JPS63112137A - Controlling device of injection molder - Google Patents

Controlling device of injection molder

Info

Publication number
JPS63112137A
JPS63112137A JP25942586A JP25942586A JPS63112137A JP S63112137 A JPS63112137 A JP S63112137A JP 25942586 A JP25942586 A JP 25942586A JP 25942586 A JP25942586 A JP 25942586A JP S63112137 A JPS63112137 A JP S63112137A
Authority
JP
Japan
Prior art keywords
pumps
discharge
pump
flow rate
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25942586A
Other languages
Japanese (ja)
Other versions
JPH0689747B2 (en
Inventor
Masaaki Miyahara
正昭 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP61259425A priority Critical patent/JPH0689747B2/en
Publication of JPS63112137A publication Critical patent/JPS63112137A/en
Publication of JPH0689747B2 publication Critical patent/JPH0689747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent pressure shock from developing and consequently contrive to stabilize the controlling of a molder and to prevent from defective product from generating by providing a joining circuit, which is formed by connecting discharge sides of a plurality of proportional electromagnetic pressure and flow rate controlling variable pumps with each other through non-return valves, and a controller to give control signals, which allot the discharge rates of respective pumps at a certain fixed ratio, to the respective pumps. CONSTITUTION:The discharge rates and pressures of respective pumps 4 and 5 are controlled by changing the tilting angle of a swash plate with control signals sent from a controller 3. The discharge ports of the pumps 4 and 5 are respectively connected to non-return valves 6 and 7. The efflux sides of the non-return valves 6 and 7 are joined and, after that, connected to various actuators 8. The controller 3 computes discharge rates necessary for maintaining the speeds and pressures set by setters 15 and allots the discharge rate to a certain fixed ratio in accordance with the number and capacities of the pumps. Thus, the discharge rates in a joining circuit 2 can be controlled only by electrical control signals issued from the controller 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数の比例電磁式圧力流量制御形可変ポンプを
用いた射出成形機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for an injection molding machine using a plurality of proportional electromagnetic pressure flow rate controlled variable pumps.

〔従来の技術〕[Conventional technology]

一般に、射出成形機において、射出充填工程等のような
速度制御領域ではアクチュエータに対し大流量の圧油供
給を必要とし、他方、保圧工程等の圧力制御領域では流
量をほとんど必要としない等流量に関し所定の制御幅が
存在する。したがって、吐出流量を必要に応じて可変で
きる可変吐出量ポンプを用いれば射出成形機の制御を行
うことができる。
Generally, in an injection molding machine, a large flow rate of pressure oil is required to be supplied to the actuator in a speed control area such as the injection filling process, while a constant flow rate that requires almost no flow rate is required in a pressure control area such as a pressure holding process. There is a predetermined control range for this. Therefore, an injection molding machine can be controlled by using a variable discharge rate pump that can vary the discharge flow rate as necessary.

ところで、可変吐出貴ポンプを単体で使用する場合、大
型射出成形機になると、これに伴って大型ポンプも必要
になる。しかし、大型ポンプは一般に最適容量の入手が
困難であり、また、価格、応答性、騒音等も小型ポンプ
に比べて著しく不利となる問題がある。
By the way, when a variable discharge pump is used alone, a large injection molding machine requires a large pump accordingly. However, it is generally difficult to obtain the optimal capacity for large pumps, and there are also problems in that they are significantly disadvantageous in terms of price, responsiveness, noise, etc. compared to small pumps.

