JPS63111505A - Traveling guiding device for unmanned vehicle - Google Patents

Traveling guiding device for unmanned vehicle

Info

Publication number
JPS63111505A
JPS63111505A JP61259536A JP25953686A JPS63111505A JP S63111505 A JPS63111505 A JP S63111505A JP 61259536 A JP61259536 A JP 61259536A JP 25953686 A JP25953686 A JP 25953686A JP S63111505 A JPS63111505 A JP S63111505A
Authority
JP
Japan
Prior art keywords
coil
unmanned vehicle
vehicle
receiving coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61259536A
Other languages
Japanese (ja)
Inventor
Yoshihiro Saito
斉藤 善博
Minoru Kondou
近堂 実
Takenori Yanai
柳井 武則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP61259536A priority Critical patent/JPS63111505A/en
Publication of JPS63111505A publication Critical patent/JPS63111505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To prevent an unmanned vehicle from getting out of its traveling route by providing a conductive guide line along the traveling line and adding a transmission coil and a reception coil which detects the change of a magnetic field to the vehicle. CONSTITUTION:A conductive guide line 11 is set along a traveling route of an unmanned vehicle and a guide line sensor is added to the vehicle. This guide line sensor contains a transmission coil 20 set in parallel to the line 11 and a reception coil 21 set orthogonal to the line 11. The coil 20 is connected to an oscillator 22 and the coil 21 is connected to a shift value identifier 25 via an amplifier 23 and a phase detector 24. The output signals of the coil 21 are supplied to drivers 26 and 27 of motors 4 and 5 respectively. If the vehicle has its traveling position shift in a guidance mode, the different currents are produced at both coils 20 and 21. Then the phase and shift value of the vehicle are detected and eliminated by correction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は倉庫内や各種工場内等において物品の搬送を
目的として利用される無人車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an unmanned vehicle used for the purpose of transporting articles in warehouses, various factories, etc.

〔従来の技術〕[Conventional technology]

上記無人車の誘導方法としては、電磁誘導方法と光学式
誘導方法が従来より知られている。電磁誘導方法は走行
路の床面下に電線を埋設してその電線に電流を流すこと
により発生する磁界を無人車に搭載した磁気検出器によ
り検出して、該電線に沿って無人車が走行するようにし
たものである。また、光学式誘導方法は走行路の床面上
に反射テープを貼付して該テープを無人車に搭載した光
学式検出器で検出して、そのテープに沿って無人車が走
行するようにしたものである。
As methods for guiding the unmanned vehicle, electromagnetic induction methods and optical guidance methods are conventionally known. In the electromagnetic induction method, electric wires are buried under the floor of the driving path, and the magnetic field generated by passing current through the wires is detected by a magnetic detector mounted on the unmanned vehicle, and the unmanned vehicle runs along the wire. It was designed to do so. In addition, the optical guidance method involves pasting reflective tape on the floor of the driving path, detecting the tape with an optical detector mounted on the unmanned vehicle, and causing the unmanned vehicle to travel along the tape. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記電磁誘導方法においては、電線を埋設す
る工事に手数がかかり、いったん埋設した電線の変更が
困難であったり、また電線に電流を流すための制御が複
雑になりコスト高になる等の問題点があった。
However, with the electromagnetic induction method described above, it takes a lot of work to bury the wires, it is difficult to change the wires once they are buried, and the control for passing current through the wires becomes complicated, resulting in high costs. There was a problem.

一方、光学式誘導方法においては、反射テープが汚れる
と該テープと床面との反射光量の差を検出できなくなる
ので、工場内を常に清掃しなくてはならないとか、導入
不可能な工場があったりした。
On the other hand, with the optical guidance method, if the reflective tape gets dirty, it becomes impossible to detect the difference in the amount of reflected light between the tape and the floor surface, so the inside of the factory must be constantly cleaned, and some factories cannot implement it. It was.

