JPS63105948A - Wear-resistant sliding member made for ferrous sintered alloy - Google Patents

Wear-resistant sliding member made for ferrous sintered alloy

Info

Publication number
JPS63105948A
JPS63105948A JP24944286A JP24944286A JPS63105948A JP S63105948 A JPS63105948 A JP S63105948A JP 24944286 A JP24944286 A JP 24944286A JP 24944286 A JP24944286 A JP 24944286A JP S63105948 A JPS63105948 A JP S63105948A
Authority
JP
Japan
Prior art keywords
wear
carbide
sliding member
cam
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24944286A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsubara
松原 敏彦
Akira Fujiwara
昭 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24944286A priority Critical patent/JPS63105948A/en
Priority to US07/111,253 priority patent/US4796575A/en
Publication of JPS63105948A publication Critical patent/JPS63105948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a wear-resistant sliding member made of ferrous sintered alloy excellent in durability, by properly specifying the grain size, average grain spacing, and space factor of visual field of a carbide dispersed in a ferrous alloy phase. CONSTITUTION:The carbide is dispersed in the ferrous alloy phase to obtain the wear-resistant sliding member made of ferrous sintered alloy. In the above sintered alloy, carbide of 4-15mum grain size comprises >=80% of the carbide contained in an alloy structure. Moreover, the above carbide is dispersed so that average grain spacing is 5-15mum, and further, the space factor of visual field of the carbide is regulated to 10-50%. In this way, wear loss of the above sliding member is reduced and also the wear to be caused to opposite materials is minimized, so that sliding member excellent in durability can be obtained.

Description

【発明の詳細な説明】 LL上弘皿皿±1 本発明は、大きな面圧の下で他部材と摺動接触する鉄基
焼結合金製耐摩耗性摺動部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wear-resistant sliding member made of an iron-based sintered alloy that comes into sliding contact with other members under large surface pressure.

よび の 内燃機関の動弁礪構において、カムと摺動接触するロッ
カアーム(その対カム摺接面部)、バルブ・リフター等
の部材は、優れた耐摩耗性を要求される。
In the valve train structure of an internal combustion engine, the rocker arm (its sliding contact surface with the cam), valve lifter, and other members that make sliding contact with the cam are required to have excellent wear resistance.

従来、これらの部材は、鍛造鋼、鋳鋼1合金鋳鉄等で作
られ、カムとの当り面に熱処理による表面硬化、浸炭焼
入れ処理、チル硬化、硬質Crメッキ等が施されたもの
として提供されていた。
Conventionally, these parts have been made of forged steel, cast steel 1 alloy cast iron, etc., and have been provided with surface hardening by heat treatment, carburizing and quenching, chill hardening, hard Cr plating, etc. on the surface that contacts the cam. Ta.

ところが、浸炭焼入れ材は耐スカツフ性(注:スカッフ
とは、摩擦面間の凝着が激しく、それによって表面肌が
荒れる現象を言う)に劣り、チル硬化材は耐久性に劣り
、硬質Crメッキ材は局部当りに伴う剥離あるいは摩耗
剥離を生じることがある等、それぞれに問題を有してい
る。
However, carburized and quenched materials are inferior in scuffing resistance (note: scuffing is a phenomenon in which there is severe adhesion between frictional surfaces, resulting in rough surface skin), and chill-hardened materials are inferior in durability, and hard Cr plating is inferior to hardened materials. Each material has its own problems, such as peeling due to local contact or peeling due to wear.

一方において、機関の高速化、高出力化が鋭意推進され
、それに伴ってロッカアーム、バルブ・リフター等の摺
動部材の耐摩耗iに対する要求が増々厳しくなっている
。この要求に応えるものとして、鉄基焼結合金で形成さ
れた摺動部材が提案されており、それ等合金においては
、基地相(マトリックス相)中に分散して硬度を左右す
る炭化物の大きさ、出(視野占有面積率)等、諸因子を
規定し、相手材の摩耗を抑制しつつ、耐摩耗性。
On the other hand, with efforts being made to increase the speed and output of engines, demands for wear resistance of sliding members such as rocker arms, valve lifters, etc. are becoming increasingly strict. In order to meet this demand, sliding members made of iron-based sintered alloys have been proposed, and in these alloys, the size of carbides that are dispersed in the base phase (matrix phase) and affect the hardness. By specifying various factors such as , output (viewing area ratio), etc., we can suppress the wear of the mating material and achieve wear resistance.

