JPS63110784A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63110784A
JPS63110784A JP25753886A JP25753886A JPS63110784A JP S63110784 A JPS63110784 A JP S63110784A JP 25753886 A JP25753886 A JP 25753886A JP 25753886 A JP25753886 A JP 25753886A JP S63110784 A JPS63110784 A JP S63110784A
Authority
JP
Japan
Prior art keywords
layer
dielectric film
light
rib
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25753886A
Other languages
Japanese (ja)
Inventor
Yoshifumi Tsunekawa
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25753886A priority Critical patent/JPS63110784A/en
Publication of JPS63110784A publication Critical patent/JPS63110784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To emit an astigmatism-free laser beam by a method wherein, while a gain guide mechanism is installed in the central part of a resonator and a refractive-index guide mechanism is installed at the end, a single transverse- mode oscillation is executed stably from a low light-output operation to a high light-output operation and the noise of returned light is suppressed by a longitudinal multi-axis oscillation. CONSTITUTION:A GaAs buffer layer 202, a first AlxGa1-xAs clad layer 203, an AlyGa1-yAs active layer 204, a second AlzGa1-zAs clad layer 205 and a GaAs contact layer 206 are formed on a GaAs substrate 201. Then, after a dielectric film has been formed, it is etched by making use of resist as a mask; a dielectric film 211, the contact layer 206 and a part of the clad layer 205 are removed so that a rib can be formed. After the resist has been removed, a dielectric film 207 is mounted on the rib; a buried layer 208 is formed only on the substrate where nothing is grown on the dielectric film and where no dielectric film exists by means of a low-pressure MOCVD method and by appropriately setting the pressure and the growth temperature. Then, the dielectric film 207 on the rib is removed by etching, and electrodes 209, 210 are formed on both faces of a wafer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの構造に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of a semiconductor laser.

〔従来の技術〕[Conventional technology]

半導体レーザ(以下LDと記す。つと、元ディスクに情
報と書き込んだり、あるいは記録さnている情報を読み
出したりするいわゆる元情報処理用光源として使用する
際、LDより出射され九九が元ディスク面あるいは外部
に設けら九た光学系により反射さ几、その光が再びI、
Dの共振器に戻ることにより生ずる雑音(以下戻9′y
t、雑廿と記す。]が大きな問題となる。この戻り光雑
音と低減させる手段としては、LDの共振器端面に屈折
率の異なる誘電体を多層にコーティングしてT、D共振
器端面の反射率を上げる方法、あるいは、一般に利得4
彼型LDの特徴である侠モードの多軸発振を行なわせる
方法があった。
When a semiconductor laser (hereinafter referred to as LD) is used as a light source for so-called original information processing to write information to the original disk or read recorded information, the multiplication table emitted from the LD is Alternatively, the light may be reflected by an external optical system, and the light may be reflected by an external optical system.
Noise generated by returning to the resonator of D (hereinafter referred to as return 9'y
t, written as zaso. ] becomes a big problem. As a means to reduce this return light noise, there is a method of increasing the reflectance of the T and D resonator end faces by coating the end face of the LD cavity with multiple layers of dielectric materials with different refractive indexes, or a method that generally increases the reflectance of the end face of the T and D resonators.
There was a method to perform chivalry mode multi-axis oscillation, which is a characteristic of his type LD.

加えて元情報処理用光源としてT、D金柑いる際前述の
利得4彼型T、Dでは、非点隔差を有する。
In addition, when T and D kumquats are used as original information processing light sources, the above-mentioned gain 4 type T and D have an astigmatic difference.

非点隔差を有するT、Dの元を微少スボントに集光させ
る場合には光学系が複雑となる。特開昭60−1407
74.特開昭60−150682は、以上の様なことを
考慮して炸裂されたものであった。
When condensing the elements of T and D, which have an astigmatism difference, onto a minute spont, the optical system becomes complicated. Japanese Unexamined Patent Publication 1986-1407
74. Japanese Patent Application Laid-Open No. 150682/1982 was developed with the above considerations in mind.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術では以下のような問題点を有する
However, the above-mentioned conventional technology has the following problems.