さらに、上記した2つの誘導方法以外にも、数多くの誘
導方法が提案されているけれども、実用化されているも
のは少なく、それぞれに問題を抱えている。
Furthermore, although many other guidance methods have been proposed in addition to the two guidance methods described above, only a few have been put into practical use, and each of them has its own problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、地上側には無人車の走行経路に沿って導電
性の誘導ラインを敷設し、無人車側には、発振器に接続
されて連続的に磁界を発生する送信コイルと、該送信コ
イルより発生する磁界の変化を検出する受信コイルとを
設けたものである。
In this invention, a conductive induction line is laid on the ground side along the traveling route of an unmanned vehicle, and on the unmanned vehicle side, a transmitting coil that is connected to an oscillator and continuously generates a magnetic field, and a transmitting coil that is connected to an oscillator to continuously generate a magnetic field. This device is equipped with a receiving coil that detects changes in the magnetic field generated by the magnetic field.

〔作用〕[Effect]

上記送信コイルから発せられた磁界により受信コイルに
誘導電流が誘起される。無人車の走行位置がずれた場合
は、導電性の誘導ラインの相対的な位置ずれにより上記
送信コイルからの磁界が変化し、受信コイルの誘導電流
にも変化が生じる。したがって、逆に受信コイルに発生
した電流を検出することにより誘導ラインの相対的な位
置ずれ、すなわち無人車の走行位置ずれを検出すること
ができ、該検出結果に基づいて無人車の操舵を制御して
無人車の走行位置ずれを解消する。
An induced current is induced in the receiving coil by the magnetic field emitted from the transmitting coil. When the running position of the unmanned vehicle shifts, the magnetic field from the transmitting coil changes due to the relative positional shift of the conductive guidance line, and the induced current in the receiving coil also changes. Therefore, by detecting the current generated in the receiving coil, it is possible to detect the relative positional deviation of the guidance line, that is, the deviation in the running position of the unmanned vehicle, and control the steering of the unmanned vehicle based on the detection result. This eliminates the misalignment of the driving position of unmanned vehicles.

〔実施例〕〔Example〕

第5図には本発明を適用した無人車の一実施例を概略的
に示す図であり、この無人車(1)には車体前後方向は
ぼ中央位置の左右に一対の駆動輪(2)(3)が設けら
れており該駆動輪(2)(3)には走行モータ(4)(
5)がそれぞれ直結している。この無人車(1)は、左
右の駆動輪(2)(3)を同一方向へ同回転数で回転さ
せることにより前方あるいは後方に直進し、同一方向へ
左右で回転数を異ならせることにより旋回し、左右の駆
動輪の回転方向を逆にして同回転数で回転させることに
より同一地点で自転して方向転換できるようになってい
る。(6X7)はそれぞれ駆動輪(2)(3)減速ある
いは停止用のブレーキを示し、(8)(9)はそれぞれ
駆動輪(2)(3)の回転数を検出するパルスジェネレ
ーターを示している。
FIG. 5 is a diagram schematically showing an embodiment of an unmanned vehicle to which the present invention is applied, and this unmanned vehicle (1) has a pair of drive wheels (2) on the left and right of the central position in the longitudinal direction of the vehicle body. (3) are provided, and the drive wheels (2) and (3) are provided with traveling motors (4) and (3).
5) are directly connected to each other. This unmanned vehicle (1) moves straight forward or backward by rotating the left and right drive wheels (2) and (3) in the same direction at the same speed, and turns by rotating the left and right drive wheels in the same direction at different speeds. However, by reversing the rotation direction of the left and right drive wheels and rotating them at the same rotation speed, it is possible to rotate and change direction at the same point. (6X7) indicate the brakes for decelerating or stopping the drive wheels (2) and (3), respectively, and (8) and (9) indicate the pulse generators that detect the rotation speed of the drive wheels (2) and (3), respectively. .

(10a) (10b)は、ガイドラインセンサーであ
す、床面(F)に貼付されているガイドライン(11)
位置を検出している。
(10a) (10b) is the guideline sensor and the guideline (11) is attached to the floor (F).
Detecting location.

該センサー(10a) (10b)は無人車(1)の進
行方向によりどちらか一方のみが作動するようになって
いる。  (12)はキャスター状に車体に支持されて
いる従動輪を、(13)はバンパーをそれぞれ示してい
る。
Only one of the sensors (10a) and (10b) is activated depending on the traveling direction of the unmanned vehicle (1). (12) shows a driven wheel supported by the vehicle body in a caster shape, and (13) shows a bumper.

