JPS63107728A - Method and apparatus for recovering cyclohexanone - Google Patents

Method and apparatus for recovering cyclohexanone

Info

Publication number
JPS63107728A
JPS63107728A JP61251968A JP25196886A JPS63107728A JP S63107728 A JPS63107728 A JP S63107728A JP 61251968 A JP61251968 A JP 61251968A JP 25196886 A JP25196886 A JP 25196886A JP S63107728 A JPS63107728 A JP S63107728A
Authority
JP
Japan
Prior art keywords
cyclohexanone
absorption
absorption liquid
raw gas
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61251968A
Other languages
Japanese (ja)
Other versions
JPH0738933B2 (en
Inventor
Ichiro Watanabe
一郎 渡辺
Toru Eito
徹 栄藤
Masaki Minemoto
雅樹 峯元
Hayami Nagano
早実 長野
Shigekazu Hatano
茂和 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61251968A priority Critical patent/JPH0738933B2/en
Publication of JPS63107728A publication Critical patent/JPS63107728A/en
Publication of JPH0738933B2 publication Critical patent/JPH0738933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To reduce running cost, in a method for recovering cyclohexanone from an absorbing process and a distillation process, by precooling raw gas and an absorbing solution by an absorption type freezer using the waste heat of steam used in the distillation process as a heat source before introducing both of them into the absorbing process. CONSTITUTION:Cyclohexanone-containing raw gas 1 is cooled by the cooling water introduced into a gas cooler 4 to be introduced into an adsorbing power 5 and contacted with an absorbing solution to be absorbed by said solution. This absorbing solution is sent to a distillation tower 8 and cyclohexanone is distilled and removed by steam. At this time, cyclohexanone is concentrated in the distillation tower 8 until reaches an azeotropic composition with water to be sent to a warm water recovering heat exchanger 11 where the latent heat of cyclohexanone vapor and that of steam are utilized in the rising in the temp. of warm water and this warm water is sent to an absorption type freezer 12 to be used as a heat source. The absorption type freezer 12 cools cold water returned from the gas cooler 4 and an absorbing solution cooler 9 while raised in temp. to again send out the same to both coolers 4, 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシクロヘキサノン含有空気中からシクロヘキテ
ノンを回収する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for recovering cyclohexenone from cyclohexanone-containing air.

〔従来の技術] 従来は活性炭吸脱着方法により回収している。[Conventional technology] Conventionally, it has been recovered by activated carbon adsorption/desorption method.

第2図に従来のシクロヘキサノン回収プロセスを示す。Figure 2 shows a conventional cyclohexanone recovery process.

ここで原ガス101はガスプロア108によシ吸引され
、最初にガスフィルタ103により不純物(ダスト類他
)を除去した後ガスクーラ104で活性炭106の吸着
に適した温度(40℃程度)K冷却される。ガスクーラ
1(14の冷却はガスと冷却水(通常冷却水はクーリン
グタワで冷却し丸木を循環再利用している)の間接熱交
換により行う。吸着に適した温度に冷却された原ガス1
01は吸M槽105に送られ、原ガス中の溶剤成分は吸
着槽内に充填する活性炭106に吸着される。溶剤成分
を除いた原ガスは吸着槽上部から大気に排出される。活
性炭106の溶剤吸着量が限界に近づき、排気側に溶剤
が流出する直前で吸着を停止する。次いで吸着槽に水蒸
気を導入して、活性炭に吸着している溶剤を脱離し、水
蒸気とともにフラッシュタンク108を経て、コンデン
サ109に導入して冷却凝縮する。この凝縮液はセパレ
ータ110で水と溶剤に分離する。分離された水はフラ
ッシュタンク108に戻し吸着槽105からの溶剤含有
水蒸気により簡易水蒸気蒸留し、水中の大部分の溶剤を
分離する。フラッシュタンク108の水は一担排水タン
ク111に溜めてから排水蒸留塔112に送られ、さら
に溶剤成分を分離した後排水される。排水蒸留塔112
で分離した溶剤成分はフラッシュタンク108からの流
出ガスと混合され、コンデンサ109に導入する。
Here, the raw gas 101 is sucked in by a gas prower 108, first removes impurities (dust, etc.) by a gas filter 103, and then cooled by a gas cooler 104 to a temperature suitable for adsorption of activated carbon 106 (approximately 40°C). . Gas cooler 1 (14) is cooled by indirect heat exchange between gas and cooling water (normally cooling water is cooled in a cooling tower and logs are recycled and reused). Raw gas 1 is cooled to a temperature suitable for adsorption.
01 is sent to an M absorption tank 105, and the solvent component in the raw gas is adsorbed by activated carbon 106 filled in the adsorption tank. The raw gas excluding the solvent component is discharged into the atmosphere from the upper part of the adsorption tank. The adsorption is stopped just before the amount of solvent adsorbed by the activated carbon 106 approaches its limit and the solvent flows out to the exhaust side. Next, water vapor is introduced into the adsorption tank to desorb the solvent adsorbed on the activated carbon, and the water vapor is introduced together with the water vapor into a condenser 109 via a flash tank 108, where it is cooled and condensed. This condensate is separated into water and solvent by a separator 110. The separated water is returned to the flash tank 108 and subjected to simple steam distillation using solvent-containing steam from the adsorption tank 105 to separate most of the solvent in the water. The water in the flash tank 108 is stored in a single wastewater tank 111 and then sent to a wastewater distillation column 112, where the solvent component is further separated and then drained. Wastewater distillation column 112
The separated solvent components are mixed with the effluent gas from flash tank 108 and introduced into condenser 109 .

