることから、減速運
転後の定常運転状態を示すことになるため、ステップ1
5へ進んで減速減量係数KDCの減少設定を行う。
Further, when it is determined in step 13 that the engine 1 is in a steady operating state, the flag is determined in step 14. Here, when it is determined that the flag is 1, the flag is set to 1 in a decelerating operating state. Since it is set, it indicates the steady operation state after deceleration operation, so step 1
Proceed to step 5 to set the deceleration reduction coefficient KDC.

即ち、第4図に示すように、機関1が減速運転状態であ
るときには、減速判定の初回に設定された減速減量係数
KDCを用いて燃料噴射iTiを減量補正し、減速後の
定常運転時には、この減速運転中に用いた減速減量係数
KDCを徐々に減少させてゼロに近づけるようにして、
M量補正量を徐々にゼロに近づけるようにするものであ
る。尚、減速減量係数KDCの減少設定は、本実施例の
ようにフローチャートの実行周期毎(所定時間毎)に行
っても良いし、また、機関1の所定回転毎(例えば〃回
転毎)に行うようにしても良い。
That is, as shown in FIG. 4, when the engine 1 is in a deceleration operating state, the fuel injection iTi is corrected to reduce it using the deceleration reduction coefficient KDC set at the first time of deceleration determination, and during steady operation after deceleration, The deceleration reduction coefficient KDC used during this deceleration operation is gradually decreased so as to approach zero,
This is to gradually bring the M amount correction amount closer to zero. Incidentally, the deceleration reduction coefficient KDC may be set to decrease every execution cycle of the flowchart (every predetermined time) as in this embodiment, or it may be set every predetermined rotation of the engine 1 (for example, every rotation). You can do it like this.

ステップ15では、前回各種補正係数C0EFの演算に
用いられた減速減量係数KDCから所定値に3を減算し
て今回の減速:$i量係数KDCとじて設定する。この
ようにして、減少補正設定された減速減量係数KDCは
、次のステップ16でゼロを越える値であるかが判定さ
れ、所定値に3減算した結果ゼロ以下の数値となったと
きには、ステップ17へ進んで減速減量係数KDCを各
種補正係数C0EFの演算に用いることを止める(若し
くは減速fIIi量係数KDCを1に設定する)と共に
、次のステップ18でフラグをゼロにすることにより減
速減量補正が終了したことを設定する。
In step 15, 3 is subtracted from a predetermined value from the deceleration reduction coefficient KDC used in calculating the various correction coefficients C0EF last time, and the result is set as the current deceleration: $i amount coefficient KDC. In this way, it is determined whether the deceleration reduction coefficient KDC set for reduction correction is a value exceeding zero in the next step 16, and if the result of subtracting 3 from the predetermined value results in a value less than zero, step 17 In addition to stopping the use of the deceleration reduction coefficient KDC in calculating the various correction coefficients C0EF (or setting the deceleration fIIi amount coefficient KDC to 1), and setting the flag to zero in the next step 18, the deceleration reduction correction is performed. Set it as finished.

一方、所定値に3減算した結果がゼロを越える数値であ
るときには、その減速減量係数KDCを用いて各種補正
係数C0EFを演算すべくステップ10へ進み、ステッ
プ15の減算結果の減速減量係数KDCを用いて各種補
正係数C0EFを演算し、その後ステップ11で引き続
きフラグを1に設定する。そして、減速運転判定時と同
様に、ステップ12で燃料噴射ff1Tlを減速fIi
量補正補正演算設定する。
On the other hand, if the result of subtracting 3 from the predetermined value is a value exceeding zero, the process proceeds to step 10 to calculate various correction coefficients C0EF using the deceleration reduction coefficient KDC, and the deceleration reduction coefficient KDC resulting from the subtraction in step 15 is calculated. Then, in step 11, the flag is set to 1. Then, in step 12, the fuel injection ff1Tl is decelerated to fIi, similarly to the time of deceleration operation determination.
Set the amount correction correction calculation.