LD共振器端面に誘電体の多層膜コーティングを行ない
端面の反射率を上げて戻シ光雑音を低減させる方法では
、誘電体各層の膜厚をLDの出射光波長に対して旧篠な
制御が必要となる。また、端面での反射率が高い為出射
される光の強度が小石くなる。これは高光出力を必要と
する元ディスクへの情報の書き込み等においてLDの信
頼性を低下させることになる。
In the method of coating the LD resonator end face with a multilayer dielectric film to increase the reflectance of the end face and reduce the reflected light noise, the thickness of each dielectric layer can be controlled in a traditional way with respect to the wavelength of the LD's output light. It becomes necessary. Furthermore, since the reflectance at the end face is high, the intensity of the emitted light becomes small. This reduces the reliability of the LD when writing information to the source disk, etc., which requires high optical output.

縦モードを多軸発去させて戻り光を低減させる方法とし
ては、二重異種接合構造(以下DF(構造と記す。)を
半導体基板上に形成後、絶縁膜によるストライプ状の窓
を形成したり、亜鉛等をストライプ状に拡散させる等の
方法を用いて電流通路を形成して成る利得導波型のT、
Dを用いることが考えられる。しかしながら、この種の
LDは、共振器内をレーザ発振光は接合に平行な方向に
屈折率の分布がなく、電流注入により形成される利得の
分布により、共蚤内にレーザ発振光は導波される。した
がってレーザ発振光の等位相面は平面とならず波面収差
を持つ。また、接合に垂直な方向には、DH構造となっ
ているので屈折率分布を有し、等位相面は平面とな−り
波面収差はほとんど無い。したがって接合に平行および
垂直な方向で非点隔差を生ずる。このような光を微少ス
ポットに集光するには、外部に複雑な光学系が必要とな
る。
A method for reducing return light by emitting longitudinal modes on multiple axes is to form a double heterojunction structure (hereinafter referred to as DF (structure)) on a semiconductor substrate, and then form striped windows using an insulating film. A gain waveguide type T formed by forming a current path by using a method such as diffusion of zinc or the like in a stripe shape,
It is possible to use D. However, in this type of LD, the laser oscillation light does not have a refractive index distribution in the direction parallel to the junction within the cavity, and the laser oscillation light is guided within the cavity due to the gain distribution formed by current injection. be done. Therefore, the equiphase front of the laser oscillation light is not a plane but has wavefront aberration. Further, in the direction perpendicular to the junction, since it has a DH structure, it has a refractive index distribution, and the equiphase plane is a plane, so there is almost no wavefront aberration. This results in astigmatic differences in directions parallel and perpendicular to the junction. In order to focus such light onto a minute spot, a complicated external optical system is required.

また、利得導波型LDでは発光部の利得の不均一に供な
い、近視野像が不安定になシ、たとえば元ディスク面上
での微少スポット位置の変動等の問題を生ずる。
Further, in a gain waveguide type LD, the gain of the light emitting section becomes non-uniform, the near-field image becomes unstable, and problems such as minute spot position fluctuations on the original disk surface occur.

