JPS63105926A - Manufacture of grain-oriented silicon steel sheet - Google Patents

Manufacture of grain-oriented silicon steel sheet

Info

Publication number
JPS63105926A
JPS63105926A JP25068886A JP25068886A JPS63105926A JP S63105926 A JPS63105926 A JP S63105926A JP 25068886 A JP25068886 A JP 25068886A JP 25068886 A JP25068886 A JP 25068886A JP S63105926 A JPS63105926 A JP S63105926A
Authority
JP
Japan
Prior art keywords
annealing
heat treatment
silicon steel
steel sheet
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25068886A
Other languages
Japanese (ja)
Inventor
Katsuo Iwamoto
岩本 勝生
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25068886A priority Critical patent/JPS63105926A/en
Publication of JPS63105926A publication Critical patent/JPS63105926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide a grain-oriented silicon steel sheet having superior magnetic characteristics by subjecting a cold rolled silicon steel sheet having specified C and Si contents to primary heat treatment at a specified temp. for a specified holding time and secondary heat treatment at a specified heating rate and specified temp. in a decarburization annealing stage. CONSTITUTION:A hot rolled silicon steel sheet contg. 0.010-0.080wt% C and 2.5-4.0wt% Si is cold rolled to the final thickness. Cold rolling may be carried out twice or more with a process annealing stage in-between. The cold rolled steel sheet is subjected to decarburization annealing by primary heat treatment at 450-570 deg.C for 10sec-5hr, preferably 10sec-5min holding time, optional cooling and secondary heat treatment composed of heating to 750 deg.C at >=10 deg.C/sec, preferably >=20 deg.C/sec heating rate and soaking at 750-950 deg.C. Final finish annealing is then carried out. Thus, a grain-oriented silicon steel sheet having superior magnetic characteristics can be manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、磁気特性に優れた・一方向性けい素鋼板の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties.

〈従来の技術〉 通常、一方向性けい素鋼板は、軟磁性材料として主にト
ランスその他の電気機器の鉄心材料として使用されるも
ので、磁気特性として高い磁束密度特性と低い鉄損特性
が要求される。一般に、磁束密度特性はBl@(T)で
、また鉄損特性はW+?/Sゆ(111/kg)の値で
評価される。
<Prior art> Unidirectional silicon steel sheets are normally used as soft magnetic materials mainly as iron core materials for transformers and other electrical equipment, and require high magnetic flux density and low iron loss characteristics as magnetic properties. be done. Generally, the magnetic flux density characteristic is Bl@(T), and the iron loss characteristic is W+? /Syu (111/kg).

従来、鉄損特性を低減させる方法としては、Si含有量
を高めるとか、成品厚を薄くする、あるいは成品の不純
物を少なくする、また2次再結晶粒方位の(110) 
[001]方位即ちゴス方位への集積度を高めるとか2
次再結晶粒を小さくするなどの方法が知られている。
Conventionally, methods for reducing iron loss characteristics include increasing the Si content, reducing the thickness of the product, reducing impurities in the product, and changing the secondary recrystallized grain orientation (110).
Increasing the degree of accumulation in the [001] direction, that is, the Goss direction2
Methods such as reducing the size of secondary recrystallized grains are known.

ここで、2次再結晶粒のゴス方位集積度を高める方法と
しては、例えば特公昭56−38652号公報に開示さ
れているものがある。この技術は、冷延板に脱炭焼鈍を
施す前に600〜650℃の温度範囲内で30秒〜10
分間保持して焼鈍することにより、再結晶集合組織を得
る工程を付加するものである。
Here, as a method for increasing the degree of Goss orientation integration of secondary recrystallized grains, there is a method disclosed in Japanese Patent Publication No. 56-38652, for example. This technology uses a temperature range of 600-650℃ for 30 seconds to 10 seconds before decarburizing the cold-rolled sheet.
This method adds a step of obtaining a recrystallized texture by holding and annealing for a minute.

また、特開昭59−70723号公報においては、最終
冷延後の板を脱炭焼鈍前に、次式で与えられる温度(T
 (’C) )と時間(t (5ee))の領域で予備
焼鈍する技術が開示されている。
Furthermore, in Japanese Patent Application Laid-open No. 59-70723, a plate after final cold rolling is heated at a temperature (T
A technique for pre-annealing in the range of ('C) ) and time (t (5ee)) is disclosed.