耐スカツフ性等の改善を計っている(例、特公昭60−
7003号公報、特開昭60−63350号公報、特開
昭60−155650号公報参照)。
Efforts are being made to improve scuff resistance, etc. (e.g.,
7003, JP-A-60-63350, and JP-A-60-155650).

ところが、従来の鉄基焼結合金における炭化物に関する
諸因子の把握の仕方では、組織全体の構造が明らかでな
く、必ずしも所期の目的を達成することはできない。
However, with the conventional method of understanding various factors related to carbides in iron-based sintered alloys, the overall structure is not clear, and the intended purpose cannot necessarily be achieved.

q    ′ るた の−  よ 本発明は斯かる技術的背景の下に創案されたものであり
、その目的とする処は、組織中の炭化物の分散状態を規
定して所期の材料特性を保証した鉄基焼結合金製耐摩耗
性摺動部材を提供する点にある。
The present invention was devised against this technical background, and its purpose is to regulate the dispersion state of carbides in the structure to guarantee desired material properties. The object of the present invention is to provide a wear-resistant sliding member made of an iron-based sintered alloy.

この目的は、鉄基合金相中に炭化物が分散した鉄基焼結
合金製耐摩耗性摺動部材であって、合金組織中に含まれ
る炭化物の80%以上が大きさ4〜15μmであり、該
炭化物が平均粒子間隔5〜15μmで分散するとともに
、炭化物の視野占有面積率が10〜50%である摺動部
材を提供することによって達成される。
The purpose is to provide a wear-resistant sliding member made of an iron-based sintered alloy in which carbides are dispersed in an iron-based alloy phase, in which 80% or more of the carbides contained in the alloy structure have a size of 4 to 15 μm. This is achieved by providing a sliding member in which the carbide is dispersed at an average particle spacing of 5 to 15 μm, and the viewing area ratio of the carbide is 10 to 50%.

基地相中に硬質炭化物粒子を分散させることにより、基
地相の強化をも合せて合金材料の耐摩耗性を向上させる
手法は従来周知であり、分散させる炭化物の大きさ1m
を変化させて当該摺動部材の耐摩耗性の向上を計るとと
もに、対接する相手部材の摩耗を可及的に抑えることが
可能である。
A method of improving the wear resistance of alloy materials by strengthening the base phase by dispersing hard carbide particles in the base phase is well known.
It is possible to improve the wear resistance of the sliding member and to suppress the wear of the opposing member as much as possible by changing the .

しかるに、実際問題としては、炭化物の大きさ。However, the actual problem is the size of the carbide.

聞を規定するだけでは十分でなく、炭化物の分散状態を
も規定して初めて材料の特性が定まるのである。
It is not enough to specify the distance between the two, but the characteristics of the material can only be determined by specifying the dispersion state of the carbide.

本発明者等の試験の結果によれば、炭化物について規定
すべき因子は、大きさく粒子径)、ff1(視野占有面
積率)1粒子間隔であることが判った。しかも、ここで
留意すべきは、単にそれ等の因子を規定するだけでは本
来の意味で規定したことにはならず、炭化物の存在形態
を測定する方法を明確に定義しなければならない点であ
る。
According to the results of tests conducted by the present inventors, it has been found that the factors that should be specified for carbides are particle size (particle size) and ff1 (viewing area ratio) 1 particle interval. Moreover, it should be noted here that simply specifying these factors does not mean that they have been specified in the original sense; the method for measuring the form of carbide existence must be clearly defined. .

そこで、本発明者等の採用した測定方法は下記の通りで
ある。
Therefore, the measurement method adopted by the present inventors is as follows.

■炭化物の大きさく粒子径)’ : JIS−G−05
52“鋼のフェライト結晶粒度試験方法”における切断
法を応用したものであり、試料の切断断面を研磨仕上げ
して腐蝕し、腐蝕面を顕微鏡で観察するか、または顕微
鏡写真に撮影して、一定の長さの直交する二本の線分で
切断される炭化物粒子の数と長さの総和から、次式によ
って平均粒子径を求める。
■Carbide size (particle diameter)': JIS-G-05
This is an application of the cutting method in 52 "Testing method for ferrite grain size of steel", in which the cut cross section of the sample is polished and corroded, and the corroded surface is observed with a microscope or photographed with a microscope to determine a certain level. The average particle diameter is calculated from the sum of the number and length of carbide particles cut by two line segments whose lengths are perpendicular to each other, using the following formula.