なお、上記ガイドライン(11)は導電性の金属体、例
えばアルミテープを用いる。
Note that the guideline (11) uses a conductive metal body, for example, an aluminum tape.

第1図には、上記ガイドラインセンサー(10a)をブ
ロック図で示しており、このセンサー(10a)  は
ガイドライン(11)と並行な方向に設置された送信コ
イル(20)と、該送信コイル(20)と直交する方向
に設置された受信コイル(21)とにより形成されてい
る。なお、もう一方のガイドラインセンサー(10b)
の構造も上記センサー(10a)  と同様であり説明
は省略する。
FIG. 1 shows a block diagram of the guideline sensor (10a), and this sensor (10a) includes a transmitting coil (20) installed in a direction parallel to the guideline (11), ) and a receiving coil (21) installed in a direction orthogonal to the receiving coil (21). In addition, the other guideline sensor (10b)
The structure of the sensor (10a) is also the same as that of the sensor (10a), and the explanation thereof will be omitted.

上記送信コイル(20)のコイルは発振器(22)に接
続されている。また、上記受信コイル(21)のコイル
は増幅器(23) 、位相検出器(24)を経てズレ量
識別器(25)に接続されている。該識別器(25)か
らの出力信号は左右の駆動輪(2)(3)の走行モータ
(4)(5)のモータドライバー(26) (27)に
入力されている。なお、送信コイル(2o)の軸線の延
長線上を中心として受信コイル(21)の両側のコイル
巻数は同数としている。受信コイル(21)でのコイル
巻き状態が均一であるならば、送信コイル(20)の延
長線上は受信コイル(21)の中間に位置することにな
る。
The coil of the transmitting coil (20) is connected to an oscillator (22). Further, the receiving coil (21) is connected to a deviation amount discriminator (25) via an amplifier (23) and a phase detector (24). The output signal from the discriminator (25) is input to the motor drivers (26) (27) of the travel motors (4) (5) of the left and right drive wheels (2) (3). Note that the number of coil turns on both sides of the receiving coil (21) centered on the extension of the axis of the transmitting coil (2o) is the same. If the receiving coil (21) is wound uniformly, the extension of the transmitting coil (20) will be located in the middle of the receiving coil (21).

次に、以上のような構成をした本実施例による無人車(
1)の誘導の動作を説明する。
Next, the unmanned vehicle (
The guidance operation of 1) will be explained.

発振器(22)を作動させて送信コイル(2o)から磁
界(M+)0+g)を発生させる。gM Lm界は送(
tコイル(20)周囲に均等に発生するので、送信コイ
ル(20)からみて右側の受信コイル部(21a)に発
生する磁界(M+)と左側の受信コイル部(21b)に
発生する磁界(Mりとはその強さが等しい。
The oscillator (22) is activated to generate a magnetic field (M+)0+g) from the transmitting coil (2o). gM Lm world is sent (
Since the magnetic field (M+) is generated evenly around the t coil (20), the magnetic field (M+) generated in the receiving coil section (21a) on the right side when viewed from the transmitting coil (20) and the magnetic field (M+) generated in the receiving coil section (21b) on the left side. Its strength is equal to that of ri.

ガイドライン(11)が受信コイル(21)の中間に位
置する時、すなわち無人車(1)がガイドライン(11
)位置からずれることなく走行している時は、左右の磁
界(Ml)(Mりは等しく金属製であるガイドライン(
11)の影響を受けて、右側および左側の受信コイル部
(21a) (21b)にはそれぞれ等しく、かつ逆向
きの誘導電流が流れ、該電流は互いに打ち消し合い、受
信コイル(21)全体としては出力電圧「0」となる、
ところが、ガイドライン(11)に対する無人車(1)
の走行位置がずれていた場合、受信コイル(21)全体
の出力電圧は「0」とはならずに、以下のようになる。
When the guideline (11) is located between the receiving coils (21), that is, when the unmanned vehicle (1)
) When driving without shifting from the position, the left and right magnetic fields (Ml) (Ml are equal to the guideline (made of metal)
Under the influence of The output voltage becomes "0",
However, unmanned vehicles (1) against guideline (11)
If the running position of the receiving coil (21) is shifted, the output voltage of the entire receiving coil (21) will not be "0" but will be as follows.