5 sec ≦【≦1200sec 一段冷延材:300℃≦T≦(679−4′2.01o
gt) ’c二段冷延材:300℃≦T≦(654−4
2,0IogL) ’c〈発明が解決しようとする問題
点〉 前者の特公昭56−38652の方法によれば、2次再
結晶粒のゴス方位集積度は確実に高めることができるが
、しかしながら、その反面2次再結晶粒の粗大化が避け
られないため、それによって成品の鉄を員は反って劣化
するか、改善されるにしてもわずかに過ぎないと仁ろに
問題がある。
5 sec≦[≦1200sec Single stage cold rolled material: 300℃≦T≦(679-4'2.01o
gt) 'c Two-stage cold rolled material: 300℃≦T≦(654-4
2,0IogL) 'c <Problem to be solved by the invention> According to the former method of Japanese Patent Publication No. 56-38652, the degree of Goss orientation integration of secondary recrystallized grains can be certainly increased; however, On the other hand, coarsening of the secondary recrystallized grains is unavoidable, which causes problems such as warping and deterioration of the finished iron, or improvement only slightly.

また、後者の特開昭59−70723の方法は、つまり
一次冷延材および二次冷延材の温度、時間を前記の範囲
で予備焼鈍を施し、硬度の変化によって再結晶させない
領域で焼鈍することにより、いわゆる歪回復を図ること
により集合組織を改善し、磁性特性を向上するものであ
るが、しかしながら、予備焼鈍のみでは磁気特性が安定
してよくならないという欠点がある。
In addition, the latter method of JP-A-59-70723 involves pre-annealing the primary cold-rolled material and the secondary cold-rolled material within the above-mentioned ranges of temperature and time, and annealing in a region where no recrystallization occurs due to changes in hardness. This improves the texture and improves the magnetic properties by achieving so-called strain recovery, but there is a drawback, however, that the magnetic properties cannot be stabilized and improved by preliminary annealing alone.

本発明は、このような問題点に鑑みなされたものであっ
て、磁気特性の優れた一方向性けい素鋼板の製造方法を
提供することを目的とする。
The present invention was made in view of these problems, and an object of the present invention is to provide a method for manufacturing a unidirectional silicon steel sheet having excellent magnetic properties.

〈問題点を解決するための手段〉 ゛本発明は、C: 0.010〜0.080 wt%お
よび5t=2.5〜4.0 wt%を含むけい素鋼熱延
板を、1回もしくは中間焼鈍を挟む2回以上の冷間圧延
によって最終板厚としたのち、脱炭焼鈍ついで最終仕上
焼鈍を施す一連の工程よりなる一方向性けい素鋼板の製
造方法において、前記脱炭焼鈍の工程を、450〜57
5 ℃で10秒〜5時間、好ましくは10秒〜5分間保
持する第1段熱処理工程と、引続き750℃まで10℃
/set以上、好ましくは20℃/sec以上で昇温し
、750〜950℃で熱処理する第2段熱処理工程とか
らなるようにした一方向性けい素鋼板の製造方法であり
、 また、C: 0.010〜0.080 wt%およびs
i :2.5〜4.0 wt%を含むけい索然扉板を、
1回もしくは中間焼鈍を挟む2回以上の冷間圧延によっ
て最終板厚としたのち、脱炭焼鈍ついで最終仕上焼鈍を
施す一連の工程よりなる一方向性けい素鋼板の製造方法
において、前記脱炭焼鈍の工程を、450〜575℃で
10秒〜5時間、好ましくは10〜5分間保持する第1
段熱処理工程と、ついで一旦冷却する冷却工程と、引続
き750 ’Cまで10 ’C/sec以上、好ましく
は20℃/see以上で昇温し、750〜950℃で熱
処理する第2段熱処理工程とからなるようにした一方向
性せい素鋼板の製造方法である。
<Means for Solving the Problems> The present invention provides a silicon steel hot rolled sheet containing C: 0.010 to 0.080 wt% and 5t = 2.5 to 4.0 wt%, Alternatively, in a method for manufacturing a unidirectional silicon steel sheet, which comprises a series of steps of cold rolling two or more times with intermediate annealing to achieve the final thickness, decarburizing annealing, and then final finish annealing, the decarburizing annealing step Steps 450-57
A first heat treatment step of holding at 5°C for 10 seconds to 5 hours, preferably 10 seconds to 5 minutes, followed by heating at 10°C to 750°C.
C: 0.010-0.080 wt% and s
i: 2.5 to 4.0 wt%.
In the method for manufacturing a unidirectional silicon steel sheet, which comprises a series of steps of cold rolling once or twice or more with intermediate annealing to achieve the final thickness, decarburizing annealing, and final finish annealing, the decarburizing The first step of annealing is held at 450 to 575°C for 10 seconds to 5 hours, preferably 10 to 5 minutes.
A stage heat treatment step, a cooling step in which the material is cooled once, and a second stage heat treatment step in which the temperature is raised to 750'C at a rate of 10'C/sec or more, preferably 20°C/see or more, and heat treated at 750 to 950°C. This is a method for manufacturing a unidirectional silicon steel sheet.