なお、線分の両端にあって一部分しか切断されない炭化
物粒子は、その一方だけを数え、切断されない炭化物粒
子が線分の一端だけの場合には、これを数えないことと
する。また、一本の線分で切断される炭化物粒子の数は
、−視野で少なくとも10個以上になる様、に顕微鏡の
倍率を選定し、総計50個以上になる様に複数視野測定
する。
In addition, if carbide particles are only partially cut at both ends of a line segment, only one of them is counted, and if carbide particles are not cut only at one end of the line segment, they are not counted. Further, the magnification of the microscope is selected so that the number of carbide particles cut by one line segment is at least 10 or more in a negative field of view, and multiple fields of view are measured so that the total number of carbide particles is 50 or more.

測定例: 第1図によれば、 ■炭化物の平均粒子間隔Jfl記■項に順じ、一定の長
さの直交する二本の線分で切断される隣接炭化物粒子相
互の間隔長の平均値を次式によって求める。
Measurement example: According to Fig. 1, the average value of the distance between adjacent carbide particles cut by two orthogonal line segments of a certain length according to the following item: is calculated using the following formula.

なお、線分の両端がそれぞれ炭化物粒子の一部分を切断
する場合には、一方の炭化物粒子についてのみ、その隣
接粒子との間の長さを勘定し、線分の一端だけが炭化物
粒子の一部分を切断する場合には、その隣接粒子との間
の長さを勘定に入れないこととする。また、一本の線分
で切断される炭化物粒子相互の間隔部分の数は、−視野
で少なくとも10個以上になる様に顕微鏡の倍率を選定
し、総計50以上になる様に複数視野測定する。
Note that when both ends of a line segment each cut a part of a carbide particle, the length between only one carbide particle and its adjacent particle is counted, and only one end of the line segment cuts a part of a carbide particle. When cutting, the length between adjacent particles is not taken into account. In addition, the magnification of the microscope is selected so that the number of intervals between carbide particles cut by one line segment is at least 10 in the field of view, and multiple fields of view are measured so that the total number is 50 or more. .

測定例: 第1図によれば、 ■炭化物の囲(視野占有面積率):試料の切断断面を研
磨仕上げして腐蝕し、腐蝕面を顕微鏡写真に撮影して、
第2図に示す線分法により視野占有面積率を求める。
Measurement example: According to Figure 1, ■ Carbide surroundings (view area ratio): A cut cross section of a sample is polished and corroded, and the corroded surface is photographed with a microscope.
The visual field occupation area ratio is determined by the line segment method shown in FIG.

一定面積の矩形の視野を定め、炭化物粒子の大きさに見
合う所定間隔長(do )で、平行な走査線1を引き、
各炭化物粒子2との交線の長さをfJt+’2+・・・
1nとし、走査線1の長さをLとして、次式により視野
占有面積率を求める。
Define a rectangular field of view with a constant area, draw parallel scanning lines 1 at a predetermined interval length (do) corresponding to the size of the carbide particles,
The length of the line of intersection with each carbide particle 2 is fJt+'2+...
1n and the length of the scanning line 1 is L, the visual field occupation area ratio is determined by the following equation.

=視野占有面積率 (ただし、mは走査線1の本数である。)なお、この手
法は、画像解析装置によって実行することも可能である
= Visual field occupation area ratio (where m is the number of scanning lines 1). Note that this method can also be executed by an image analysis device.

墓IJI ロッカアームの対カム摺接面部に貼着される部片(摺動
部材)、およびカムを、下記■、■の方法で用意した。
Grave IJI A piece (sliding member) to be attached to the cam sliding surface of the rocker arm and a cam were prepared by the following methods (1) and (2).

■摺動部材の目標組成を、 (g%上、いずれもmm%) とし、250〜350メツシユの粉末が15〜25体積
%含まれるFe −C−Cr −Mo −W−V−Mn
 −8L合金粉末に、C,Fe−N=金合金Fe−P合
金の各粉末を添加、混合して圧搾成形した後、真空また
アンモニアガス雰囲気中にて、温度1190℃1時間6
0分なる条件で焼結を行なった。
■The target composition of the sliding member is Fe-C-Cr-Mo-W-V-Mn containing 15 to 25 volume% of powder of 250 to 350 mesh (g% above, both mm%).
- Add C, Fe-N = gold alloy Fe-P alloy powder to 8L alloy powder, mix and press-mold, then heat at 1190°C for 1 hour in vacuum or ammonia gas atmosphere.
Sintering was performed under conditions of 0 minutes.

