JPS63107073A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPS63107073A
JPS63107073A JP62158243A JP15824387A JPS63107073A JP S63107073 A JPS63107073 A JP S63107073A JP 62158243 A JP62158243 A JP 62158243A JP 15824387 A JP15824387 A JP 15824387A JP S63107073 A JPS63107073 A JP S63107073A
Authority
JP
Japan
Prior art keywords
heat
layer
solar cell
transparent resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62158243A
Other languages
Japanese (ja)
Inventor
Michio Osawa
道雄 大沢
Takashi Arita
有田 孝
Akira Hanabusa
花房 彰
Masaharu Ono
大野 雅晴
Koshiro Mori
森 幸四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS63107073A publication Critical patent/JPS63107073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a solar cell of heat-resisting transparent substrate having the same characteristics as that of glass substrate, by forming a heat-resisting transparent resin layer on a retaining substrate, and exfoliating the heat-resisting transparent resin layer from the retaining substrate after a transparent electrode layer, an amorphous Si layer, an metal electrode layer and a protective resin layer are formed in order on the heat-resisting transparent layer. CONSTITUTION:On a retaining substrate 1, a heat-resisting transparent resin layer 2 is formed, and thereon a transparent electrode layer 3, an amorphous Si layer 4, a metal electrode layer 5 and a protective resin layer 6 are formed in order. Then the heatresisting transparent resin film 2 is exfoliated from the retaining substrate 1, by dipping into liquid or applying a compulsive mechanical exfoliating means, and a flexible solar cell is formed. For example, the heat-resisting transparent resin layer 2 of polyimide is formed on the retaining substrate 1 of glass, and thereon a solar cell is formed, on which epoxy resin as the protective resin 6 is spread and hardened. After that, in order to exfoliate the heat-resisting transparent resin layer 2 from the retaining substrate 1 of glass, together with the solar cell thereon, they are dipped in the heated water at a temperature of about 60 deg.C of for five minutes, and the water penetrates from the boundary surface between the heat-resisting transparent resin layer 2 and the retaining substrate 1 of glass, and exfoliates the two.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐熱性透明樹脂をもちいて可撓性のある薄膜
太陽電池を作る製造法に間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a flexible thin film solar cell using a heat-resistant transparent resin.

従来の技術 従来、この種の太陽電池の製造法は大別して第3図のA
、Bに示すように、2つのタイプがある。Aのタイプは
、現在のガラス基板太陽電池の製造方法に採用されてい
るもので、透明基板13上に透明電極層3.アモルファ
スSi層4.金属電極層5を順次形成し太陽電池を作っ
た後、デバイス保護のため、保護樹脂6を形成したのち
透明基板13側から光10が入射する。Bのタイプは、
可撓性の要求される太陽電池に採用されているもので、
支持基板ll上に耐熱性絶縁層12を形成した基板を用
いて、金属電極層5.アモルファスSi層4.透明電極
層3を順次形成して太陽電池を形成したのちデバイス保
護のため、透光性保護膜14を形成する。なお、透光性
保護膜14側から光lOは入射される。なおこの種の太
陽電池のほかに、ステンレス基板の上に透光性絶縁膜を
形成するものもあるが、太陽電池をBのタイプのように
形成して太陽電池に製膜し次に保護用樹脂を塗布し太陽
電池を形成するものであるがこの方法の特徴は、製膜面
についている耐熱製基板をエツチング等により除去する
ことであり、太陽電池の支持基板は保護用樹脂である。
Conventional technology Conventionally, the manufacturing method of this type of solar cell can be roughly divided into A in Fig. 3.
,B, there are two types. Type A is used in the current manufacturing method of glass substrate solar cells, and includes a transparent electrode layer 3 on a transparent substrate 13. Amorphous Si layer 4. After forming a solar cell by sequentially forming metal electrode layers 5 and forming a protective resin 6 to protect the device, light 10 is incident from the transparent substrate 13 side. The type of B is
It is used in solar cells that require flexibility.
A metal electrode layer 5. Amorphous Si layer 4. After the transparent electrode layers 3 are sequentially formed to form a solar cell, a transparent protective film 14 is formed to protect the device. Note that the light IO is incident from the transparent protective film 14 side. In addition to this type of solar cell, there are also types in which a transparent insulating film is formed on a stainless steel substrate. A solar cell is formed by applying a resin, and the feature of this method is that the heat-resistant substrate attached to the film forming surface is removed by etching or the like, and the supporting substrate of the solar cell is a protective resin.