そこで、従来は特開昭60−245806号公報に開示
されるような複数の小形吐出量ポンプによって構成した
合流回路で制御を行っていた。この合流回路によれば、
第1可変ポンプに接続したポンプラインに、上流側より
順次第1チエツク弁と絞り弁を設け、第1可変ポンプの
吐出量制御部を上記ポンプラインまたはタンクに切換接
続して吐出流量を制御する第1制御装置のバネ室に、絞
りを介して上記ポンプラインを接続するとともに、パイ
ロツトリリーフ弁を接続する一方、第1制御装置のパイ
ロット室に上記ポンプラインを接続して第1制御装置を
作動させ、圧力制御時における第1可変ポンプの吐出圧
力を制御し、さらに、第1チエツク弁と絞り弁との間の
上記ポンプラインに、中間に第2チエツク弁を有する第
二のポンプラインを介して第2可変ポンプを接続し、上
記第2可変ポンプの吐出量制御部を第二のポンプライン
またはタンクに切換え接続して吐出流量を制御する第2
制御装置のバネ室を絞りを介して第二のポンプラインに
接続するとともに、切換弁によってパイロットリリーフ
弁の前位またはタンクに切換接続可能になす一方、上記
第2制御装置のパイロット室に第二のポンプラインを接
続して構成される。
Therefore, conventionally, control has been performed using a confluence circuit constituted by a plurality of small displacement pumps as disclosed in Japanese Patent Application Laid-Open No. 60-245806. According to this confluence circuit,
A first check valve and a throttle valve are sequentially provided in the pump line connected to the first variable pump from the upstream side, and a discharge amount control section of the first variable pump is connected to the pump line or tank to control the discharge flow rate. The above-mentioned pump line is connected to the spring chamber of the first control device through a throttle, and a pilot relief valve is also connected, and the above-mentioned pump line is connected to the pilot chamber of the first control device to operate the first control device. to control the discharge pressure of the first variable pump during pressure control, and furthermore, a second pump line having a second check valve in the middle is connected to the pump line between the first check valve and the throttle valve. a second variable pump connected to the second variable pump, and a second variable pump that controls the discharge flow rate by switchingly connecting the discharge rate control section of the second variable pump to a second pump line or tank;
The spring chamber of the control device is connected to the second pump line via the throttle, and the switching valve enables switchable connection to the front side of the pilot relief valve or to the tank. It consists of connecting pump lines.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記合流回路を用いた従来の制御装置は次のよ
うな問題点がある。
However, the conventional control device using the above-mentioned merging circuit has the following problems.

第一に、流量制御は比例流量弁及び比例圧力弁に制御信
号を付与し、比例流量弁前後の差圧が一定となるように
第1及び第2制御装置を用いて制御を行い、また、圧力
制御は切換弁を切換えることによって他方のポンプをア
ンロードし、一方のポンプのみによって制御を行う。と
ころで、射出工程では速度制御領域の次に連続して圧力
制御領域へ移行するが、この領域の切換えを従来は切換
弁で行っていたため、当該切換弁による圧力ショックを
生じ、安定な制御を行うことができないとともに、不良
品発生の要因となっていた。
First, the flow rate control is performed by applying a control signal to the proportional flow valve and the proportional pressure valve, and performing control using the first and second control devices so that the differential pressure before and after the proportional flow valve is constant. Pressure control is performed by switching the switching valve to unload the other pump and controlling only one pump. By the way, in the injection process, there is a continuous transition to the pressure control area after the speed control area, but traditionally this area was switched using a switching valve, which caused a pressure shock and required stable control. In addition to being unable to do so, it was also a factor in the occurrence of defective products.

第二に、コントローラからの制御信号は流量制御信号、
圧力制御信号、切換弁への切換制御信号が必要となり、
制御系が複雑化し、故障しやすいとともに、切換弁が必
要となる等コストアップを招く間層かあった。
Second, the control signal from the controller is a flow control signal,
A pressure control signal and a switching control signal to the switching valve are required.
The control system was complicated, prone to breakdowns, and required switching valves, which led to increased costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来の技術に存在する諸問題を解決し
た射出成形機における制御装置の提供を目的とするもの
で、以下に示す制御装置(1)によって達成される。
The present invention aims to provide a control device for an injection molding machine that solves the problems existing in the conventional technology described above, and is achieved by the control device (1) shown below.