尚、本実施例では、機関負荷を代表するものとして基本
燃料噴射量Tpを用いたが、この基本燃料噴射量’rp
の他、吸入負圧、吸入空気流tQ/機関回転速度N等を
用いても良い、また、本実施例では、機関減速状態にお
いては、減速判定初回に設定した減速減量係数KDCを
継続して用いるようにしたが、減速判定の初回に設定し
た減速減量係数KDCをその後直ぐに所定値つづ減少さ
せるようにして、所謂三角f2量補正を行うようにして
も良い。
In this embodiment, the basic fuel injection amount Tp was used as a representative of the engine load, but this basic fuel injection amount 'rp
In addition, suction negative pressure, suction air flow tQ/engine rotation speed N, etc. may be used. In addition, in this embodiment, in the engine deceleration state, the deceleration reduction coefficient KDC set at the initial deceleration determination is continued. However, the so-called triangular f2 amount correction may be performed by immediately decreasing the deceleration reduction coefficient KDC set at the first time of deceleration determination by a predetermined value.

(発明の効果〉 以上説明したように、本発明によると、減速前の機関負
荷に応じて減速減量補正量を可変設定するようにしたこ
とにより、機関要求に見合った減速減量補正が精度良く
行われるようになり、機関減速運転における空燃比のオ
ーバーリーン化及びオーバーリフチ化を回避して、減速
ショックの発生を防止できるという効果がある。
(Effects of the Invention) As explained above, according to the present invention, by variably setting the deceleration reduction correction amount according to the engine load before deceleration, the deceleration reduction correction that meets the engine requirements can be accurately performed. This has the effect of avoiding overlean and overlifting of the air-fuel ratio during engine deceleration operation, thereby preventing the occurrence of deceleration shock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は本発明の一実施例を
示すシステム図、第3図は同上実施例における燃料噴射
量設定制御を示すフローチャート、第4図は同上実施例
における減速減量係数KDCとスロットル弁開度θとの
関係を示すタイムチャート、第5図は従来の問題点を示
すスロットル弁開度に対する減速fIi量補正補正係数
すグラフである。 1・・・機関  3・・・スロットル弁  4・・・ス
ロットル弁開度センサ  5・・・回転速度センサ6・
・・コントロールユニット  7・・・7M 料噴射弁
8・・・エアフローメーク 特許出願人  日本電子機器株式会社 代理人  弁理士  笹 島 冨二雄 第2図
Fig. 1 is a configuration diagram of the present invention, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 3 is a flowchart showing fuel injection amount setting control in the above embodiment, and Fig. 4 is a flow chart showing the fuel injection amount setting control in the above embodiment. FIG. 5 is a time chart showing the relationship between the deceleration reduction coefficient KDC and the throttle valve opening degree θ, and FIG. 5 is a graph of the deceleration fIi amount correction coefficient with respect to the throttle valve opening degree, which shows the conventional problem. 1... Engine 3... Throttle valve 4... Throttle valve opening sensor 5... Rotation speed sensor 6.
...Control unit 7...7M Fuel injection valve 8...Air flow make patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 2

Claims (1)

【特許請求の範囲】[Claims] 機関の運転状態に応じて燃料噴射量を設定する燃料噴射
量設定手段と、機関の減速運転状態を検出する機関減速
運転検出手段と、設定された燃料噴射量を機関の減速運
転状態に応じて減量補正して設定する減速減量補正手段
と、設定された燃料噴射量に応じて燃料噴射弁を駆動制
御する燃料噴射弁駆動制御手段と、を備えた電子制御燃
料噴射式内燃機関の減速減量制御装置において、機関の
負荷を検出する機関負荷検出手段と、機関減速運転前に
検出された機関負荷の増大に応じて前記減速減量補正手
段による燃料噴射量の減量補正量を増大補正設定する減
速減量補正量可変手段と、を備えてなる電子制御燃料噴
射式内燃機関の減速減量制御装置。
a fuel injection amount setting means for setting the fuel injection amount according to the engine operating condition; an engine deceleration operation detection means for detecting the engine deceleration operation condition; Deceleration reduction control for an electronically controlled fuel injection type internal combustion engine, comprising a deceleration reduction correction means for correcting and setting the reduction, and a fuel injection valve drive control means for driving and controlling the fuel injection valve according to the set fuel injection amount. The apparatus includes an engine load detection means for detecting the load of the engine, and a deceleration reduction means for increasing the correction amount of the fuel injection amount by the deceleration reduction correction means in response to an increase in the engine load detected before the engine deceleration operation. A deceleration/reduction control device for an electronically controlled fuel injection type internal combustion engine, comprising: correction amount variable means.
JP25848686A 1986-10-31 1986-10-31 Decelerating decrement control device for electronic control fuel injection system internal combustion engine Pending JPS63113140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25848686A JPS63113140A (en) 1986-10-31 1986-10-31 Decelerating decrement control device for electronic control fuel injection system internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25848686A JPS63113140A (en) 1986-10-31 1986-10-31 Decelerating decrement control device for electronic control fuel injection system internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63113140A true JPS63113140A (en) 1988-05-18