すなわち、第2図にはガイドライン(11)に対して無
人車(1)が右側にずれている様子を示しているけれど
も、この図のように無人車(1)の走行がずれていた場
合、送信コイル(20)から左側に発生する磁界(Mり
のエネルギーは直下のガイドライン(11)によるうず
電流積等により吸収され減少し、左側の受信コイル部(
21b) に流れる電流は右側の受信コイル部(21a
)に流れる電流に比べて少なくなる。同様に、第3図に
示すようにガイドライン(11)に対して無人車(1)
が左側にずれている場合は、右側の受信コイル部(21
a)に流れる電流は左側の受信コイル部(21b)に流
れる電流に比べて少なくなる。
In other words, although Fig. 2 shows how the unmanned vehicle (1) deviates to the right with respect to the guideline (11), if the unmanned vehicle (1) is deviated as shown in this figure, The energy of the magnetic field (M) generated from the transmitting coil (20) on the left side is absorbed and reduced by the eddy current product etc. due to the guideline (11) directly below, and the energy is reduced by the magnetic field (M) generated from the left side receiving coil section (
The current flowing through the right receiving coil section (21a)
) is smaller than the current flowing through the Similarly, as shown in Figure 3, the unmanned vehicle (1)
If it is shifted to the left, the right receiving coil section (21
The current flowing through a) is smaller than the current flowing through the left receiving coil section (21b).

以上のような理由により、無人車(1)の走行位置ずれ
により受信コイル(21)に発生する電流が異なってく
る。第4図には、その様子をグラフに示しており、横軸
には受信コイル(21)に対するガイドライン(11)
の相対的な位置を示し、縦軸には受信コイル(21)か
らの出力電圧を示している。なお、横軸の原点は無人車
(1)がガイドライン(11)からずれていない位置を
示し、該原点から右に行くにつれガイドライン(11)
の受信コイル(21)に対する相対位置が右にずれ、左
に行(につれ上記相対位置が左にずれている。また、右
側の磁界(Ml)方向により発生する電圧量を縦軸にお
いて正の値としている。
For the above reasons, the current generated in the receiving coil (21) varies depending on the displacement of the traveling position of the unmanned vehicle (1). Figure 4 shows this situation in a graph, and the horizontal axis shows the guideline (11) for the receiving coil (21).
The vertical axis shows the output voltage from the receiving coil (21). The origin of the horizontal axis indicates the position where the unmanned vehicle (1) does not deviate from the guideline (11), and as you go to the right from the origin, the guideline (11)
The relative position with respect to the receiving coil (21) shifts to the right and to the left (as the relative position shifts to the left, the amount of voltage generated by the magnetic field (Ml) direction on the right side is expressed as a positive value on the vertical axis It is said that

以上のような原理に基づいて、受信コイル(21)から
の出力を増幅器(23)により増幅させた後に、位相検
出回路(24)およびズレ量識別器(25)によりそれ
ぞれ位相およびズレ量を検出し、該検出結果に基づいて
左右のモータドライバー(26) (27)に出力を出
し、該ドライバー(26) (27)によりモータ(4
)(5)をそれぞれ制御して無人車(1)のガイドライ
ン(11)に対するずれを解消するための補正がなされ
る。すなわち、右側のモータ(4)の回転速度を左側の
モータ(5)より大とすることで、無人車(1)は左側
に走行方向が転換され、さらに両モータ(4)(5)の
回転速度差の大小により上記走行方向の転換方向が決定
される。また、無人車(1)の走行方向を右側に転換さ
せたい場合には、左側のモータ(5)の回転速度を右側
のモータ(4)より大とすればよい。
Based on the above principle, after the output from the receiving coil (21) is amplified by the amplifier (23), the phase and amount of deviation are detected by the phase detection circuit (24) and deviation amount discriminator (25), respectively. Based on the detection result, output is output to the left and right motor drivers (26) (27), and the drivers (26) (27) drive the motor (4).
) and (5) respectively to correct the deviation of the unmanned vehicle (1) from the guideline (11). That is, by making the rotation speed of the right motor (4) higher than that of the left motor (5), the direction of travel of the unmanned vehicle (1) is changed to the left, and the rotation of both motors (4) and (5) is further increased. The direction in which the traveling direction is changed is determined by the magnitude of the speed difference. Furthermore, if it is desired to change the running direction of the unmanned vehicle (1) to the right, the rotational speed of the left motor (5) may be set higher than that of the right motor (4).