発明が解決しようとする問題点 従来のBタイプの製造方法は可撓性のある太陽電池に採
用され、支持基板のうえに耐熱性絶縁層を形成して耐熱
性絶縁層の上に、金属電極層、アモルファスSi層、透
明電極層、透明保護膜層を順次形成して構成されていた
。しかしながら、アモルファスSi太陽電池の性質上ア
モルファスS1層においては、P型層、■型層、N型層
と順次形成するのがボロンの拡散による1層中のドナー
準位の補償の点から望ましい、しかしながら、この場合
のBタイプの従来の可撓性太陽電池においては、アモル
ファスSi層を、P型層、■型層。
Problems to be Solved by the Invention The conventional B-type manufacturing method is adopted for flexible solar cells, in which a heat-resistant insulating layer is formed on a support substrate, and a metal electrode is formed on the heat-resistant insulating layer. layer, an amorphous Si layer, a transparent electrode layer, and a transparent protective film layer were formed in this order. However, due to the nature of an amorphous Si solar cell, it is desirable to form a P-type layer, a ■-type layer, and an N-type layer in sequence in the amorphous S1 layer in order to compensate for the donor level in one layer due to boron diffusion. However, in the conventional B-type flexible solar cell in this case, the amorphous Si layer is divided into a P-type layer and a ■-type layer.

N型層と形成しても、光の入射方向はN型層側からとし
なければならない。光の入射方向も、アモルファスSi
層に対しては、P型層側から入光するのが光劣化防止、
ホールの移動度、SiCを使用した窓効果を利用する点
で望ましい。そのため、Bタイプの太陽電池では、Aタ
イプの太陽電池と比較して初期の光照射時の短絡電流値
が少なく、90%程度の電流値であり、光照射試験後は
、短絡電流値で初期値に比べ50%以上小さくなるとい
う光劣化現象を示していた。またAタイプとして、特公
昭62−22274号公報に示されたようにポリエーテ
ル・エーテルケトン等の耐熱性透明樹脂フィルムを透明
基板にもちいて、耐熱性透明樹脂フィルム基板、透明型
ii、アモルファスSt層(P型層、■型層、N型N)
、金属電極層を順次形成すると、太陽電池の光電特性面
ではガラス基板で作った太陽電池とほぼ同等な性能を得
る事ができ、かつ光劣化もガラス基板太陽電池と同様な
性能を得るはずである。しかしながら、フィルム膜厚を
およそ30μとした場合透明電極層、アモルファスSi
層、金属電極層等を製膜した際に、各層の製膜時、各層
の膜より生じる応力、および耐熱性透明樹脂フィルムに
かかる各製膜時の熱的ストレス(150℃〜300’C
)により耐熱性透明樹脂フィルムが熱収縮応力でカーリ
ング(反り)を生じてしまう。太陽電池の直列結線をす
るためにはメタルマスクを使用して各層をパターンニン
グするため、メタルマスクの基板に対する位置合わせが
必要であるが、この耐熱性透明樹脂フィルムのカーリン
グにより、メタルマスクの耐熱性透明樹脂フィルムに対
する位置合わせが難しかった。耐熱性透明樹脂フィルム
のカーリングを防ぐために耐熱性透明樹脂フィルムの厚
さを増すと、耐熱性透明樹脂フィルムによって光が吸収
される量が増え、太陽電池の発電領域に到達する光量が
落ちて、発電量が少なくなり太陽電池特性上、Aタイプ
よりも劣り、実用に耐えないという問題があった。また
N膜中耐熱性透明樹脂がカーリングするためと思われる
が、PIN接合が確保できないためにショート不良、ま
たはフィルファクター(F、F、)の低下を招いていた
Even if it is formed with an N-type layer, the direction of light incidence must be from the N-type layer side. The incident direction of light is also amorphous Si.
For the layer, entering light from the P-type layer side prevents photodeterioration.
It is desirable in that it utilizes the mobility of holes and the window effect using SiC. Therefore, in the B type solar cell, the short circuit current value at the time of initial light irradiation is lower than that of the A type solar cell, and the current value is about 90%, and after the light irradiation test, the short circuit current value is lower than that of the A type solar cell. It showed a photodegradation phenomenon in which the value decreased by more than 50% compared to the actual value. In addition, as type A, as shown in Japanese Patent Publication No. 62-22274, a heat-resistant transparent resin film such as polyether or ether ketone is used as a transparent substrate, and a heat-resistant transparent resin film substrate, transparent type II, amorphous St. Layer (P type layer, ■ type layer, N type N)
By sequentially forming metal electrode layers, it is possible to obtain photoelectric properties of the solar cell that are almost equivalent to solar cells made with glass substrates, and the photodegradation should be similar to that of glass substrate solar cells. be. However, when the film thickness is approximately 30μ, the transparent electrode layer, amorphous Si
When forming layers, metal electrode layers, etc., the stress generated by each layer, and the thermal stress (150°C to 300°C) applied to the heat-resistant transparent resin film during each film forming.
), the heat-resistant transparent resin film curls (warps) due to heat shrinkage stress. In order to connect solar cells in series, each layer is patterned using a metal mask, so it is necessary to align the metal mask with the substrate. Positioning against transparent resin film was difficult. Increasing the thickness of the heat-resistant transparent resin film to prevent curling of the heat-resistant transparent resin film increases the amount of light absorbed by the heat-resistant transparent resin film, reducing the amount of light that reaches the power generation area of the solar cell. There was a problem that the amount of power generation was reduced and the solar cell characteristics were inferior to Type A, making it unsuitable for practical use. Furthermore, it is thought that the heat-resistant transparent resin in the N film curls, but PIN bonding cannot be ensured, leading to short-circuit failures or a decrease in fill factor (F, F,).