特開昭60−14077では、D[(構造形成前に、複
雑な形状への基板のエツチング、電流狭搾層の形成、そ
の後に電流狭搾層の一部をエンチング除去して!流通路
の形成が必要となる。さらに共振器中央部の利得導波領
域と、共振器端面近傍の屈折率導彼領域の結合効率を高
める為に、各々の領域の活性1−の高さ方向の位置を一
致させることが必要となる。この構造では液相成長法(
以下LPK@と記す。)で成長を行なうことで解決して
いるが、それは基板形状によるに長速度の差を利用した
ものであり、制御が非常に困難となり、再現性・信頼性
の低下という問題を有する。
In JP-A No. 60-14077, D Furthermore, in order to increase the coupling efficiency between the gain waveguide region in the center of the resonator and the refractive index guide region near the end face of the resonator, the height direction position of the active layer in each region must be adjusted. This structure requires liquid phase growth (
Hereinafter referred to as LPK@. ), but this takes advantage of the difference in longitudinal speed depending on the substrate shape, which makes control extremely difficult and has the problem of reduced reproducibility and reliability.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、低光出力動作から高光出力動作
まで安定な単一横モード発振を行ない、かつ縦多軸発損
により戻り光雑音を抑え、かつ非点収差のないレーザ光
を放出し、かつ作製が各易なLDを提供するところにあ
る。
Therefore, the present invention is intended to solve these problems, and its purpose is to perform stable single transverse mode oscillation from low optical output operation to high optical output operation, and to reduce return light by vertical multi-axis oscillation loss. The object of the present invention is to provide an LD that suppresses noise, emits a laser beam without astigmatism, and is easy to manufacture.

〔間殖点を解決する為の手段〕[Means for solving interbreeding points]

不発明のT、Dば、半導体基板と平行な方向の元導波が
、少なくとも一応の共振器端面近傍では屈折率専政によ
ってなさnlそれ以外の領域では利得導波によってなさ
れることを特徴とする。
The uninvented T and D are characterized in that the original waveguide in the direction parallel to the semiconductor substrate is performed by refractive index control at least in the vicinity of the cavity end face, and is performed by gain waveguide in the other region. do.

〔作用〕[Effect]

本発明の上記の構成によれば、共振器中央部では、利得
4彼によりレーザ発振光が導波される為戻り光准廿の少
ない縦多モード発振を行ない、かつ出射端面近傍では屈
折率4反機構によりレーザ発撮元が導波嘔れる為Vこ、
非点隔差の極めて少ないレーザ発振光が、端面より出射
される。
According to the above configuration of the present invention, in the central part of the resonator, the laser oscillation light is guided by a gain of 4, so longitudinal multimode oscillation with less return light is performed, and in the vicinity of the output end face, the refractive index is 4. Due to the anti-mechanism, the laser emission source is waveguided, so V
Laser oscillation light with extremely small astigmatism difference is emitted from the end face.

〔実施例〕〔Example〕

(実施例1) 第1図は本発明における斜視図である。第1図に示す本
発明の構造を、第2図に示すプロセス工程を用いて説明
する。以下そのプロセスを第2図と用いて説明する。
(Example 1) FIG. 1 is a perspective view of the present invention. The structure of the present invention shown in FIG. 1 will be explained using the process steps shown in FIG. The process will be explained below using FIG. 2.

ここでは、化合物手導体の代表でるるAJtGaAs系
で説明するが他の化合物中導体についても同様に構成で
さることは明白である。
Although the AJtGaAs system, which is a representative compound conductor, will be explained here, it is obvious that other compound conductors can be similarly constructed.

最初にGaAl11基板(201)に、GaAs パン
ファー層(202) 、 AIXL)al −3AB 
 第1のクランド層(203) 、 A17Ga1−y
Aa活性7m(zo4)。
First, on a GaAl11 substrate (201), a GaAs bread layer (202), AIXL)al-3AB
First crund layer (203), A17Ga1-y
Aa activity 7m (zo4).