上記の実施例においては、送信コイル(20)と直交す
る方向に受信コイル(21)を設置しているので、該送
信コイル(20)の軸線を中心として左右均等に受信コ
イル(21)を設置でき、かつ送信コイル(20)から
発せられた仮想磁力線が受信コイル(21)内では該コ
イルの軸線方向に大略、沿って出力されることにより、
受信コイル(21)に誘導電流が誘起されやすくなって
いる。なお、上記受信コイル(21)は右側のコイル部
(21a)  と左側のコイル部(21b)を別コイル
とし、別々に検出した誘起電流を比較することにより、
ガイドライン(11)を検出してもよい。また、受信コ
イル(21)は上記実施例のような棒状のコイルとする
以外にも、第6図で示すような半円状の受信コイル(3
0) 、あるいは第7図で示すような円状の受信コイル
(31)としてもよい。
In the above embodiment, since the receiving coil (21) is installed in the direction perpendicular to the transmitting coil (20), the receiving coil (21) is installed equally on the left and right with the axis of the transmitting coil (20) as the center. and the virtual magnetic lines of force emitted from the transmitting coil (20) are outputted within the receiving coil (21) roughly along the axial direction of the coil.
An induced current is easily induced in the receiving coil (21). In addition, the receiving coil (21) has a right side coil part (21a) and a left side coil part (21b) as separate coils, and by comparing the induced currents detected separately,
A guideline (11) may also be detected. In addition, the receiving coil (21) may be a semicircular receiving coil (3) as shown in FIG.
0), or a circular receiving coil (31) as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、誘導線としては
導電性の金属体、例えばアルミテープを敷設するだけで
いいので、該ラインの敷設も簡単でしかも誘導線の通電
制御等が必要でなくなり、かつ該誘導線の汚れによる検
出、誘導ミスを苦慮する必要がなくなった。
As explained above, according to the present invention, it is only necessary to lay a conductive metal body, such as aluminum tape, as the guide wire, so the line is easy to install, and there is no need to control the energization of the guide wire. This eliminates the need to worry about detection and guidance errors due to dirt on the guide wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガイドラインセンサーの一実施例
を示すブロック図、第2図はガイドラインに対してガイ
ドラインセンサーが右側にずれている様子を示す概略平
面図、第3図は同じく左側にずれている様子を示す概略
平面図、第4図は無人車の走行位置と受信コイルに発生
する電流の関係を示すグラフ図、第5図は本発明を通用
した無人車の概略平面図、第6図は受信コイルの他の実
施例を示す平面図、第7図も受信コイルの他の実施例を
示す平面図である。 (1)・・・無人車 (11)・・・ガイドライン (20)・・・送信コイル (21)−・・受信コイル (22) −・・発振器 荀4図 出 菊20 」〜「
FIG. 1 is a block diagram showing an embodiment of the guideline sensor according to the present invention, FIG. 2 is a schematic plan view showing how the guideline sensor is shifted to the right with respect to the guideline, and FIG. 3 is a schematic plan view showing how the guideline sensor is shifted to the left with respect to the guideline. FIG. 4 is a graph showing the relationship between the running position of the unmanned vehicle and the current generated in the receiving coil. FIG. 5 is a schematic plan view of the unmanned vehicle according to the present invention. FIG. 6 7 is a plan view showing another embodiment of the receiving coil, and FIG. 7 is a plan view showing another embodiment of the receiving coil. (1)...Unmanned vehicle (11)...Guideline (20)...Transmitting coil (21)--Receiving coil (22)--...Oscillator 4 figure output 20''~''

Claims (1)