即ち、本発明に係る制御装置(1)は合流回路(2)と
、この合流回路(2)に制御信号を付与するコントロー
ラ(3)からなる。合流回路(2)は制御信号により斜
板角度が可変して吐出流量及び吐出圧力を制御する複数
の比例電磁式圧力流量制御形可変ポンプ(4)、(5)
の吐出側を逆止弁(6)、(7)を介して接続して構成
する。また、コントローラ(3)は各ポンプ(4)、(
5)の吐出流量が一定の比率分担となる制御信号を各ポ
ンプ(4)、(5)へ付与する機能をもつ。
That is, the control device (1) according to the present invention includes a merging circuit (2) and a controller (3) that applies a control signal to the merging circuit (2). The merging circuit (2) includes a plurality of proportional electromagnetic pressure/flow control type variable pumps (4), (5) whose swash plate angle is varied by a control signal to control the discharge flow rate and discharge pressure.
The discharge side of the valve is connected via check valves (6) and (7). In addition, the controller (3) controls each pump (4), (
It has a function of giving a control signal to each pump (4), (5) so that the discharge flow rate of 5) is shared in a fixed ratio.

〔作  用〕[For production]

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

本発明に係る制御装置(1)はコントローラ(3)から
各ポンプ(4)、(5)に制御信号が付与されると、各
ポンプ(4)、(5)は比例電磁式圧力流量制御形可変
ポンプの機能により制御信号に比例した流量を吐出する
。そして、この場合コントローラ(3)の設定値及び機
能によって各ポンプ(4)と(5)の流量は一定の比率
で分担される。また、合流回路(2)によって各ポンプ
(4)、(5)から吐出する圧油を合流させ、アクチュ
エータ(8)へは合流された流量の圧油が供給される。
The control device (1) according to the present invention is configured such that when a control signal is given to each pump (4), (5) from a controller (3), each pump (4), (5) is a proportional electromagnetic pressure flow control type. The variable pump function discharges a flow rate proportional to the control signal. In this case, the flow rate of each pump (4) and (5) is shared at a fixed ratio depending on the set value and function of the controller (3). Moreover, the pressure oil discharged from each pump (4), (5) is merged by the merge circuit (2), and the combined flow rate of pressure oil is supplied to the actuator (8).

このように、合流回路(2)の吐出流量制御はコントロ
ーラ(3)からの電気的制御信号のみによって行うこと
ができる。
In this way, the discharge flow rate of the merging circuit (2) can be controlled only by the electrical control signal from the controller (3).

〔実 施 例〕〔Example〕

以下には本発明に係る好適な実施例を図面に基づき詳細
に説明する。第1図は本発明に係る制御装置の油圧回路
図、第2図は同装置の機能を説明するポンプの分担特性
図である。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a hydraulic circuit diagram of a control device according to the present invention, and FIG. 2 is a pump distribution characteristic diagram illustrating the functions of the device.

まず、第1図を参照して本装置(1)の構成について説
明する。
First, the configuration of the present device (1) will be explained with reference to FIG.

合流回路(2)は二台の比例電磁式圧力流量制御形可変
ポンプ(以下、ポンプと記す)(4)と(5)を備える
。各ポンプ(4)、(5)はコントローラ(3)からの
制御信号(流量、圧力指令信号)によって斜板角度が可
変し、これによって吐出流量及び吐出圧力を制御するも
ので、例えば油研工業株式会社製“EH制御型可変ピス
トンポンプを利用できる。また、各ポンプ(4)、(5
)はそれぞれモータ(4a)、(5a)によって駆動せ
しめられる。
The merging circuit (2) includes two proportional electromagnetic pressure flow rate controlled variable pumps (hereinafter referred to as pumps) (4) and (5). The swash plate angle of each pump (4) and (5) is varied by the control signal (flow rate, pressure command signal) from the controller (3), thereby controlling the discharge flow rate and discharge pressure. Co., Ltd. "EH control type variable piston pump can be used. Also, each pump (4), (5
) are driven by motors (4a) and (5a), respectively.

一方、ポンプ(4)、(5)の吸込口はオイルタンク(
11)、(12)にそれぞれ接続するとともに、吐出口
はそれぞれ逆止弁(13)、(14)に接続する。また
、逆止弁(13)、(14)の流出側は合流するように
接続し、型締シリンダ、射出シリンダ、突出しシリンダ
、オイルモータ、ノズル移動シリンダ等の各種アクチュ
エータ(8)に接続する。なお、逆止弁(13)、(1
4)によって−のポンプから他のポンプへ圧油が逆流す
るのを阻止し、各ポンプ間の干渉を防止している。
On the other hand, the suction ports of pumps (4) and (5) are connected to the oil tank (
11) and (12), respectively, and the discharge ports are connected to check valves (13) and (14), respectively. In addition, the outflow sides of the check valves (13) and (14) are connected so as to merge, and are connected to various actuators (8) such as a mold clamping cylinder, an injection cylinder, an ejection cylinder, an oil motor, and a nozzle moving cylinder. In addition, check valves (13), (1
4) prevents pressure oil from flowing backward from the - pump to other pumps, thereby preventing interference between the pumps.