一方、セパレータ110で分離された溶剤は、平衡溶解
量の水分を含むので、さらに蒸留塔で脱水して再利用さ
れる。
On the other hand, since the solvent separated by the separator 110 contains an equilibrium dissolved amount of water, it is further dehydrated in a distillation column and reused.

この回収プロセスでは、吸着槽の活性炭中でシクロヘキ
サノンが重縮合反応を起こし易い。
In this recovery process, cyclohexanone tends to undergo a polycondensation reaction in the activated carbon of the adsorption tank.

この重合物は活性炭を劣化させるために、活性炭の早期
取り替えが必要と彦り、うyニングコストが膨大となる
This polymer deteriorates the activated carbon, requiring early replacement of the activated carbon, resulting in enormous costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のシクロヘキサノン回収装置の欠点を解
消し、シクロヘキサノンの回収効率が高く、ランニング
コストを低減することができるシクロヘキサノン回収方
法及びその装置を提供しようとするものである。
The present invention aims to provide a cyclohexanone recovery method and apparatus that can overcome the drawbacks of conventional cyclohexanone recovery devices, have high cyclohexanone recovery efficiency, and reduce running costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は (1)  シクロヘキサノン含有原ガスを吸収液に吸収
させた後、該吸収液を蒸留してシクロヘキノンを濃縮回
収する方法において、蒸留工程で使用する水蒸気の廃熱
を吸収式冷凍機の熱源となし、この冷凍機により前記原
ガス及び吸収液を予じめ冷却してから吸収工程に導入す
ることを特徴とするシクロヘキサノン回収方法。
The present invention provides (1) a method in which cyclohexanone-containing raw gas is absorbed into an absorption liquid, and then the absorption liquid is distilled to concentrate and recover cyclohexquinone; A method for recovering cyclohexanone, characterized in that the raw gas and absorption liquid are cooled in advance using the refrigerator as a heat source and then introduced into an absorption step.

(2)  シクロヘキサノン含有原ガス導管を塔の下部
に接続し、塔の上部に吸収液導管を接続する吸収塔と、
吸収塔の塔底の吸収液を導入し、水蒸気を塔底に導入し
て吸収液からシクロヘキサノンを濃縮分離する蒸留塔と
を有し、蒸留塔の塔底を上記吸収液導管と接続して再生
吸収液を吸収塔に循環するようにし之シクロヘキサノン
回収装置において、蒸留塔の塔頂から流出する濃縮シク
ロヘキサノンの潜熱を利用して稼動する吸収式冷凍機を
、上記原ガス導管に設けたガスクーラ及び上記吸収液導
管に設けた吸収液クーラと冷媒導管で接続することを特
徴とするシクロヘキサノン回収装置。
(2) an absorption tower in which a cyclohexanone-containing raw gas conduit is connected to the lower part of the tower and an absorption liquid conduit is connected to the upper part of the tower;
It has a distillation column that introduces the absorption liquid at the bottom of the absorption tower and introduces water vapor to the bottom of the column to concentrate and separate cyclohexanone from the absorption liquid, and the bottom of the distillation column is connected to the absorption liquid conduit for regeneration. In the cyclohexanone recovery device in which the absorption liquid is circulated to the absorption tower, an absorption chiller that operates by utilizing the latent heat of concentrated cyclohexanone flowing out from the top of the distillation column is installed in the raw gas conduit and the gas cooler and the above-mentioned gas cooler. A cyclohexanone recovery device characterized by connecting an absorption liquid cooler provided in an absorption liquid conduit with a refrigerant conduit.