【特許請求の範囲】 地上側には無人車の走行経路に沿って導電 性の誘導ラインを敷設し、無人車側には発振器に接続さ
れて磁界を発生する送信コイルと、該送信コイルより発
生する磁界の変化を検出する受信コイルとを設けたこと
を特徴とする無人車の走行誘導装置。
[Claims] On the ground side, a conductive induction line is laid along the driving route of the unmanned vehicle, and on the unmanned vehicle side, there is a transmitting coil connected to an oscillator to generate a magnetic field, and a transmitting coil generated by the transmitting coil. A traveling guidance device for an unmanned vehicle, comprising a receiving coil that detects changes in a magnetic field.
JP61259536A 1986-10-29 1986-10-29 Traveling guiding device for unmanned vehicle Pending JPS63111505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259536A JPS63111505A (en) 1986-10-29 1986-10-29 Traveling guiding device for unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259536A JPS63111505A (en) 1986-10-29 1986-10-29 Traveling guiding device for unmanned vehicle

Publications (1)

Publication Number Publication Date
JPS63111505A true JPS63111505A (en) 1988-05-16

Family

ID=17335469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259536A Pending JPS63111505A (en) 1986-10-29 1986-10-29 Traveling guiding device for unmanned vehicle

Country Status (1)

Country Link
JP (1) JPS63111505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435611A (en) * 1987-07-30 1989-02-06 Nec Corp Guidance system for unmanned carrying vehicle
JP2012519287A (en) * 2009-03-02 2012-08-23 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー Position sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775318A (en) * 1980-10-27 1982-05-11 Mitsubishi Heavy Ind Ltd Measuring device for traveling locus shift of selftraveling car
JPS59117613A (en) * 1982-12-24 1984-07-07 Shin Kobe Electric Mach Co Ltd Guiding path of unattended wagon
JPS59135512A (en) * 1983-01-21 1984-08-03 Shin Kobe Electric Mach Co Ltd Unmanned guide carrying device
JPS6095616A (en) * 1983-10-28 1985-05-29 Komatsu Ltd Swerving detecting device of free-running vehicle
JPS60204100A (en) * 1984-03-28 1985-10-15 日本電気株式会社 Magnetic maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775318A (en) * 1980-10-27 1982-05-11 Mitsubishi Heavy Ind Ltd Measuring device for traveling locus shift of selftraveling car
JPS59117613A (en) * 1982-12-24 1984-07-07 Shin Kobe Electric Mach Co Ltd Guiding path of unattended wagon
JPS59135512A (en) * 1983-01-21 1984-08-03 Shin Kobe Electric Mach Co Ltd Unmanned guide carrying device
JPS6095616A (en) * 1983-10-28 1985-05-29 Komatsu Ltd Swerving detecting device of free-running vehicle
JPS60204100A (en) * 1984-03-28 1985-10-15 日本電気株式会社 Magnetic maker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435611A (en) * 1987-07-30 1989-02-06 Nec Corp Guidance system for unmanned carrying vehicle
JP2012519287A (en) * 2009-03-02 2012-08-23 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー Position sensor

Similar Documents

Publication Publication Date Title
JPH0792695B2 (en) Driving guidance device for unmanned vehicles
JPH036522B2 (en)
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JPH035607B2 (en)
JPS63115207A (en) Traveling guide device for unattended vehicle
JPH036521B2 (en)
JPH05333928A (en) Back traveling control method for unmanned carrier
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JPS59172016A (en) Stop controller for guided unmanned truck
JPH02116907A (en) Running guidance device for unmanned car
JPH0313768Y2 (en)
JPH056688B2 (en)
JP2841736B2 (en) How to control unmanned vehicles
JPS62108316A (en) Unmanned vehicle running control device
JPH0441370B2 (en)
JP2576518B2 (en) Automated guided vehicle guidance
JPH09269820A (en) Vehicle guiding device
JP2543873Y2 (en) Deflection detection device for automatic guided vehicles
JPS59157719A (en) Unattended car
JPH0420482B2 (en)
JPS63247808A (en) Straight running controller for unmanned carrier
JPS60107113A (en) Guiding method of unmanned track
JPH10268938A (en) Driving device for unmanned vehicle
JPH0792696B2 (en) Conveyor device using traversing self-propelled cart