本発明はこのような問題点を解決するもので、耐熱性透
明樹脂を基板としてガラス基板太陽電池と同等な性能を
得る事を目的とするものである。
The present invention is intended to solve these problems, and aims to obtain performance equivalent to that of a glass substrate solar cell using a heat-resistant transparent resin as a substrate.

問題点を解決するための手段 この問題を解決するための手段として、本発明では支持
基板上に耐熱性透明樹脂層を形成し、その後耐熱性透明
樹脂層を支持基板から剥離することを特徴とする。好ま
しくは支持基板で固定した耐熱性透明樹脂層上に順次透
明電極層、アモルファスSi層、金属電極層、保護樹脂
層を形成し、その後に耐熱性透明樹脂層を水等の液中に
浸漬して、水を支持基板と耐熱性透明樹脂層に間に浸入
させることにより耐熱性透明樹脂層を支持基板から剥離
し、可撓性のある太陽電池を形成する工程をとるもので
ある。この様にすれば、前記透明耐熱性樹脂上で素子の
製膜を行う際に、前記支持基板と耐熱性透明樹脂を一体
化したので、耐熱性透明樹脂層を確実に固定でき、素子
製膜時の耐熱性透明樹脂の熱収縮応力によるカーリング
を防ぎ、マスクによる製膜のパターンニングの位置合わ
せな容易にできる。また前記支持基板から、前記耐熱性
透明樹脂層を剥離した際、成膜時の各極膜の応力および
製膜温度により耐熱性透明樹脂層がカーリングしないよ
うに耐熱性透明樹脂面に各種製膜後、保護樹脂を塗布し
硬化させた後に、耐熱性透明樹脂から支持基板を剥離す
る。この保護樹脂の支持により耐熱性透明樹脂のカーリ
ングを矯正する事も可能である。さらに支持基板から耐
熱性透明樹脂を剥離するには、例えばスクレーバ等の治
具を両面の界面に差し込んで強制的な機械的剥離手段で
剥すことも可能である。
Means for Solving the Problem As a means for solving this problem, the present invention is characterized in that a heat-resistant transparent resin layer is formed on a support substrate, and then the heat-resistant transparent resin layer is peeled off from the support substrate. do. Preferably, a transparent electrode layer, an amorphous Si layer, a metal electrode layer, and a protective resin layer are sequentially formed on a heat-resistant transparent resin layer fixed on a support substrate, and then the heat-resistant transparent resin layer is immersed in a liquid such as water. Then, the heat-resistant transparent resin layer is peeled off from the supporting substrate by allowing water to penetrate between the supporting substrate and the heat-resistant transparent resin layer, thereby forming a flexible solar cell. In this way, when forming an element film on the transparent heat-resistant resin, since the supporting substrate and the heat-resistant transparent resin are integrated, the heat-resistant transparent resin layer can be securely fixed, and the element film formation It prevents curling due to heat shrinkage stress of the heat-resistant transparent resin, and facilitates alignment during film formation patterning using a mask. Furthermore, when the heat-resistant transparent resin layer is peeled off from the supporting substrate, various films are formed on the heat-resistant transparent resin surface to prevent the heat-resistant transparent resin layer from curling due to the stress of each electrode film and the film-forming temperature during film formation. After that, a protective resin is applied and cured, and then the support substrate is peeled off from the heat-resistant transparent resin. It is also possible to correct curling of the heat-resistant transparent resin by supporting this protective resin. Furthermore, in order to peel off the heat-resistant transparent resin from the support substrate, it is also possible to insert a jig such as a scraper into the interface between both surfaces and perform forced mechanical peeling.