である。It is.

〔実施例〕〔Example〕

第1図に本発明のシクロヘキサノンの回収プロセスを示
す。ここでシクロヘキサノン含有原ガス1はガスブロア
2により吸引され、最初ガスフィルタ3に入り不純物(
ダスト類他)を除去した後ガスクーラ4に導入され吸収
効率を上げるため、25℃以下に冷却される。ガスクー
ラ4で冷却された原ガス1は吸収塔5下部から導入され
、上部から流入する吸収液と気液接触し原ガス1中のシ
クロヘキサノンを吸収液中に吸収する。
FIG. 1 shows the cyclohexanone recovery process of the present invention. Here, the raw gas 1 containing cyclohexanone is sucked by the gas blower 2, and first enters the gas filter 3, which contains impurities (
After removing dust, etc.), the gas is introduced into a gas cooler 4 and cooled to 25° C. or lower to increase absorption efficiency. The raw gas 1 cooled by the gas cooler 4 is introduced from the lower part of the absorption tower 5, comes into gas-liquid contact with the absorption liquid flowing from the upper part, and cyclohexanone in the raw gas 1 is absorbed into the absorption liquid.

なお、吸収液は、25℃以下に冷却された水を使用した
Note that water cooled to 25° C. or lower was used as the absorption liquid.

シクロヘキサノンを吸収した吸収液は蒸留塔フィードポ
ンプ6によシ吸収液熱交換器7に送られて加熱した後蒸
留塔8に送られる。
The absorption liquid that has absorbed cyclohexanone is sent to the absorption liquid heat exchanger 7 by the distillation column feed pump 6, heated, and then sent to the distillation column 8.

蒸留塔8では、下部に吹込まれる水蒸気にょシ吸収液中
のシクロヘキサノンが蒸留除去される。
In the distillation column 8, cyclohexanone in the steam absorption liquid blown into the lower part is removed by distillation.

シクロヘキサノンを除去した吸収液は吸収液熱交換器7
に送られ前記のシクロヘキサノンを吸収した低温の吸収
液と間接熱交換される。その後吸収液クーラ9に流れ冷
水により25℃以下に冷却され、吸収液ポンプ10によ
シ再びシクロヘキサノンを吸収するための吸収液として
吸収塔5上部に送られる。
The absorption liquid from which cyclohexanone has been removed is transferred to the absorption liquid heat exchanger 7.
The liquid is sent to the cyclohexanone and undergoes indirect heat exchange with the low-temperature absorption liquid that has absorbed the cyclohexanone. Thereafter, it flows into the absorption liquid cooler 9 and is cooled to 25° C. or lower with cold water, and is sent to the upper part of the absorption tower 5 by the absorption liquid pump 10 as an absorption liquid for absorbing cyclohexanone.

一方蒸留塔8で蒸留されたシクロヘキサノンは水との共
沸組成まで濃縮され蒸留塔8の塔頂から温水回収熱交換
器11に送られる。ここで温水との間接熱交換によりシ
クロヘキサノン蒸気及び水蒸気の潜熱が温水の昇温に利
用される。
On the other hand, cyclohexanone distilled in the distillation column 8 is concentrated to an azeotropic composition with water and sent from the top of the distillation column 8 to the hot water recovery heat exchanger 11. Here, the latent heat of the cyclohexanone vapor and water vapor is used to raise the temperature of the hot water through indirect heat exchange with the hot water.