〈作 用〉 以下、本発明を具体的に説明する。<For production> The present invention will be specifically explained below.

まず、本発明において、熱延板の主成分であるC、Si
 の組成を限定した理由について説明する。
First, in the present invention, C, Si, which is the main component of the hot rolled sheet,
The reason for limiting the composition will be explained.

ここで、成分組成はすべて重量%である。Here, all component compositions are in weight %.

Cは、熱延板焼鈍後の冷却過程において、適量の微細炭
化物を析出させ、冷延・焼鈍後の一次再結晶&[l織を
均質化させるための有用成分であるが、含有量が0.0
10%に満たないとその添加効果に乏しく、一方0.0
80%を超えて多量に添加されると、最終冷却後の脱炭
焼鈍に長時間を必要とするので、含有量は0.010〜
0.080%とする。
C is a useful component for precipitating an appropriate amount of fine carbides in the cooling process after hot-rolled sheet annealing, and for homogenizing the primary recrystallization and weave after cold-rolling and annealing. .0
If it is less than 10%, the effect of the addition is poor; on the other hand, 0.0
If added in a large amount exceeding 80%, a long time will be required for decarburization annealing after final cooling, so the content should be 0.010~
It shall be 0.080%.

Si は、十分に低い鉄損を得るには少なくとも2.5
%がa:要であり、一方4.0%を超えると冷延性が劣
化するので、含有量は2.5〜4.0%の範囲に限定し
た。
Si should be at least 2.5 to obtain a sufficiently low core loss.
% is essential, and if it exceeds 4.0%, cold rollability deteriorates, so the content was limited to a range of 2.5 to 4.0%.

上記のC、Si以外の成分組成とその限定理由は、以下
の如くである。
The composition of components other than the above C and Si and the reasons for their limitations are as follows.

一次再結晶粒成長抑制剤のインヒビタとしてMnSやM
nSeを利用する場合にはMnがSやSeと結合してそ
の作用を発揮せしめるのに、Mnを0.020〜0.2
0%含有させることが好適である。
MnS and M as inhibitors of primary recrystallized grain growth inhibitors
When using nSe, Mn must be 0.020 to 0.2 in order to combine with S and Se to exert their effects.
It is suitable to contain 0%.

次に、S 、Seは、前記MnS、  MnSeを形成
せしめるのに少なくともいずれか一種をo、oos〜0
.050%を含有させるのが好ましい。
Next, S and Se are mixed with at least one of o, oos to 0 to form the MnS and MnSe.
.. It is preferable to contain 0.050%.

また、この他に、インヒビタとしてAINを利用する場
合には、5olAj!、Nを添加するが、このインヒビ
タの作用を十分発揮させる二次再結晶粒を発達させるた
めには、5olAj!として0.008〜0.050%
を含有させるのが好適である。5olAjがo、oos
%以下では磁気特性が改善されず、0.050%を超え
ると磁気特性が不安定となる。なお、インヒビタとして
AINを必要としない場合には、5olA1を°極力低
減する方が、磁気特性には望ましい。
In addition to this, when using AIN as an inhibitor, 5olAj! , N is added, but in order to develop secondary recrystallized grains that fully exhibit the effect of this inhibitor, 5olAj! as 0.008~0.050%
It is suitable to contain. 5olAj is o, oos
% or less, the magnetic properties will not be improved, and if it exceeds 0.050%, the magnetic properties will become unstable. Note that if AIN is not required as an inhibitor, it is desirable for magnetic properties to reduce 5olA1 as much as possible.