作用 この構成により、耐熱性透明樹脂を支持基板に塗布硬化
して形成し、その基板を工程中使用すれば後の工程は従
来のガラス基板を使用したAの工程と代わりなく行う事
ができる。従って、現在大量に生産されているガラス基
板太陽電池と同等な生産ラインで生産を行う事ができる
。この場合、太陽電池の光電特性も、P型層側からの入
光となるため、Aタイプと同程度になる。また、耐熱性
透明樹脂フィルムを扱う際に問題となる耐熱性透明樹脂
のカーリングは、この工法をとる限り支持基板から耐熱
性透明樹脂を剥離するまでは何ら問題は生じない。また
、保護樹脂としてエポキシ樹脂を用い塗布硬化させると
、これも太陽電池としての強度向上に貢献するため、耐
熱性透明樹脂層それ自身を薄くできて光透過率も向上す
る。
With this configuration, if a heat-resistant transparent resin is applied and cured on a support substrate and that substrate is used during the process, subsequent steps can be performed in the same way as step A using a conventional glass substrate. Therefore, production can be carried out on the same production line as glass substrate solar cells that are currently being produced in large quantities. In this case, the photoelectric characteristics of the solar cell are also comparable to those of the A type because light enters from the P-type layer side. Further, curling of the heat-resistant transparent resin, which is a problem when handling the heat-resistant transparent resin film, does not occur until the heat-resistant transparent resin is peeled off from the supporting substrate as long as this method is used. Furthermore, when an epoxy resin is applied and cured as a protective resin, this also contributes to improving the strength of the solar cell, allowing the heat-resistant transparent resin layer itself to be made thinner and improving light transmittance.

実施例 以下、本発明の一実施例を第1図に基づいて説明する。Example An embodiment of the present invention will be described below with reference to FIG.