また、ポンプ(4)、(5)には単一のコントローラ(
3)を接続し、斜板角度を可変せしめる前記制御信号を
付与する。コントローラ(3)には圧力設定及び流量設
定を行う各種設定器(15)・・・を備える。
In addition, the pumps (4) and (5) have a single controller (
3) to apply the control signal for varying the swash plate angle. The controller (3) includes various setting devices (15) for setting pressure and flow rate.

コントローラ(3)は設定器(15)によって設定され
た速度、圧力を維持するために必要な吐出量を演算し、
その吐出量をポンプの数量及び容量によって一定の比率
に分担する。例えば、第2図のように各ポンプ(4)と
(5)の容量比がN:lのとき、アクチュエータ(8)
に対する必要流量がM(ff/m1n)とすれば各ポン
プ(4)と(5)の吐出流量はそれぞれM x N /
 (N + 1 )(ρ/m1n)とM / (N +
 1 ) CQ/ min〕となる。この場合、各比率
に相当する大きさの制御信号をそれぞれ各ポンプ(4)
、(5)へ供給すればよく、必要流1が増減しても、こ
れに対応して各ポンプ(4)、(5)の吐出流量は一定
の比率で分担する。なお、各ポンプ(4)と(5)の容
量が同一の場合には吐出流量は二分することになり、こ
の場合、特に単一の制御信号を各ポンプ(4)、(5)
へ供給すれば足りることになり、コントローラ(3)の
簡素化を図ることができる。
The controller (3) calculates the discharge amount necessary to maintain the speed and pressure set by the setting device (15),
The discharge amount is divided into fixed ratios depending on the number and capacity of the pumps. For example, when the capacity ratio of each pump (4) and (5) is N:l as shown in Fig. 2, the actuator (8)
If the required flow rate is M (ff/m1n), the discharge flow rate of each pump (4) and (5) is M x N /
(N + 1) (ρ/m1n) and M / (N +
1) CQ/min]. In this case, a control signal of a magnitude corresponding to each ratio is sent to each pump (4).
, (5), and even if the required flow 1 increases or decreases, the discharge flow rate of each pump (4), (5) will be shared at a fixed ratio accordingly. In addition, if the capacity of each pump (4) and (5) is the same, the discharge flow rate will be divided into two, and in this case, in particular, a single control signal will be applied to each pump (4), (5).
It is sufficient to supply it to the controller (3), and the controller (3) can be simplified.

このような制御は全制御範囲で行ってもよいし、次に述
べるような全制御範囲内の部分的範囲においてポンプ(
4)と(5)を同時運転する場合に適用してもよい。
Such control may be performed over the entire control range, or the pump (
It may be applied when 4) and (5) are operated simultaneously.

以下、ポンプ(4)又は(5)が単独または同時運転さ
れる場合について説明する。この場合、コントローラ(
3)の機能は次のようになる。まず、アクチュエータ(
8)への圧油供給が一定流量以上になる制御領域、例え
ば高速型閉工程、高速型開工程、射出充填工程において
は双方のポンプ(4)と(5)に対して流量制御する制
御信号を付与する。他方、一定流量未満になる制御領域
においては一方のポンプ(4)に流量制御する制御信号
を付与するとともに、他方のポンプ(5)に流量を零に
する制御信号を付与する。そして、アクチュエータ(8
)への圧油供給が一定流量以上になる制御領域において
は各ポンプ(4)と(5)の流量を一定の比率に分担さ
せることができる。
Hereinafter, a case where the pump (4) or (5) is operated individually or simultaneously will be explained. In this case, the controller (
The function of 3) is as follows. First, the actuator (
8) in control areas where the pressure oil supply exceeds a certain flow rate, such as high-speed mold closing process, high-speed mold opening process, and injection filling process, a control signal that controls the flow rate for both pumps (4) and (5). Grant. On the other hand, in a control region where the flow rate is less than a constant flow rate, a control signal for controlling the flow rate is applied to one pump (4), and a control signal for reducing the flow rate to zero is applied to the other pump (5). Then, the actuator (8
), the flow rate of each pump (4) and (5) can be shared at a constant ratio in a control region where the pressure oil supply to the pumps (4) and (5) exceeds a constant flow rate.