次に、焼結晶をロッカカームの対カム客接面部にろう付
けした優、浸炭焼入れ、焼戻しを行い、研磨して、活動
部材Aを得た。
Next, the sintered crystal was brazed to the cam facing surface of the Rocker Calm, carburized, quenched, tempered, and polished to obtain an active member A.

また、焼結晶をロッカカームの対カム摺接面部にろう付
けした後、浸炭焼入れ、焼戻しを行い、研磨して、更に
塩浴軟窒化処理(温度580℃1時間70分)を施して
摺動部材Bを得た。
In addition, after brazing the sintered crystal to the cam sliding surface of the rocker cam, it is carburized, quenched, tempered, polished, and then subjected to salt bath nitrocarburizing treatment (temperature 580°C for 1 hour and 70 minutes) to make the sliding member I got a B.

摺動部材Aの基地相の硬度はHV 600〜900゜6
タ 炭化物硬度ハHV 1,000〜1,300 、1度ハ
フ、64〜ty 7、f14 g/ > ’であった。
The hardness of the base phase of sliding member A is HV 600-900°6
The carbide hardness was HV 1,000 to 1,300, 1 degree Huff, 64 to ty 7, and f14 g/>'.

また、前記測定方法によって摺動部材における炭化物存
在形態を調べたところ、平均粒子径4,5μm、平均粒
子間隔11μm、視野占有面積率30%であった。
Further, when the existence form of carbide in the sliding member was investigated by the above-mentioned measuring method, it was found that the average particle diameter was 4.5 μm, the average particle spacing was 11 μm, and the visual field occupation area ratio was 30%.

なお、焼結によって得た摺動部材は、マルテンサイトの
基地相に硬質な金属炭化物を分散させたものであり、自
身の耐摩耗性向上を計るとともに、炭化物の種類、量、
大きさ1分散状態の適切な選択によって相手材であるカ
ムの摩耗を少なくすることができる。
The sliding member obtained by sintering has hard metal carbide dispersed in the base phase of martensite, and in addition to improving its own wear resistance, the type, amount, and
Appropriate selection of the size 1 dispersion state can reduce wear on the mating cam.

各元素の添加理由は下記の通りである。The reasons for adding each element are as follows.

Crは、基地相を強化すると共に、Cと反応して硬質の
炭化物を形成し、耐摩耗性を向上させる。
Cr not only strengthens the base phase but also reacts with C to form a hard carbide, improving wear resistance.

ただし、その添加量が5重量%未満では所要の効果を期
待できず、30重量%を越えて添加すると、相手カムを
摩耗させ易くなり総合摩耗量が大きくなる他、焼結性が
著しく低下する等の不利を生じる。
However, if the amount added is less than 5% by weight, the desired effect cannot be expected, and if it is added in excess of 30% by weight, the mating cam will be likely to wear out, the total amount of wear will increase, and the sinterability will decrease significantly. etc., resulting in disadvantages such as

MOは、Orと同様に基地相を強化すると共に、Cと反
応して硬質の炭化物を形成し、耐摩耗性を向上させる。
Like Or, MO strengthens the base phase and reacts with C to form hard carbides, thereby improving wear resistance.

ただし、添加量1重量%未満では所望の効果が得られず
、5重量%を越えて添加すると材料の脆化を招く。
However, if the amount added is less than 1% by weight, the desired effect cannot be obtained, and if it is added in excess of 5% by weight, the material becomes brittle.

W、■は、いずれもCと反応してMC型(ただし、Mは
金属元素記号を示す)の硬質炭化物を形成し、耐摩耗性
の向上に寄与する。両者のうち少なくとも1種の成分の
添加量が0.1重量%以上でなければ所望の効果が得ら
れず、添加m4重量%を越えると切削性が低下し、また
相手材を摩耗させ易くなる。
Both W and ■ react with C to form an MC type (where M represents a metal element symbol) hard carbide, contributing to improvement in wear resistance. The desired effect cannot be obtained unless the amount of at least one of the two components added is 0.1% by weight or more, and if it exceeds 4% by weight, the machinability decreases and the mating material is likely to wear out. .

3nは、基地相中に拡散固溶し、NLによるオーステナ
イト化を抑制する作用がある。添加量が0.2重量%未
満では効果が認められず、5重量%より多く添加すると
炭化物粒子を粗大化させ、機械的強度を低下させて耐摩
耗性が悪化する。
3n diffuses into a solid solution in the base phase and has the effect of suppressing austenitization caused by NL. If the amount added is less than 0.2% by weight, no effect will be observed, and if it is added more than 5% by weight, the carbide particles will become coarser, reducing mechanical strength and deteriorating wear resistance.