ガラス支持基板1上に例えば芳香族テトラカルボン酸無
水物(3,3’ 、4.4’−ビフェニルテトラカルボ
ン酸無水物)と芳香族ジアミン(3,3’ジアミノジフ
エニルスルフォニノ)を重縮合しポリアミド酸として塗
布し、約300℃でイミド化させた耐熱性透明樹脂2を
厚さ30μに形成する。次に、耐熱性透明樹脂2上にメ
タルマスクを用いてマスキングし、例えば電子ビーム蒸
着等の方法で250℃に加熱後、酸化インジウム、酸化
スズ等で透明電極N3を形成する。次に、透明電極層3
上にメタルマスクをもちいてマスキングしプラズマCV
D装置中で約200℃でアモルファスSiF!4を堆積
させる。次にメタルマスクをもちいてマスキングし例え
ば電子ビーム蒸着等でAt電極等の、金属電極層5を形
成する。これらの方法によりアモルファスSi太陽電池
ができる。透明電極層3.アモルファスSi層4、金属
電極層5の厚みは合計して約1μである。第2図は、こ
のようにして太陽電池を形成した上に保護樹脂6、例え
ばエポキシ樹脂をおよそ60μ塗布硬化して裏面の保護
膜とし太陽電池素子を保護する。保護樹脂6の硬化後、
ガラス支持基板1から耐熱性透明樹脂2をその上に作っ
た太陽電池とともに剥離するために、約60℃に加熱し
た水中にいれ5分間浸漬し耐熱性透明樹脂2とガラス支
持基板1との界面より湯を入り込ませて両者を剥離する
。前記ポリイミド耐熱性透明樹脂2は、平滑な面、特に
ガラス面において密着力に弱い。水等の液中に浸漬した
とき、耐熱性透明樹脂2とガラス支持基板1との界面に
水が毛細管現象で浸入し、密着した境界面で耐熱性透明
樹脂2は僅かに膨潤しかつ各層形成時における残留応力
でカーリングがはじまり簡単に剥離ができる。カーリン
グは裏面の保護樹脂層の厚みで調節できる。このことに
より厚さが約0.1mmの薄く、軽い太陽電池素子が形
成できた。使用したガラス支持基板lは、再使用可能で
ある。剥離した耐熱性透明樹脂2側に、光IOを入射さ
せる事により、これまでのガラス基板太陽電池と同様な
P型層側から入光する太陽電池となり太陽光(AMl)
10時間照射試験後の電気特性劣化率はガラス基板P型
層側人光の太陽電池と同等であった。
For example, aromatic tetracarboxylic anhydride (3,3',4,4'-biphenyltetracarboxylic anhydride) and aromatic diamine (3,3'diaminodiphenylsulfonino) are superimposed on the glass support substrate 1. A heat-resistant transparent resin 2 which is condensed, applied as a polyamic acid, and imidized at about 300° C. is formed to a thickness of 30 μm. Next, the heat-resistant transparent resin 2 is masked using a metal mask, heated to 250° C. by a method such as electron beam evaporation, and then a transparent electrode N3 is formed using indium oxide, tin oxide, or the like. Next, transparent electrode layer 3
Mask using a metal mask on top and plasma CV
Amorphous SiF at about 200℃ in apparatus D! Deposit 4. Next, a metal electrode layer 5 such as an At electrode is formed by masking using a metal mask, for example, by electron beam evaporation. These methods produce amorphous Si solar cells. Transparent electrode layer 3. The total thickness of the amorphous Si layer 4 and the metal electrode layer 5 is approximately 1 μm. FIG. 2 shows that a solar cell is formed in this manner, and then a protective resin 6, for example, an epoxy resin of about 60 μm is applied and cured to form a protective film on the back surface to protect the solar cell element. After curing of the protective resin 6,
In order to peel off the heat-resistant transparent resin 2 from the glass support substrate 1 together with the solar cell formed thereon, the interface between the heat-resistant transparent resin 2 and the glass support substrate 1 is removed by immersing it in water heated to about 60° C. for 5 minutes. Add more hot water to separate the two. The polyimide heat-resistant transparent resin 2 has poor adhesion on smooth surfaces, especially glass surfaces. When immersed in a liquid such as water, water enters the interface between the heat-resistant transparent resin 2 and the glass support substrate 1 due to capillary phenomenon, and the heat-resistant transparent resin 2 swells slightly at the close interface, forming each layer. Curling begins due to residual stress and peeling can occur easily. Curling can be adjusted by adjusting the thickness of the protective resin layer on the back. As a result, a thin and light solar cell element with a thickness of about 0.1 mm could be formed. The glass support substrate l used can be reused. By allowing light IO to enter the peeled heat-resistant transparent resin 2 side, it becomes a solar cell that receives light from the P-type layer side, similar to conventional glass substrate solar cells, and generates sunlight (AMl).
The rate of deterioration of electrical properties after the 10-hour irradiation test was equivalent to that of a solar cell with human light on the P-type layer side of the glass substrate.