以上、実施例について詳細に説明したが、本発明はこの
ような実施例に限定されるものではなく、例えばポンプ
の数量は二台の場合を例示したが三台以上の場合であっ
てもよい。その他細部の構成等において本発明の要旨を
逸脱しない範囲で仕立に変更実施できる。
Although the embodiments have been described in detail above, the present invention is not limited to such embodiments. For example, although the number of pumps is two, it may be three or more. . Other details may be modified without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る射出成形機の制御装置は比例
電磁式圧力流量制御形可変ポンプによって合流回路を構
成し、コントローラにより各ポンプの吐出流量が一定の
比率分担となる制御信号を各ポンプに付与するようにし
たため、次のような効果を得る。
As described above, the injection molding machine control device according to the present invention configures a confluence circuit using proportional electromagnetic pressure flow rate controlled variable pumps, and the controller sends control signals to each pump so that the discharge flow rate of each pump is shared in a fixed ratio. As a result, the following effects can be obtained.

■ポンプは電気的制御信号のみによって制御され、しか
も各ポンプの吐出流量は一定の比率で分担させることが
できるため、小容量から大容全までスムースに可変制御
でき、従来のように切換弁を用いた場合に発生する圧力
ショック(オーバシュート等)は全く生じない。したが
って、制御の安定化、さらには不良品の発生防止を図る
ことができる。
■Pumps are controlled only by electrical control signals, and the discharge flow rate of each pump can be shared at a fixed ratio, allowing smooth variable control from small volumes to large volumes. No pressure shock (overshoot, etc.) occurs when used. Therefore, it is possible to stabilize control and further prevent the occurrence of defective products.

■比例電磁式圧力流量制御形可変ポンプを用いて合流回
路を構成し、電気的制御信号によって各ポンプの吐出流
量が一定の比率に分担するようにしたため、制御系の構
成を簡略化でき、また、切換弁等の構成部品を削減でき
るため、制御の容易化、コストダウン、信頼性向上を図
ることができる。
■The merging circuit is constructed using proportional electromagnetic pressure flow rate control type variable pumps, and the discharge flow rate of each pump is divided in a fixed ratio by an electrical control signal, which simplifies the control system configuration. Since the number of component parts such as switching valves can be reduced, control can be facilitated, costs can be reduced, and reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図二本発明に係る制御装置の油圧回路図、第2図:
同装置の機能を説明するポンプの分担特性図。 尚図面中、 (1):制御装置     (2):合流回路(3):
コントローラ (4)、(5):比例電磁式圧力流量制御形可変ポンプ
(6)、(7):逆止弁 特許出願人  日精樹脂工業株式会社 代理人弁理士 下  1)    茂 第1図
Fig. 1 2 Hydraulic circuit diagram of the control device according to the present invention, Fig. 2:
FIG. 3 is a diagram showing the distribution of pump characteristics to explain the functions of the device. In the drawing, (1): Control device (2): Merging circuit (3):
Controllers (4), (5): Proportional electromagnetic pressure flow control type variable pumps (6), (7): Check valve Patent applicant Nissei Jushi Kogyo Co., Ltd. Patent attorney 1) Shigeru Figure 1

Claims (1)