Nは、上記インヒビタとしてAINを利用する場合に必
要で、十分なAIN効果を得るには、0.003〜0.
012%とするのが好ましい、Nが0.003%以下で
は、AI!Nが不足して磁気特性の改善効果が少く、一
方、0.012%を超えると、表面欠陥や繰り返し曲げ
性劣化、磁気特性が不安定となる。なお、インヒビタと
してAZNを必要としない場合には、Nlを極力低減す
る方が磁気特性には望ましい。
N is necessary when using AIN as the above-mentioned inhibitor, and in order to obtain a sufficient AIN effect, it is 0.003 to 0.
It is preferable to set it to 0.012%, and when N is 0.003% or less, AI! If N is insufficient, the effect of improving magnetic properties is small, while if it exceeds 0.012%, surface defects, deterioration in repeated bending properties, and unstable magnetic properties occur. Note that if AZN is not required as an inhibitor, it is desirable for magnetic properties to reduce Nl as much as possible.

さらに、上記元素の他に、−次再結晶粒成長をより効果
的に抑制するために、Ni 、Mo 、W。
Furthermore, in addition to the above elements, Ni, Mo, and W are added to more effectively suppress the -order recrystallized grain growth.

Cu、Sb、Bi 、Sn、PbもしくはAs等の元素
を必要に応じて併せて含有させることは有利である。
It is advantageous to also contain elements such as Cu, Sb, Bi 2 , Sn, Pb or As as required.

次にこの発明で対象とする熱延板は、公知の製鋼法、鋳
造法、熱延法によって製造することができ、通常は1.
2〜3.5−mの厚さを有することが望ましい、その理
由は、熱延板の厚さが上記範囲を外れると、2次再結晶
粒のゴス方位集積が低下するからである。
Next, the hot-rolled sheet targeted by this invention can be manufactured by a known steel manufacturing method, casting method, or hot rolling method, and usually 1.
It is desirable to have a thickness of 2 to 3.5-m, because if the thickness of the hot-rolled sheet is outside the above range, the Goss orientation accumulation of secondary recrystallized grains will decrease.

この熱延板に、必要に応じて800〜1150’Cの温
度範囲で焼鈍を行い、1回もしくは中間焼鈍を挟t・2
回以上の冷延により最終板厚に仕上げる。中間焼鈍は、
第1回冷延後の冷延組織を再結晶させ、結晶組織の均一
化を促し、あわせて口中にCを十分固溶液させる目的で
施す、従って、中間焼鈍温度は800℃以上、1150
℃以下が好適である。中間焼鈍終了後、最終冷延して仕
上厚とするが、最終冷延の圧下率は40〜95%とする
のが好適である。
This hot-rolled sheet is annealed at a temperature range of 800 to 1150'C as necessary, and then once or intermediately annealed for t・2
It is finished to the final thickness by cold rolling more than once. Intermediate annealing is
This is done to recrystallize the cold-rolled structure after the first cold rolling, promote homogenization of the crystal structure, and also make a sufficient solid solution of C in the mouth.Therefore, the intermediate annealing temperature is 800℃ or higher and 1150℃.
C or lower is suitable. After the intermediate annealing is completed, final cold rolling is performed to obtain the finished thickness, and it is preferable that the reduction ratio in the final cold rolling is 40 to 95%.

ついで、750〜950℃の温度域で脱炭焼鈍を施すが
、このとき、脱炭焼鈍の昇温途中で昇温パターンを制御
することが本発明の特徴とするところである。
Next, decarburization annealing is performed in a temperature range of 750 to 950° C., and a feature of the present invention is that the temperature increase pattern is controlled during the temperature increase during decarburization annealing.

以下、実験データを参照して説明する。This will be explained below with reference to experimental data.

C: 0.040%、  Si  ;3.19%、 M
n  :0.075%。
C: 0.040%, Si; 3.19%, M
n: 0.075%.