またPIN接合も良好に確保できフィルファクター、シ
ョート率も従来のAタイ・ブの太陽電池と同等であった
。耐熱性透明樹脂2をガラス転移点以上に温度を上げて
も太陽電池電気特性が確認できた。このことから素子製
膜温度よりガラス転移温度の低いポリエチレンテレフタ
レートでも使用できる。なお、ポリイミドにかえてポリ
エーテル・エーテルケトン、ポリエチレンテレフタレー
ト。
In addition, the PIN junction was well secured, and the fill factor and short circuit rate were comparable to conventional A-type and B solar cells. Even when the temperature of the heat-resistant transparent resin 2 was raised above the glass transition point, the electrical characteristics of the solar cell could be confirmed. Therefore, polyethylene terephthalate, which has a glass transition temperature lower than the element film forming temperature, can also be used. Note that instead of polyimide, use polyether/etherketone or polyethylene terephthalate.

及びポリエーテルサルホンにつき検討したがこれらの樹
脂の場合でもほぼポリイミドMA脂と同等の工程操作に
より可撓性の薄膜太陽電池を形成できた。又支持基板と
、素子製膜後の樹脂剥離は機械的剥離によって達成でき
た。
and polyether sulfone, but even with these resins, flexible thin-film solar cells could be formed using almost the same process operations as with polyimide MA resin. Furthermore, peeling of the supporting substrate and the resin after the device film formation could be accomplished by mechanical peeling.