【特許請求の範囲】[Claims] 制御信号により斜板角度が可変して吐出流量および吐出
圧力を制御する複数の比例電磁式圧力流量制御形可変ポ
ンプの吐出側を逆止弁を介して接続してなる合流回路と
、前記各ポンプの吐出流量が一定の比率分担となる制御
信号を各ポンプに付与するコントローラとを備えてなる
射出成形機の制御装置。
A confluence circuit formed by connecting the discharge sides of a plurality of proportional electromagnetic pressure flow rate controlled variable pumps through check valves, whose swash plate angles are varied according to a control signal to control the discharge flow rate and discharge pressure, and each of the pumps. A control device for an injection molding machine, comprising: a controller that applies a control signal to each pump so that the discharge flow rate of the pump is shared in a fixed ratio.
JP61259425A 1986-10-30 1986-10-30 Control device of injection molding machine Expired - Lifetime JPH0689747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259425A JPH0689747B2 (en) 1986-10-30 1986-10-30 Control device of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259425A JPH0689747B2 (en) 1986-10-30 1986-10-30 Control device of injection molding machine

Publications (2)

Publication Number Publication Date
JPS63112137A true JPS63112137A (en) 1988-05-17
JPH0689747B2 JPH0689747B2 (en) 1994-11-14

Family

ID=17333920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259425A Expired - Lifetime JPH0689747B2 (en) 1986-10-30 1986-10-30 Control device of injection molding machine

Country Status (1)

Country Link
JP (1) JPH0689747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154462A2 (en) * 2011-05-06 2012-11-15 Caterpillar Inc. Method and apparatus for controlling multiple variable displacement hydraulic pumps
CN118144229A (en) * 2024-05-11 2024-06-07 南通榕安塑业有限公司 Integrated anti-fixing valve group for controlling plastic liquid in injection molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977097A (en) * 1982-10-26 1984-05-02 Toshiba Corp Control of speed of wind and hydraulic operated machine
JPS60245806A (en) * 1984-05-18 1985-12-05 Nissei Plastics Ind Co Converging circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977097A (en) * 1982-10-26 1984-05-02 Toshiba Corp Control of speed of wind and hydraulic operated machine
JPS60245806A (en) * 1984-05-18 1985-12-05 Nissei Plastics Ind Co Converging circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154462A2 (en) * 2011-05-06 2012-11-15 Caterpillar Inc. Method and apparatus for controlling multiple variable displacement hydraulic pumps
WO2012154462A3 (en) * 2011-05-06 2013-01-10 Caterpillar Inc. Method and apparatus for controlling multiple variable displacement hydraulic pumps
US8935009B2 (en) 2011-05-06 2015-01-13 Caterpillar Inc. Method and apparatus for controlling multiple variable displacement hydraulic pumps
CN118144229A (en) * 2024-05-11 2024-06-07 南通榕安塑业有限公司 Integrated anti-fixing valve group for controlling plastic liquid in injection molding

Also Published As

Publication number Publication date
JPH0689747B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5179836A (en) Hydraulic system for a differential piston type cylinder
JP3124094B2 (en) Control device for multiple actuators
EP0308508A4 (en) Variable-capacity piston machine.
JP3455479B2 (en) Hydraulic drive of injection molding machine
US5443782A (en) Method of shortening a rising time of each injection-molding operation in association with controlling of injection-molding speed
JPH0639951B2 (en) Hydraulic circuit control method
JPS63112137A (en) Controlling device of injection molder
JPS595165B2 (en) hydraulic control device
JP2521658B2 (en) Hydraulic system
JPS63115902A (en) Control device of injection molding machine
US6477837B2 (en) Method for operating hydraulic drive apparatus
JPH11105094A (en) Hydraulic drive apparatus of injection molding machine
EP0684389B1 (en) Control device for multiple hydraulic apparatus
JP3240265B2 (en) Hydraulic control method of mold clamping device
JPS58187601A (en) Combined hydraulic circuit
JPH02212606A (en) Hydraulic flow control device for construction machine
JP3447094B2 (en) Load sensing circuit
JPH0333923B2 (en)
JPH02283879A (en) Fluid control device
JPH0792062B2 (en) Liquid pressure controller
JP4235872B2 (en) Method for controlling the operating speed of a hydraulically driven machine and drive device for said machine
JP2992673B2 (en) Control method and device for injection molding machine
JPH0749022Y2 (en) Hydraulic supply device
JPH0347717A (en) Hydraulic circuit in mold clamping device
JPS63159676A (en) Speed control device for variable motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term