Family

ID=17320877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25848686A Pending JPS63113140A (en) 1986-10-31 1986-10-31 Decelerating decrement control device for electronic control fuel injection system internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63113140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine
US20110174281A1 (en) * 2006-06-01 2011-07-21 Rem Technology Inc. Carbureted natural gas turbo charged engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934429A (en) * 1982-08-23 1984-02-24 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device of internal-combustion engine
JPS6040760A (en) * 1983-08-15 1985-03-04 Hitachi Ltd Electronically controlled fuel injector
JPS6128731A (en) * 1984-07-20 1986-02-08 Toyota Motor Corp Fuel supply method for internal-combustion engine
JPS61108839A (en) * 1984-11-01 1986-05-27 Toyota Motor Corp Fuel injection control device of internal-combustion engine
JPS61116041A (en) * 1984-11-09 1986-06-03 Honda Motor Co Ltd Method of controlling air-fuel ratio feedback control of internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934429A (en) * 1982-08-23 1984-02-24 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device of internal-combustion engine
JPS6040760A (en) * 1983-08-15 1985-03-04 Hitachi Ltd Electronically controlled fuel injector
JPS6128731A (en) * 1984-07-20 1986-02-08 Toyota Motor Corp Fuel supply method for internal-combustion engine
JPS61108839A (en) * 1984-11-01 1986-05-27 Toyota Motor Corp Fuel injection control device of internal-combustion engine
JPS61116041A (en) * 1984-11-09 1986-06-03 Honda Motor Co Ltd Method of controlling air-fuel ratio feedback control of internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine
US20110174281A1 (en) * 2006-06-01 2011-07-21 Rem Technology Inc. Carbureted natural gas turbo charged engine
US8713935B2 (en) * 2006-06-01 2014-05-06 Rem Technology, Inc. Carbureted natural gas turbo charged engine

Similar Documents

Publication Publication Date Title
US4884540A (en) Engine speed control method
US5427072A (en) Method of and system for computing fuel injection amount for internal combustion engine
JPS582444A (en) Air-fuel ratio control
JPS63143348A (en) Fuel injection controller
US5003955A (en) Method of controlling air-fuel ratio
JPH07247884A (en) Idling control method
JPH02227532A (en) Fuel injection control device
US5341786A (en) Fuel injection control device for internal combustion engine
JPS63113140A (en) Decelerating decrement control device for electronic control fuel injection system internal combustion engine
US5050561A (en) Air/fuel ratio control system for internal combustion engine with a high degree of precision in derivation of engine driving condition dependent correction coefficient for air/fuel ratio control
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JP2543762B2 (en) Fuel supply control device for internal combustion engine
JPS6338643A (en) Electronically controlled fuel injection device for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2582617B2 (en) Internal combustion engine deceleration control device
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH05240090A (en) Idling speed controller of internal combustion engine
JP4044978B2 (en) Engine air-fuel ratio control device
JP2660620B2 (en) Idle speed control device for internal combustion engine
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JPH01305146A (en) Air fuel ratio learning controller of internal combustion engine
JPH03229935A (en) Vehicular internal combustion engine control device
JPS6336038A (en) Fuel feeding quantity control device for internal combustion engine
JPS63205438A (en) Deceleration and quantity reduction controller for electronic control fuel injection internal combustion engine
JPS6371535A (en) Electronic control type fuel injector for internal combustion engine