NLは、基地相を強化し炭化物の脱落を防止する。また
、焼結性を向上させ、相手カムとのなじみ性を良くする
作用をも有する。さらに、3nを伴わずに5重量%を越
えて添加すると、基地相中にオーステナイト相が生じ、
耐摩耗性が低下するが、5nfuが上述の範囲において
は、NL5.5〜10重囚%の添加量で良好な耐摩耗性
を示す。
NL strengthens the base phase and prevents carbide from falling off. It also has the effect of improving sinterability and improving compatibility with the mating cam. Furthermore, if more than 5% by weight is added without 3n, an austenite phase will occur in the base phase,
Although the abrasion resistance decreases, when the 5nfu is in the above-mentioned range, good abrasion resistance is exhibited at an addition amount of NL of 5.5 to 10%.

Cは、基地相を強化すると共に、Cr、その他の添加成
分と反応して硬質相を析出させ、耐摩耗性を向上させる
。ただし、1重量%未満では所望の効果が得られず、4
重量%を越えると靭性の低下を招く。
C strengthens the base phase, reacts with Cr and other additive components, precipitates a hard phase, and improves wear resistance. However, if it is less than 1% by weight, the desired effect cannot be obtained;
Exceeding this percentage by weight results in a decrease in toughness.

P、Bは、焼結を促進させる作用を有し、焼結部材を高
密度化させる元素であり、少なくともその一方を添加す
ればよい。添加伍が、0.05重量%未満では所望の効
果が得られず、5重置%を越えて添加すると、焼結時に
過剰の液相を生じて寸法変化率が大きくなり好ましくな
い。
P and B are elements that have the effect of promoting sintering and increase the density of the sintered member, and at least one of them may be added. If the amount added is less than 0.05% by weight, the desired effect cannot be obtained, and if it is added in excess of 5% by weight, an excessive liquid phase is generated during sintering, resulting in a large dimensional change rate, which is not preferable.

■JIS G5501−Fe12 (ねずみ鋳鉄)類カ
ムを用意した。このカムは、カム・ノーズを中心にして
±90度の角度範囲でチル化されており、該カムのカム
・ノーズを中心にして±30度の角度範囲に亘る表面層
にプラズマ・トーチを用いて深さ1mの急速再溶融処理
を施し、その溶融池にC「粉末1.5重量%、MO粉末
1重ω%を添加した後、自己冷却により急冷せしめた。
■JIS G5501-Fe12 (gray cast iron) type cam was prepared. This cam is chilled over an angular range of ±90 degrees around the cam nose, and the surface layer of the cam over an angular range of ±30 degrees around the cam nose is chilled using a plasma torch. Then, 1.5% by weight of C powder and 1% by weight of MO powder were added to the molten pool, followed by rapid cooling by self-cooling.

得られたカム3を第3図、第4図に示す(図中、4はカ
ム・ノーズ。
The obtained cam 3 is shown in Figs. 3 and 4 (in the figures, 4 is the cam nose.

5はチル層、6は再溶融硬化処理層をそれぞれ示してい
る)。チル層5の硬度はHRC45,再溶融硬化処理層
6の硬度はHRC60であった。
5 indicates a chilled layer, and 6 indicates a remelted hardened layer). The hardness of the chilled layer 5 was HRC45, and the hardness of the remelted and hardened layer 6 was HRC60.

なお、再溶融硬化処理の際に溶融池に添加するCr粉末
、MO粉末は、炭化物安定化元素であって、この他、V
、Nbも同様な機能を有する。これ等の元素は、その単
体粉末、それ等相互の合金粉末、あるいは炭素等との化
合物粉末形態として添加され得る。ただし、炭化物安定
化元素の添加間が0.5重層%未満では、再溶融硬化処
理層中の炭化物りが少なくなって耐摩耗性の大幅向上を
期待できず、また、4重量%を越えて添加しても、耐摩
耗性の向上効果が少なく、経済的に不利となる。
Note that the Cr powder and MO powder added to the molten pool during the remelting hardening process are carbide stabilizing elements, and in addition, V
, Nb also have similar functions. These elements can be added in the form of a single powder, an alloy powder of them, or a compound powder with carbon or the like. However, if the amount of carbide stabilizing elements added is less than 0.5% by weight, the amount of carbide in the re-melt hardened layer will decrease and a significant improvement in wear resistance cannot be expected; Even if it is added, the effect of improving wear resistance is small and it is economically disadvantageous.