Se  :0.017%、  S : 0.006%、
  Sb  1.023%を含有し、残部実質的、には
Feよりなる2、Otm厚の熱延板を空気中で900℃
x3min均熱後、酸洗して板厚00−59tに中間冷
延したのち、950℃×2Ilin均熱の中間焼鈍を施
したのち0.23ts厚に仕上げた。ついで、湿水素中
で15℃/secの昇温速度で、830℃x3+*in
均熱の脱炭焼鈍を施した後、MgOを主体とする分離剤
を塗布し、引き続きN2中で850℃×35hの保定焼
鈍後、H8中で1200℃×10hの最終仕上焼鈍を施
した。この従来工程で処理された成品板の鉄損値LLt
/soは、0.94〜0.96W/kgであった。
Se: 0.017%, S: 0.006%,
A hot-rolled sheet of 2,000 tm thick containing 1.023% Sb and the remainder substantially Fe was heated at 900°C in air.
After soaking for x3min, pickling and intermediate cold rolling to a plate thickness of 00-59t, intermediate annealing at 950°C x 2Ilin and finishing to a thickness of 0.23ts. Then, at a heating rate of 15°C/sec in wet hydrogen, 830°C x 3 + * in
After performing soaking decarburization annealing, a separating agent mainly composed of MgO was applied, followed by retention annealing at 850°C for 35 hours in N2, and final finish annealing at 1200°C for 10 hours in H8. Iron loss value LLt of the finished plate processed by this conventional process
/so was 0.94 to 0.96 W/kg.

上記従来工程に対し、脱炭焼鈍の昇温途中、350〜7
00℃、5sec〜5hの第1段熱処理を施したのち、
引続き830℃x3min均熱の脱炭焼鈍を施す際、7
50℃までの昇温を7℃/sec、 15℃15ec 
、  30℃/secの速度で昇熱した。脱炭焼鈍を施
した後、MgOを主体とする分離剤を塗布し、N2中で
850℃X35t+の保定焼鈍後、11□中で1200
℃×10h の最終仕上焼鈍を施したときの鉄損値Wl
’115゜(W/瞳)を、第1図に示した。
In contrast to the above conventional process, during the temperature increase during decarburization annealing, 350 to 7
After performing the first stage heat treatment at 00°C for 5 seconds to 5 hours,
When subsequently performing decarburization annealing at 830°C x 3 min, 7
Temperature increase up to 50℃ at 7℃/sec, 15℃ for 15ec
The temperature was increased at a rate of 30°C/sec. After decarburization annealing, a separating agent mainly composed of MgO was applied, and after retention annealing at 850°C x 35t+ in N2, 1200°C in 11□
Iron loss value Wl when final annealing is performed at ℃×10h
'115° (W/pupil) is shown in Figure 1.

ここで、第1図の記号は、各々第1表の範囲を示すもの
である。
Here, the symbols in FIG. 1 each indicate the range in Table 1.

第  1  表 第1図から明らかなように、脱炭焼鈍の際の昇温途中で
450〜575℃の温度範囲、10sec以上の均熱で
、第1段熱処理を施し、昇温速度を15℃/secに高
めることによって鉄損値が著しく改善され、さらに30
℃/secに速度を高めることによって極低鉄損値が得
られることがわかる。
As is clear from Table 1 and Figure 1, the first stage heat treatment was performed in the temperature range of 450 to 575°C during the temperature rise during decarburization annealing, with soaking for 10 seconds or more, and the temperature increase rate was increased to 15°C. /sec, the iron loss value was significantly improved, and even 30
It can be seen that an extremely low iron loss value can be obtained by increasing the speed to °C/sec.

一方、昇温速度を7℃/sec と遅くしたものは、第
1段熱処理を本発明の好適範囲で行っても磁束密度B、
。値に若干の向上がみられるものの鉄損値の改善には至
らなかった。
On the other hand, in the case where the heating rate is as slow as 7°C/sec, even if the first stage heat treatment is performed within the preferred range of the present invention, the magnetic flux density B,
. Although there was a slight improvement in the value, the iron loss value did not improve.

ここで、本発明の好適範囲で処理子ることによって、大
巾な鉄損値改善が達成できる機構について述べる。
Here, we will describe a mechanism by which a significant improvement in iron loss value can be achieved by processing within the preferred range of the present invention.