温水は吸収式冷凍機12に送られ熱を与えた後再び温水
ボ/プ13により温水回収熱交換器11に戻される。
The hot water is sent to the absorption chiller 12, where it is given heat, and then returned to the hot water recovery heat exchanger 11 by the hot water pump 13.

吸収式冷凍機12では、ガスクーラ4及び吸収液クーラ
9から昇温されて戻って来る冷水を冷却して、再び冷水
ポンプ14によりガスクーラ4及び吸収液クー29に送
り出す。
The absorption chiller 12 cools the heated cold water returned from the gas cooler 4 and the absorption liquid cooler 9 and sends it out again to the gas cooler 4 and the absorption liquid cooler 29 by the cold water pump 14.

また温水回収熱交換器11で温水に潜熱を与え大部分凝
縮したシクロヘキサノン及び水蒸気はりフラックスコン
デンサ15に送られ、ここで完全に凝縮する。
The hot water recovery heat exchanger 11 imparts latent heat to the hot water and most of the condensed cyclohexanone and water vapor are sent to the flux condenser 15, where they are completely condensed.

す7ラツクスコンデンサ15を出たシクロヘキサノン及
び水は一部蒸留塔8に還流され残りは、セパレータ16
に流れ、水とシクロヘキサノンに分離される。水は蒸留
塔8に戻され、シクロヘキサノンは平衡溶解分の水を含
むため、蒸留設備等に送られ脱水し再利用される。
A portion of the cyclohexanone and water exiting the 7-lux condenser 15 is refluxed to the distillation column 8, and the remainder is sent to the separator 16.
is separated into water and cyclohexanone. The water is returned to the distillation column 8, and since the cyclohexanone contains equilibrium dissolved water, it is sent to a distillation facility or the like to be dehydrated and reused.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することによプ、大巾なランニ
ングコストの低減を可能とした。特に、蒸留塔の塔頂ガ
スの潜熱により吸収式冷凍機を稼動させ、原ガス及び循
環吸収液を冷却することができ、換言すると、蒸留塔に
導入する水蒸気の廃熱に利用することにより上記冷却を
可能とし、吸収効率を向上させたもので、原ガス中のシ
クロヘキサン濃度が高くなるほどランニングコストの低
減率は大きくなる。濃度が2000 ppmの場合従来
法に比べて4〜5割程度ランニングコストを低減できる
By employing the above configuration, the present invention has made it possible to significantly reduce running costs. In particular, it is possible to operate an absorption refrigerator using the latent heat of the top gas of the distillation column to cool the raw gas and the circulating absorption liquid.In other words, by using the latent heat of the steam introduced into the distillation column as It enables cooling and improves absorption efficiency, and the higher the cyclohexane concentration in the raw gas, the greater the rate of reduction in running costs. When the concentration is 2000 ppm, the running cost can be reduced by about 40 to 50% compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシクロヘキサノン回収プロセスを示し
た図、第2図は従来の吸着式シクロヘキサノン回収プロ
セスを示した図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
FIG. 1 is a diagram showing the cyclohexanone recovery process of the present invention, and FIG. 2 is a diagram showing the conventional adsorption type cyclohexanone recovery process. Sub-Agents 1) Meifuku Agent Ryo Hagiwara − Sub-Agent Atsuo Anzai

Claims (2)