発明の効果 以上述べてきたように、本発明によれば、工程的に、現
在のガラス基板太陽電池で生産中の設備を共通に使用で
き、可撓性ある薄膜の太陽電池を作る事が可能になった
。この方法による太陽電池は、P型層入光の太陽電池で
あり、太陽電池特性面でガラス基板太陽電池と同等の性
能を持ち、かつ薄く、軽い。なお、実施例で述べてきた
ガラス支持基板の代りに、ステンレス鋼フープ基板を支
持基板とすると、ロール ツー ロール方式でも使用す
ることができるために高い生産性が期待される。また保
護樹脂と耐熱性透明樹脂とでカーリング応力を支えるた
め耐熱性透明樹脂層を薄くすることができる。現在、耐
熱性透明樹脂はガラスに比較してコストが高いものとな
っているが、本発明によれば、この耐熱性透明樹脂を薄
くする事ができるために耐熱性透明樹脂の使用量が僅か
で済み、ガラスと同等以下のコストで太陽電池を作る事
が可能となる。更に、耐熱性透明樹脂を薄くする事によ
り、耐熱性透明樹脂中での光の吸収損失が減少する事に
なり、太陽電池の発電領域中に到達する光量が増えて発
電電力量の増大につながることになる。又、耐熱性透明
樹脂を薄くする事により、可撓性が増し、よりわん曲や
折り曲げの可能な太陽電池を形成する事ができるという
効果が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to use the equipment currently in production for glass substrate solar cells in common, and to produce flexible thin-film solar cells. Became. The solar cell produced by this method is a P-type layered solar cell, has performance equivalent to that of a glass substrate solar cell in terms of solar cell characteristics, and is thin and light. Note that if a stainless steel hoop substrate is used as the support substrate instead of the glass support substrate described in the Examples, high productivity is expected since it can also be used in a roll-to-roll method. Furthermore, since the protective resin and the heat-resistant transparent resin support the curling stress, the heat-resistant transparent resin layer can be made thinner. Currently, heat-resistant transparent resin is more expensive than glass, but according to the present invention, this heat-resistant transparent resin can be made thinner, so the amount of heat-resistant transparent resin used can be reduced. This makes it possible to produce solar cells at a cost equal to or lower than that of glass. Furthermore, by making the heat-resistant transparent resin thinner, the absorption loss of light in the heat-resistant transparent resin is reduced, which increases the amount of light that reaches the power generation area of the solar cell, leading to an increase in the amount of power generated. It turns out. Further, by making the heat-resistant transparent resin thinner, flexibility is increased, and it is possible to form a solar cell that is more bendable and bendable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の太陽電池の製造法の一実施例における
工程順の断面図、第2図は本発明の太陽電池の製造法の
一実施例において裏面に保護樹脂を塗布して支持基板を
取り去った断面図、第3図Aは従来におけるガラス基板
を用いた太陽電池の製造法の工程順の断面図、Bは可撓
性基板を用いた製造法の工程順の断面図である。 1−−−−−ガラス支持基板、2−・・・・・耐熱性透
明樹脂層、3 ・−−−−−透明電極層、4−・・・・
・アモルファスSi層、5・・−・・・金属電極層、6
・・・・・・保護樹脂代理人の氏名弁理士 中 尾 敏
 男 はか1名10−一一党 第2図
FIG. 1 is a sectional view of the process order in an embodiment of the solar cell manufacturing method of the present invention, and FIG. 2 is a support substrate with a protective resin coated on the back surface in an embodiment of the solar cell manufacturing method of the present invention. FIG. 3A is a cross-sectional view showing the steps of a conventional solar cell manufacturing method using a glass substrate, and FIG. 3B is a cross-sectional view showing the steps of a manufacturing method using a flexible substrate. 1---Glass support substrate, 2---Heat-resistant transparent resin layer, 3---Transparent electrode layer, 4-------
・Amorphous Si layer, 5... Metal electrode layer, 6
・・・・・・Protective resin agent's name Patent attorney Toshio Nakao 1 person 10-11 Party Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)支持基板上に耐熱性透明樹脂を形成し、前記耐熱
性透明樹脂上に順次透明電極層、アモルファスSi層、
金属電極層、保護樹脂層を形成し、その後に液中への浸
漬か、又は強制的な機械的剥離手段により耐熱性透明樹
脂を支持基板から剥離し、可撓性のある太陽電池を形成
することを特徴とする薄膜太陽電池の製造法。
(1) A heat-resistant transparent resin is formed on a support substrate, and a transparent electrode layer, an amorphous Si layer, and a transparent electrode layer are sequentially formed on the heat-resistant transparent resin.
A metal electrode layer and a protective resin layer are formed, and then the heat-resistant transparent resin is peeled off from the support substrate by immersion in a liquid or by forced mechanical peeling means to form a flexible solar cell. A method for manufacturing a thin film solar cell characterized by:
(2)耐熱性透明樹脂が、ポリイミド、ポリエーテル・
エーテルケトン、ポリエチレンテレフタレート、及びポ
リエーテルサルホンからなる群のいずれかである特許請
求の範囲第1項記載の薄膜太陽電池の製造法。
(2) The heat-resistant transparent resin is polyimide, polyether,
The method for producing a thin film solar cell according to claim 1, wherein the thin film solar cell is any one of the group consisting of ether ketone, polyethylene terephthalate, and polyether sulfone.
(3)耐熱性透明樹脂がポリイミドであり、その支持上
基板上の剥離が水中への浸漬処理である特許請求の範囲
第1項記載の薄膜太陽電池の製造法。
(3) The method for producing a thin film solar cell according to claim 1, wherein the heat-resistant transparent resin is polyimide, and the peeling from the supporting substrate is performed by immersion in water.
JP62158243A 1986-06-26 1987-06-25 Manufacture of thin film solar cell Pending JPS63107073A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-150288 1986-06-26
JP15028886 1986-06-26

Publications (1)

Publication Number Publication Date
JPS63107073A true JPS63107073A (en) 1988-05-12

Family

ID=15493703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62158243A Pending JPS63107073A (en) 1986-06-26 1987-06-25 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPS63107073A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105581A (en) * 1987-10-19 1989-04-24 Sanyo Electric Co Ltd Manufacture of photovoltaic device
EP0421133A2 (en) * 1989-09-06 1991-04-10 Sanyo Electric Co., Ltd. Manufacturing method of a flexible photovoltaic device
JPH04196365A (en) * 1990-11-28 1992-07-16 Sanyo Electric Co Ltd Manufacture of photovoltage device
US5133810A (en) * 1990-04-27 1992-07-28 Sanyo Electric Co., Ltd. Flexible photovoltaic device and manufacturing method thereof
US5232860A (en) * 1991-03-28 1993-08-03 Sanyo Electric Co., Ltd. Method of flexible photovoltaic device manufacture
US6096569A (en) * 1994-11-15 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Method of and apparatus for manufacturing thin solar battery
WO2001004964A1 (en) * 1999-07-13 2001-01-18 Eidgenössische Technische Hochschule (ETH) Flexible thin-layer solar cell
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2002033464A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for fabricating semiconductor device
JP2004287396A (en) * 2003-03-03 2004-10-14 Hitachi Chem Co Ltd Optical waveguide film
JP2010532575A (en) * 2007-07-03 2010-10-07 マイクロリンク デバイセズ インコーポレイテッド III-V compound thin film solar cell
WO2012066136A1 (en) 2010-11-18 2012-05-24 Dsm Ip Assets B.V. Flexible electrical generators