一方向性けい素鋼板を構成する結晶粒は、特定の方位、
つまり(110)  [0011方位をもっており、そ
れぞれの結晶粒の(110)  [0011方位からの
ズレが少ないほど、優れた磁気特性が得られるが、この
ような結晶粒の生成は、冷延により最終成品板厚となっ
た鋼板に脱炭焼鈍を施すことによって(110)  [
001]方位をもつ一次再結晶粒いわゆるゴス粒が、最
終仕上焼鈍において選択成長するいわゆる二次再結晶現
象によって達成される。
The crystal grains that make up grain-oriented silicon steel sheets have specific orientations,
In other words, it has a (110) [0011 orientation, and the smaller the deviation from the (110) [0011 orientation of each crystal grain, the better the magnetic properties can be obtained. (110) [
001] oriented primary recrystallized grains, so-called Goss grains, are achieved by the so-called secondary recrystallization phenomenon in which they selectively grow during final finishing annealing.

優れた磁気特性を得る方策として、−次再結晶粒および
二次再結晶粒形成時に、さきに従来技術として挙げた2
件の特許公報などによる改善策が講じられるわけである
が、本発明では、脱炭焼鈍における昇温途中の一次再結
晶&I織形成時において、歪回復を目的とした第1段熱
処理によってゴス粒の優先回復を図った後、引続く第2
段の脱炭焼鈍に型番昇温途中を急熱することにより、回
復の遅いゴス粒以外の他方位粒をゴス粒が併合して、脱
炭焼鈍における一次再結晶集合組織形成時にゴス粒の核
をより多く生成することによって最終仕上焼鈍での二次
再結晶粒を微細にすることが可能となり、鉄損値が大巾
に低減するものであるから、従来工程や前記特許公報と
はまったく異なった手法なのである。
As a measure to obtain excellent magnetic properties, when forming -order recrystallized grains and secondary recrystallization grains,
However, in the present invention, during the primary recrystallization and I-weave formation during heating during decarburization annealing, the Goss grains are removed by the first stage heat treatment for the purpose of strain recovery. After the priority recovery of
By rapidly heating the model during stage decarburization annealing, Goss grains merge with other grains other than Goss grains, which recover slowly, and the Goss grain nuclei form during primary recrystallization texture formation during decarburization annealing. By producing a larger amount of iron, it is possible to make the secondary recrystallized grains finer in the final finish annealing, and the iron loss value is greatly reduced. It is a method.

ここで、昇温速度の限定範囲を第1段熱処理終了から第
2段熱処理に至る昇温途中の750℃までに限定した理
由は、上述したように目的とする好適な一次再結晶集合
組織の形成が、750℃までに構成されるからである。
Here, the reason why the temperature increase rate was limited to 750°C during the temperature increase from the end of the first stage heat treatment to the second stage heat treatment is to achieve the desired primary recrystallization texture as described above. This is because formation occurs up to 750°C.

ついで、第1段熱処理に引続き第2段の脱炭焼鈍に至る
際の750℃までの昇温速度を10℃/see以上で行
う限定理由について、実験データを参照して説明する。
Next, the reason for limiting the temperature increase rate to 750° C. during the second stage decarburization annealing following the first stage heat treatment to be performed at 10° C./see or higher will be explained with reference to experimental data.

前記実験に供試した0、23fl厚仕上げた冷延材を)
ソ水素中で脱炭焼鈍する際、第1段熱処理を550’C
X 90sec均熱の後、連続して830℃X3m1n
均熱の第2段の脱炭焼鈍を施す際の昇温途中750℃に
至る速度を2.5〜b 脱炭焼鈍後、MgOを主体とする分離剤を塗布してから
、N2で860℃×30hの保定焼鈍後、H□中で12
00℃×10hの最終仕上焼鈍後の磁気特性を、第2図
にWl?/l。(W/kg)値で示した。
The cold-rolled material finished with a thickness of 0.23fl and used in the above experiment)
When decarburizing annealing in hydrogen, the first stage heat treatment is carried out at 550'C.
After soaking for 90 seconds, heat continuously at 830℃ x 3m1n
During decarburization annealing in the second stage of soaking, the rate at which the temperature reaches 750°C during the temperature rise is 2.5~b. After decarburization annealing, apply a separating agent mainly composed of MgO, and then heat to 860°C with N2. After holding annealing for ×30h, 12 hours in H□
Figure 2 shows the magnetic properties after final annealing at 00°C for 10 hours. /l. (W/kg) value.