AlzGal−zAs  第2のクランド層(205、
GaAsコンタクト層(206)より成るDr(構造を
連続して形成する。各層の形成方法は、LPK法、MO
CVD法または分子線成長法(以下MBE法と記す。〕
等いかなる成長法を用いてもiT能である。次いで改化
シリコンfluるいは窒化シリコン膜等誘電体膜を形成
した後、第2図(C)斜線部の如くの形状に、レジスト
によりマスクをする。続いてエツチングを行ない第2図
(b)の如く断面形状となるよう、誘電体膜(211)
、コンタクト層(206)およびクランド層(205)
の一部を除去してリプを形成する。レジストをハクリし
た後リプ上に誘電体膜を載せた状態で埋め込み層(20
8)を積層する。この積層には減圧状態で行なうMOC
jVD法を用いる。圧力および成長温度を適切に設定す
ることにより、誘電体膜上への成長はなく誘電体膜の存
在しない基板上にのみ埋め込み、層(208)を形成す
ることができる。埋め込み層(208)の材料は、種々
の材料が可能である。活性層(204)よりもエネルギ
ーギャップの小なる材料で埋め込んだ場合、リプストラ
イプ外領域での発光は、エネルギーギャップの小なる埋
め込み層で吸収される。すなわち接合に平行な方向に損
失によ多形成される屈折率差が生じ、屈折率導波型のT
、Dとなる。
AlzGal-zAs second crund layer (205,
A Dr (structure) consisting of a GaAs contact layer (206) is formed continuously.The method for forming each layer is LPK method, MO
CVD method or molecular beam growth method (hereinafter referred to as MBE method)
No matter what growth method is used, it is possible to achieve iT performance. Next, after forming a dielectric film such as a modified silicon fluoride film or a silicon nitride film, a resist is used to mask the dielectric film in the shape shown in the shaded area in FIG. 2(C). Subsequently, the dielectric film (211) is etched to have a cross-sectional shape as shown in FIG. 2(b).
, contact layer (206) and ground layer (205)
Remove a part of the lip to form a lip. After peeling off the resist, place the buried layer (20
8) Layer. This lamination is carried out under reduced pressure using MOC.
jVD method is used. By appropriately setting the pressure and growth temperature, the layer (208) can be formed without growing on the dielectric film and buried only on the substrate where no dielectric film is present. The buried layer (208) can be made of various materials. If the active layer (204) is filled with a material having a smaller energy gap than the active layer (204), the light emitted in the region outside the lipstripe is absorbed by the buried layer having a smaller energy gap. In other words, a refractive index difference occurs due to loss in the direction parallel to the junction, and the refractive index waveguide type T
, D.

一方埋め込み1脅を、活性層(204)よりもエネルギ
ーギャップの大なる材料とした場合、接合に平行な方向
に、複素屈折率の実数部による屈折率差が形成され、前
述同様に屈折率ilW型のLDとなる。
On the other hand, if the buried material is made of a material with a larger energy gap than the active layer (204), a refractive index difference due to the real part of the complex refractive index is formed in the direction parallel to the junction, and as described above, the refractive index ilW It becomes the LD of the type.

以上述べたことは、リプ導波路の幅が狭い場合、すなわ
ち本発明のT、Dでは共振器端面近傍にて有効となる。
The above description becomes effective when the width of the lip waveguide is narrow, that is, near the resonator end face in T and D of the present invention.

したがってリブ幅を適切に選択することで、共振器端面
近傍に屈折率導波型のLDの形成が可能となる。共振器
中央部近では、リブ幅を広げることで、利得導波型とな
る。
Therefore, by appropriately selecting the rib width, it is possible to form a refractive index waveguide type LD near the resonator end face. By widening the rib width near the center of the resonator, it becomes a gain waveguide type.

また埋め込み層の導電性を、コンタクト層(206)ま
たはクランド層(205)と逆の導電性とする。
Further, the conductivity of the buried layer is set to be opposite to that of the contact layer (206) or the ground layer (205).

あるいは高抵抗層とすることで電流狭搾機能を持たせる
ことが出来る。続いてリプ上の誘電体膜(207) ’
iエツチング除去し、ウエノ)両面に電極(209,2
10)を形成して、本発明のLDを炸裂することができ
る。
Alternatively, by using a high resistance layer, a current narrowing function can be provided. Next, the dielectric film (207) on the lip
Remove the etching and apply electrodes (209, 2) on both sides.
10) can be formed to explode the LD of the present invention.