【特許請求の範囲】[Claims] (1)シクロヘキサノン含有原ガスを吸収液に吸収させ
た後該吸収液を蒸留してシクロヘキノンを濃縮回収する
方法において、蒸留工程で使用する水蒸気の廃熱を吸収
式冷凍機の熱源となし、この冷凍機により前記原ガス及
び吸収液を予じめ冷却してから吸収工程に導入すること
を特徴とするシクロヘキサノン回収方法。
(1) In a method of absorbing raw gas containing cyclohexanone into an absorption liquid and then distilling the absorption liquid to concentrate and recover cyclohexquinone, waste heat of water vapor used in the distillation process is used as a heat source for an absorption refrigerator, A method for recovering cyclohexanone, characterized in that the raw gas and absorption liquid are cooled in advance by this refrigerator before being introduced into an absorption step.
(2)シクロヘキサノン含有原ガス導管を塔の下部に接
続し、塔の上部に吸収液導管を接続する吸収塔と、吸収
塔の塔底の吸収液を導入し、水蒸気を塔底に導入して吸
収液からシクロヘキサノンを濃縮分離する蒸留塔とを有
し、蒸留塔の塔底を上記吸収液導管と接続して再生吸収
液を吸収塔に循環するようにしたシクロヘキサノン回収
装置において、蒸留塔の塔頂から流出する濃縮シクロヘ
キサノンの潜熱を利用して稼動する吸収式冷凍機を、上
記原ガス導管に設けたガスクーラ及び上記吸収液導管に
設けた吸収液クーラと冷媒導管で接続することを特徴と
するシクロヘキサノン回収装置。
(2) An absorption tower in which a cyclohexanone-containing raw gas pipe is connected to the bottom of the tower and an absorption liquid pipe is connected to the top of the tower, the absorption liquid is introduced at the bottom of the absorption tower, and water vapor is introduced to the bottom of the tower. In a cyclohexanone recovery apparatus, the distillation column has a distillation column that concentrates and separates cyclohexanone from the absorption liquid, and the bottom of the distillation column is connected to the absorption liquid conduit to circulate the regenerated absorption liquid to the absorption column. An absorption chiller operated by utilizing the latent heat of concentrated cyclohexanone flowing out from the top is connected to a gas cooler provided in the raw gas conduit and an absorption liquid cooler provided in the absorption liquid conduit through a refrigerant conduit. Cyclohexanone recovery equipment.
JP61251968A 1986-10-24 1986-10-24 Cyclohexanone recovery method and apparatus Expired - Lifetime JPH0738933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251968A JPH0738933B2 (en) 1986-10-24 1986-10-24 Cyclohexanone recovery method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251968A JPH0738933B2 (en) 1986-10-24 1986-10-24 Cyclohexanone recovery method and apparatus

Publications (2)

Publication Number Publication Date
JPS63107728A true JPS63107728A (en) 1988-05-12
JPH0738933B2 JPH0738933B2 (en) 1995-05-01

Family

ID=17230673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251968A Expired - Lifetime JPH0738933B2 (en) 1986-10-24 1986-10-24 Cyclohexanone recovery method and apparatus

Country Status (1)

Country Link
JP (1) JPH0738933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254486B (en) * 2015-11-09 2017-06-06 山东寿光巨能金玉米开发有限公司 A kind of D lactic acid decoloration process

Also Published As

Publication number Publication date
JPH0738933B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
CN102179129B (en) Treatment process for absorbed condensate waste gas
US20120180521A1 (en) Flue Gas Scrubbing with Aqueous Ammonia
JP2010069435A (en) Solvent recovering facility
KR870000316A (en) Recovery method of ethylene oxide
CN100364643C (en) Method and device for absorbing, recovering and purifying organic from exhaust gas
KR920017700A (en) Process for treating gas mainly containing electrolyte fluorine which may contain uranium compounds
CN205598887U (en) Multicomponent VOCs adsorbs condensation recovery device
KR20140042536A (en) Apparatus for treating carbon dioxide
JPS63107728A (en) Method and apparatus for recovering cyclohexanone
NL164950C (en) METHOD AND COOLING SYSTEM FOR RECOVERING HEAT.
US5141531A (en) Water purification method
JP3922449B2 (en) Organic solvent recovery system
JPS6182825A (en) Solvent recovery apparatus
JPS63107729A (en) Method and apparatus for recovering solvent
JPH0143380Y2 (en)
JPH06312117A (en) Solvent recovery
JP3010463B2 (en) How to remove water from alcohol
JPS62143808A (en) Separation and recovery of carbon monoxide
JPH0938445A (en) Method for regenerating adsorption tower
US2607657A (en) Extraction of high acidic concentrations from gases
JPS6316030A (en) Recovery of solvent
JPS62197125A (en) Apparatus for separating and concentrating co
CN105688596A (en) Multi-component VOCs adsorbing, condensing and recycling device
RU2329858C2 (en) Method of boosting pressure of carbon dioxide in course of its absorptive discharge from gaseous mixture (thermosorbate compressor)
JPH0760050A (en) Device for treating methanol containing gas