■前記■項によって得た複数のカム3を用い、また前記
0項と同様の手法で得た炭化物存在状態の異なる複数の
摺動部材へを用意し、各摺動部材Aとカムとを、内燃機
関に組み込み、2000rpa+ 。
■Using a plurality of cams 3 obtained in the above section (■), and preparing a plurality of sliding members with different carbide presence states obtained by the same method as in the above section 0, each sliding member A and the cam are Built into internal combustion engine, 2000rpa+.

300時間の運転を行ない、各組合せについて摺動部材
とカムの摩耗量を調べ、その結果を第5図ないし第7図
に示した。
After 300 hours of operation, the amount of wear on the sliding member and cam for each combination was examined, and the results are shown in FIGS. 5 to 7.

また、摺動部材Bについても同様に内燃機関に組み込み
6000rpm 、  400時間の運転を行い、その
摩耗量を調べ、摺動部材Aの摩耗量と対比した第8、図
に示した。
Furthermore, sliding member B was similarly installed in an internal combustion engine and operated at 6,000 rpm for 400 hours, and its wear amount was examined, and the comparison with the wear amount of sliding member A is shown in Fig. 8.

■第5図は、摺動部材(ロッカアーム)Aの組織中に含
まれる炭化物の粒子径が摩耗量に及ぼす影響を示してい
る。
(2) Fig. 5 shows the influence of the particle size of carbide contained in the structure of the sliding member (rocker arm) A on the amount of wear.

第5図によれば、炭化物の平均粒子径が15μmを越え
るとカムの摩耗口が急増し、平均粒子径4μ卯以下につ
いては、該粒子径の測定が難しく、この範囲で、カムの
摩耗量が増加する傾向がある。
According to Figure 5, when the average particle size of carbide exceeds 15 μm, the number of cam wear holes increases rapidly, and when the average particle size is 4 μm or less, it is difficult to measure the particle size, and within this range, the amount of cam wear increases. tends to increase.

また、摺動部材Aの摩耗量は、炭化物の平均粒子径が6
μmを越えるとやや増大する傾向があるものの、はぼ一
定である。
In addition, the amount of wear of sliding member A is determined by the average particle diameter of carbide being 6.
Although it tends to increase slightly when it exceeds μm, it remains almost constant.

それ故、カムの摩耗量が7〜27μm、摺動部材Aの摩
耗量が6〜17μmである平均粒子径4〜15μmの範
囲を選択するのが望ましく、炭化物の80%以上が粒子
径4〜15μmであればその範囲に収まる。
Therefore, it is desirable to select a range with an average particle diameter of 4 to 15 μm, such that the amount of wear on the cam is 7 to 27 μm and the amount of wear on the sliding member A is 6 to 17 μm. If it is 15 μm, it falls within that range.

■第6図は、摺動部材(ロッカアーム)Aの組織中に含
まれる炭化物の平均粒子間隔が摩耗量に及ぼす影響を示
している。
(2) Figure 6 shows the influence of the average particle spacing of carbide contained in the structure of the sliding member (rocker arm) A on the amount of wear.

第6図によれば、炭化物の平均粒子間隔が15μ風を越
えると摺動部材への摩耗量が増大し、平均粒子間隔が2
0μmを越えるとカムの摩耗量が増え、スカッフ現象が
生じる。
According to Figure 6, when the average particle spacing of carbide exceeds 15μ, the amount of wear on the sliding member increases, and the average particle spacing increases to 2.
If it exceeds 0 μm, the amount of wear on the cam will increase and a scuffing phenomenon will occur.

また、平均粒子間隔が5μm未満では、摺動部材へにお
ける基地相の強度が低下して割れが発生し、カムの摩耗
も増加する傾向となる。
Furthermore, if the average particle spacing is less than 5 μm, the strength of the base phase in the sliding member decreases, causing cracks to occur, and cam wear tends to increase.

それ故、カムの摩耗量が9〜19μm、摺動部材Aの摩
耗量が5〜16μmである平均粒子間隔5〜15μmの
範囲を選択するのが望ましく、さらに望ましい平均粒子
間隔は5〜12μmである。
Therefore, it is desirable to select a range of average particle spacing of 5 to 15 μm so that the amount of wear on the cam is 9 to 19 μm and the amount of wear on sliding member A is 5 to 16 μm, and more preferably the average particle spacing is 5 to 12 μm. be.