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105581A (en) * 1987-10-19 1989-04-24 Sanyo Electric Co Ltd Manufacture of photovoltaic device
EP0421133A2 (en) * 1989-09-06 1991-04-10 Sanyo Electric Co., Ltd. Manufacturing method of a flexible photovoltaic device
US5133810A (en) * 1990-04-27 1992-07-28 Sanyo Electric Co., Ltd. Flexible photovoltaic device and manufacturing method thereof
JPH04196365A (en) * 1990-11-28 1992-07-16 Sanyo Electric Co Ltd Manufacture of photovoltage device
US5232860A (en) * 1991-03-28 1993-08-03 Sanyo Electric Co., Ltd. Method of flexible photovoltaic device manufacture
US6096569A (en) * 1994-11-15 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Method of and apparatus for manufacturing thin solar battery
WO2001004964A1 (en) * 1999-07-13 2001-01-18 Eidgenössische Technische Hochschule (ETH) Flexible thin-layer solar cell
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2002033464A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for fabricating semiconductor device
JP2004287396A (en) * 2003-03-03 2004-10-14 Hitachi Chem Co Ltd Optical waveguide film
JP2010532575A (en) * 2007-07-03 2010-10-07 マイクロリンク デバイセズ インコーポレイテッド III-V compound thin film solar cell
US10923617B2 (en) 2007-07-03 2021-02-16 Microlink Devices, Inc. Methods for fabricating thin film III-V compound solar cell
US11901476B2 (en) 2007-07-03 2024-02-13 Microlink Devices, Inc. Methods for fabricating thin film III-V compound solar cell
WO2012066136A1 (en) 2010-11-18 2012-05-24 Dsm Ip Assets B.V. Flexible electrical generators

Similar Documents

Publication Publication Date Title
US4152195A (en) Method of improving the adherence of metallic conductive lines on polyimide layers
CN108598218B (en) Epitaxial layer rigid-flexible substrate inorganic bonding transfer method
JPS63107073A (en) Manufacture of thin film solar cell
JP2001189482A (en) Method for manufacturing solar cell
JP2001189481A (en) Method for manufacturing solar cell
JP5554772B2 (en) Method for producing thin film compound solar cell
JP2975766B2 (en) Method for manufacturing flexible thin film solar cell
JPS5944830A (en) Method of bonding, coupling and destroying lift-off region on semiconductor structure
CN111584672A (en) Indium column of infrared focal plane detector and preparation method thereof
JPH04299873A (en) Manufacture of photovoltaic device
JPS60113915A (en) Method of producing solar battery
Choi et al. Optically and Mechanically Engineered Anti‐Reflective Film for Highly Efficient Rigid and Flexible Perovskite Solar Cells
EP0114106A2 (en) Method for manufacturing a semiconductor memory device having a high radiation resistance
US6037088A (en) Method of making solar cells
JP3216754B2 (en) Manufacturing method of thin film solar cell
CN105932079A (en) Flexible multi-junction solar cell and fabrication method thereof
CN103022309B (en) Method for preparing polyimide micro-graph on surface of GaN-based material
TWI496308B (en) Thin film solar cell and manufacturing method thereof
JPH0425142A (en) Manufacture of bonded material and connection of electronic component
CN110050352B (en) Method for manufacturing high-efficiency solar cell
JPS58135645A (en) Manufacture of semiconductor device
JPS60117684A (en) Manufacture of amorphous si solar battery
JPS5952840A (en) Manufacture of semiconductor device
JP2869184B2 (en) Method for manufacturing photovoltaic device
JPS58101468A (en) Solar battery