(実施例2) 第5図に別の実施例を示す。本実施例ば(実施例1)に
おいて、リプ形成の際活性層よシ基板側へさらにエツチ
ングを進め、第3図の端面に示す如くリプ形状として、
その後(実施例1)に記述した如くMOCVD法による
選択成長を行ない、リプを埋め込む。以下の工程は(実
施例1)と同様にして、本実施例を炸裂できる。
(Example 2) Another example is shown in FIG. In this example (Example 1), when forming the lip, etching was further carried out from the active layer to the substrate side, and the lip shape was formed as shown in the end face of FIG.
Thereafter, as described in Example 1, selective growth is performed using the MOCVD method to embed the lip. The following steps can be performed in the same manner as (Example 1) to explode this example.

埋め込み層(301)id高抵抗層とすることで電流狭
搾機叱を持たせることが出来る。
By making the buried layer (301) a high resistance layer, it is possible to provide current narrowing.

〔発明の効果〕〔Effect of the invention〕

以上述べたように発明によれば以下のような効果が得ら
れる。
As described above, according to the invention, the following effects can be obtained.

1)共振器中央部では、利得導波機構による光の導彼が
さnでいるので、、U多軸モード発振となり、戻り光に
よる雑音の影響を極力抑えることが出来る。
1) In the center of the resonator, the light is guided by the gain waveguide mechanism, so U multi-axis mode oscillation occurs, and the influence of noise due to the returned light can be suppressed as much as possible.

2)共振器端部は屈折率導波機構による元の4彼がされ
る構造としているので、DI(構造の積層方向訃よび積
層に平行方向との間で生ずる非点収差を極力小さな値と
することが出来る。
2) Since the resonator end has a structure in which the original four-dimensional structure is formed using a refractive index waveguide mechanism, DI (astigmatism that occurs between the stacking direction of the structure and the direction parallel to the stacking) is kept to a minimum value. You can.

5)戻り光雑音が低く抑えられる構造となっているので
、通常行なわれている共振器端面への高反射率膜形成の
工程が不必要となり工程の簡略化へとつながる。
5) Since the structure suppresses the return optical noise to a low level, the normally performed process of forming a high reflectance film on the end face of the resonator is unnecessary, leading to process simplification.

4)非点収差を極力小さくする構造となっているので、
複雑な光学系を必要とすることなく微小スボント集光す
ることが出来る。
4) The structure minimizes astigmatism, so
It is possible to focus light on a minute spont without requiring a complicated optical system.

5)LPE法により埋め込みを行なう際には、通常、埋
め込み層がリプ上に成長しないように、A!G a A
 a  系T、Dではリプの最上層は上側クランド層と
なっている。したがって埋め込み成長後の電極形成にお
いて、亜鉛等の不純物’r IJプ上に選択的に拡散さ
せる工程が必要となる。−力木構造ではMOCOD法の
選択成長すなわちキャンプ層上に絶縁層を載せた後の成
長により形成するので、拡散工程を必要とせず工程が簡
略化できる。
5) When performing embedding using the LPE method, A! G a A
In a-systems T and D, the top layer of lip is the upper crund layer. Therefore, in forming the electrode after the buried growth, a step of selectively diffusing impurities such as zinc onto the IJ layer is required. - Since the strength tree structure is formed by selective growth using the MOCOD method, that is, by growth after placing an insulating layer on the camp layer, the process can be simplified without requiring a diffusion process.

6)本発明の’LDは戻り光雑音等の影9を受けにくい
構造のLDであるので、共振器端面の片側を低反射率、
もう片面を高反射率の端面となるよう、誘屯体膜の撰者
等により形成すれば、雑音に影響されにくくかつ高光出
力の出せるLDとなる。
6) Since the LD of the present invention has a structure that is less susceptible to the effects of return light noise, etc., one side of the resonator end face has a low reflectance.
If the other side is formed by a person who selects a dielectric film so as to have a high reflectance end face, an LD that is not easily affected by noise and can produce a high optical output can be obtained.