■第7図は、摺動部材(ロッカアーム)Aの組織中に含
まれる炭化物の視野占有面積率が摩耗量に及ぼす影響を
示しており、また第8図は、炭化物視野占有面積率と摺
動部材A、Bの摩耗量との関係を示している。
■Figure 7 shows the influence of the visual field occupation area ratio of carbide contained in the structure of sliding member (rocker arm) A on the amount of wear, and Figure 8 shows the influence of the visual field occupation area ratio of carbide and the sliding The relationship between the amount of wear of members A and B is shown.

第7図、第8図によれば、視野占有面積率が大きくなる
ほど、カムの摩耗量がほぼ直線的に増大し、摺動部材の
摩耗量がほぼ直線的に減少することが判る。また、視野
占有面積率が50%を越えると、カムの摩耗が増大する
にもかかわらず、摺動部材の摩耗量はほとんど変化しな
くなり、かつ割れが生じ易いため、視野占有面積率50
%以下にするのが望ましい。そして、視野占有面積率1
0%未満では炭化物による効果を期待できないため、視
野占有面積率10%以上にすべきである。
According to FIGS. 7 and 8, it can be seen that as the visual field occupation area ratio increases, the amount of wear on the cam increases almost linearly, and the amount of wear on the sliding member decreases almost linearly. Furthermore, when the field of view area ratio exceeds 50%, although the wear of the cam increases, the amount of wear of the sliding member hardly changes and cracks are likely to occur.
It is desirable to keep it below %. And the visual field occupation area ratio 1
If it is less than 0%, the effect of carbides cannot be expected, so the viewing area ratio should be 10% or more.

それ故、カムの摩耗損が12〜14.4μ肌、摺動部材
の摩耗量が3.1〜11.0μ罷である視野占有面積率
10〜50%の範囲を選択するのが望ましい。
Therefore, it is desirable to select a field area ratio of 10 to 50% in which the wear loss of the cam is 12 to 14.4 μm and the wear loss of the sliding member is 3.1 to 11.0 μm.

また、塩浴軟窒化処理を施すことにより、摩耗量を差ら
に低減化することができる。
In addition, by performing salt bath nitrocarburizing treatment, the amount of wear can be significantly reduced.

1胛五1皿 以上の説明から明らかな様に、合金組織中に含まれる炭
化物の80%以上が大きさ4〜15μmであって、該炭
化物が平均粒子間隔5〜15μmで分散するとともに、
炭化物の視野占有面積率が10〜50%である鉄基焼結
合金製耐摩耗性摺動部材が提案された。
As is clear from the above description, more than 80% of the carbides contained in the alloy structure have a size of 4 to 15 μm, and the carbides are dispersed with an average particle spacing of 5 to 15 μm.
A wear-resistant sliding member made of an iron-based sintered alloy has been proposed in which the visual area occupied by carbide is 10 to 50%.

斯かる組l!構造の摺動部材によれば、その′#4FJ
耗性を左右する炭化物の大きざ、量1分散状態が実験的
に求められた最適値に規定されているため、摺動部材お
よびこれと摺接する相手部材の摩耗dが十分少なく、動
力機械の摺動部材として優れた耐久性を発揮し得る。
Such a group! According to the sliding member of the structure, its '#4FJ
Since the size and amount 1 of the carbide (dispersion state), which affect wearability, are set to optimal values determined experimentally, the wear d of the sliding member and the mating member that comes into sliding contact with it is sufficiently small, making it suitable for power machinery. It can exhibit excellent durability as a sliding member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金基地相中に含まれる炭化物の平均粒子径を
測定する方法を示す図、第2図は同じく平均粒子間距離
を測定する方法を示す図、第3図はその表面に再溶融硬
化処理を論された鋳鉄製カムの断面図、第4図はそのI
V−IV線断面図、第5図は炭化物平均粒子径と、カム
、摺動部材(ロッカアーム)Aの摩耗量との関係を示す
グラフ、第6図は炭化物平均粒子間隔と、カム、摺動部
材(ロッカアーム)Aの摩耗量との関係を示すグラフ、
第7図は炭化物の視野占有面積率と、カム。 摺動部材(ロッカアーム)Aの摩耗量との関係を示すグ
ラフ、第8図は炭化物の視野占有面積率と、カム、摺動
部材(ロッカアーム)A、Bとの関係を対比的に示すグ
ラフである。 1・・・走査線、2・・・炭化物粒子、3・・・カム、
4・・・カム・ノーズ、5・・・チル層、6・・・再溶
融硬化処liIM。
Figure 1 shows a method for measuring the average particle size of carbides contained in the alloy base phase, Figure 2 shows a method for measuring the average interparticle distance, and Figure 3 shows how to measure the average particle size of carbides contained in the alloy base phase. A cross-sectional view of a cast iron cam subjected to hardening treatment, Figure 4 is its I
5 is a graph showing the relationship between the average carbide particle diameter and the amount of wear of the cam and sliding member (rocker arm) A, and FIG. 6 is a graph showing the relationship between the average carbide particle spacing and the cam and sliding member A. A graph showing the relationship between the amount of wear of member (rocker arm) A,
Figure 7 shows the area ratio of carbide in the field of view and the cam. Figure 8 is a graph showing the relationship between the amount of wear of sliding member (rocker arm) A, and Figure 8 is a graph showing the relationship between the viewing area ratio of carbide and the cam and sliding members (rocker arm) A and B. be. 1... Scanning line, 2... Carbide particles, 3... Cam,
4... Cam nose, 5... Chill layer, 6... Re-melting hardened liIM.