7)埋め込み層の屈折率を摘切に選ぶことによシ、光出
射端面での近視野像の大きさを調整することが出来、高
光出力化に対し有効な手段となる。
7) By carefully selecting the refractive index of the buried layer, the size of the near-field image at the light-emitting end face can be adjusted, which is an effective means for increasing light output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のT、Dの一実施例を示す斜視図、第2
図(a)〜(e)は本発明のT、Dを実現する為の作製
工程図、 第3図は本発明のI、Dの一実施例を示す斜視図。 201・・・・・・GaAs基板 202・・・・・・GaA日バンファ層203 ・・・
”4XGal−XAS 第1のクランド層204−=A
1yGa1−yAs活性層205・・・・・・AjzG
al−ZA8第2のクランド層206・・・・・・Ga
Aθコンタクト層207・・・・・・誘電体嘆 208・・・・・・埋め込み層 209.210・・・・・・電極 301・・・・・・埋め込み層 以  上
FIG. 1 is a perspective view showing one embodiment of T and D of the present invention, and FIG.
Figures (a) to (e) are manufacturing process diagrams for realizing T and D of the present invention, and Fig. 3 is a perspective view showing an embodiment of I and D of the present invention. 201...GaAs substrate 202...GaA buffer layer 203...
"4XGal-XAS 1st clandestine layer 204-=A
1yGa1-yAs active layer 205...AjzG
al-ZA8 second ground layer 206...Ga
Aθ contact layer 207...Dielectric layer 208...Buried layer 209.210...Electrode 301...Buried layer or above

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と平行な方向の光導波が、少なくとも一応の
共振器端面近傍では、屈折率導波によつてなされ、それ
以外の領域では、利得導波によつてなされることを特徴
とする半導体レーザ。
A semiconductor laser characterized in that optical waveguide in a direction parallel to a semiconductor substrate is performed by refractive index waveguide at least in the vicinity of a resonator end face, and by gain waveguide in the other region. .
JP25753886A 1986-10-29 1986-10-29 Semiconductor laser Pending JPS63110784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25753886A JPS63110784A (en) 1986-10-29 1986-10-29 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25753886A JPS63110784A (en) 1986-10-29 1986-10-29 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63110784A true JPS63110784A (en) 1988-05-16

Family

ID=17307674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25753886A Pending JPS63110784A (en) 1986-10-29 1986-10-29 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63110784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113405A (en) * 1989-12-12 1992-05-12 U.S. Philips Corp. Semiconductor diode laser having a stepped effective refractive index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113405A (en) * 1989-12-12 1992-05-12 U.S. Philips Corp. Semiconductor diode laser having a stepped effective refractive index

Similar Documents

Publication Publication Date Title
EP0115390B1 (en) Semiconductor lasers
US4723253A (en) Semiconductor laser array
US4821278A (en) Inverted channel substrate planar semiconductor laser
JPS63110784A (en) Semiconductor laser
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JP2846668B2 (en) Broad area laser
JP2723888B2 (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JPS6142188A (en) Semiconductor laser device
JP3075512B2 (en) Semiconductor laser device
JPS61244082A (en) Semiconductor laser device
JPS63142879A (en) Semiconductor laser
JPS6358389B2 (en)
JP2515725B2 (en) Semiconductor laser equipment
JPS62256489A (en) Semiconductor laser device
USRE34356E (en) Semiconductor laser array
JPH01273378A (en) Semiconductor laser device
JPH02178987A (en) Semiconductor laser element
JPH0671122B2 (en) Semiconductor laser device
JPS63288086A (en) Semiconductor device
JP4024319B2 (en) Semiconductor light emitting device
JPS63110786A (en) Semiconductor laser
JPS6247183A (en) Semiconductor laser element and manufacture thereof
JPS6236888A (en) Semiconductor laser element
JPS63306686A (en) Semiconductor laser device