Claims (1)

【特許請求の範囲】 鉄基合金相中に炭化物が分散した鉄基焼結合金製耐摩耗
性摺動部材において、 合金組織中に含まれる炭化物の80%以上が大きさ4〜
15μmであつて、該炭化物が平均粒子間隔5〜15μ
mで分散するとともに、炭化物の視野占有面積率が10
〜50%であることを特徴とする鉄基焼結合金製耐摩耗
性摺動部材。
[Claims] In a wear-resistant sliding member made of an iron-based sintered alloy in which carbides are dispersed in an iron-based alloy phase, 80% or more of the carbides contained in the alloy structure have a size of 4 to 4.
15 μm, and the carbide has an average particle spacing of 5 to 15 μm.
m, and the viewing area ratio of carbides is 10
50%. A wear-resistant sliding member made of an iron-based sintered alloy.
JP24944286A 1986-10-22 1986-10-22 Wear-resistant sliding member made for ferrous sintered alloy Pending JPS63105948A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24944286A JPS63105948A (en) 1986-10-22 1986-10-22 Wear-resistant sliding member made for ferrous sintered alloy
US07/111,253 US4796575A (en) 1986-10-22 1987-10-22 Wear resistant slide member made of iron-base sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24944286A JPS63105948A (en) 1986-10-22 1986-10-22 Wear-resistant sliding member made for ferrous sintered alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22365891A Division JPH04228548A (en) 1991-08-09 1991-08-09 Sliding means for valve gear mechanism

Publications (1)

Publication Number Publication Date
JPS63105948A true JPS63105948A (en) 1988-05-11

Family

ID=17193028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24944286A Pending JPS63105948A (en) 1986-10-22 1986-10-22 Wear-resistant sliding member made for ferrous sintered alloy

Country Status (1)

Country Link
JP (1) JPS63105948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37426E1 (en) 1988-09-05 2001-10-30 Seiko Epson Corporation Floppy disk dive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37426E1 (en) 1988-09-05 2001-10-30 Seiko Epson Corporation Floppy disk dive device

Similar Documents

Publication Publication Date Title
US6485678B1 (en) Wear-resistant iron base alloys
JPS62211355A (en) Wear-resisting ferrous sintered alloy
JPS6034624B2 (en) Valve mechanism parts for internal combustion engines
JPS63303030A (en) Locker arm
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
EP0371760B1 (en) High strength high chromium cast iron and valve rocker arm made thereof
US5837069A (en) Cast iron components and method of making
US4796575A (en) Wear resistant slide member made of iron-base sintered alloy
JPH055125A (en) Production of sliding member excellent in wear resistance
JP3382326B2 (en) Cast iron sliding member
JPS63105948A (en) Wear-resistant sliding member made for ferrous sintered alloy
JPS6147208B2 (en)
JPH04228548A (en) Sliding means for valve gear mechanism
Janus et al. Heat treatment of Ni-Mn-Cu cast iron
JP2733773B2 (en) Rocker arm
JPS63105947A (en) Combination of sliding members
JP2001234305A (en) Sintered member
JP2594505B2 (en) Rocker arm
JP2001329345A (en) Piston ring material and piston ring for internal combustion engine having self-lubricity
US20230349275A1 (en) High carbide cast austenitic corrosion resistant alloys
KR20080040079A (en) Ni base anti-galling alloy with high toughness and wear resistance
JPS597003B2 (en) Valve mechanism for internal combustion engines
JPS60155650A (en) Sliding member for power machine
JP3440008B2 (en) Sintered member
JPS6256322B2 (en)