第2図から明らかなように、昇温速度が10℃/see
以上で鉄損低減の効果がみられ、20 ’C/sec以
上でより急熱すると、より顕著に鉄損が低減する効果が
みられる。
As is clear from Figure 2, the temperature increase rate is 10℃/see.
The effect of reducing iron loss is seen above, and when heated more rapidly at 20'C/sec or more, the effect of reducing iron loss is more remarkable.

一方向性けい素鋼板を、工業的に本発明の方法で製造す
る場合、脱炭焼鈍において、第1段熱処理と第2段の脱
炭焼鈍を連続して焼鈍ラインで、実施する場合は、ライ
ンの設備費、維持費等効率を考慮して、第1段熱処理の
均熱を450〜575℃、10sec〜5騰in均熱3
で実施する。一方、第1段熱処理後冷却する場合は、短
時間で焼鈍するときは通常の焼鈍炉もしくは専用の第1
段熱処理炉を設置し、長時間で焼鈍するときは、バッチ
炉でコイル焼鈍を施し、冷却したのち第2段の脱炭焼鈍
を引続き行えばよいが、効率上5時間以内の均熱で十分
である。
When a unidirectional silicon steel sheet is industrially manufactured by the method of the present invention, when the first stage heat treatment and the second stage decarburization annealing are carried out consecutively in an annealing line in the decarburization annealing, Taking into consideration the efficiency of line equipment costs, maintenance costs, etc., the first stage heat treatment was soaked at 450-575℃, 10 seconds - 5 increments in soaking 3.
It will be carried out. On the other hand, when cooling after the first stage heat treatment, a normal annealing furnace or a dedicated first
When installing a stage heat treatment furnace and annealing for a long time, it is sufficient to perform coil annealing in a batch furnace, cool it, and then continue with the second stage decarburization annealing, but for efficiency, soaking for less than 5 hours is sufficient. It is.

このようにして、脱炭JAS!されたのち、ついでMg
Oを主体とする焼鈍分離剤を塗布してから仕上焼鈍を施
す、この仕上焼鈍は、1100〜1250℃温度域のN
2中で鋼中の不純物元素が十分低減するのに必要な時間
均熱する。なお、昇温の際、必要に応じて800〜92
0℃の温度域を所定温度で保持するか、あるいは、この
温度域を除熱するかして2次再結晶&1IVaを十分に
発達させることは有利である。
In this way, decarbonization JAS! After that, Mg
Finish annealing is performed after applying an annealing separator mainly composed of O.
2, the steel is soaked for a time necessary to sufficiently reduce the impurity elements in the steel. In addition, when raising the temperature, the temperature may be increased from 800 to 92
It is advantageous to maintain the 0° C. temperature range at a predetermined temperature or remove heat from this temperature range to sufficiently develop secondary recrystallization &1IVa.

〈実施例〉 次に、本発明の実施について説明する。<Example> Next, implementation of the present invention will be described.

実施例I C: 0.045%、  St  :3.30%、 M
n  :0.080%。
Example I C: 0.045%, St: 3.30%, M
n: 0.080%.

S : 0.003%、  Se  :0.025%、
  Sb  :0.025%を含有し、残部実質的にF
eの組成になる2、On厚熱延板を大気中で900℃X
3i+inの焼鈍を施したのち、酸洗して、0.65u
厚に冷延して、続いて950℃x2minの中間焼鈍を
施して0.23mに仕上げた。脱脂後、直ちに湿水素中
で昇温速度13℃/seeで830℃x4minの脱炭
焼鈍を行った通常工程の比較例と、温水素中で550℃
x1minの第1段熱処理を施し′たのち、連続して7
50℃まで18℃/ s’e cで昇温しで、830℃
x4鳳inで脱炭焼鈍を施す第2段熱処理を処理した本
発明の適合例とを、MgOを主体とする分罵り剤を塗布
した後、N2中で850℃×40h の焼鈍後、ついで
N2中で1200’c x 10hの最終仕上焼鈍を施
した。
S: 0.003%, Se: 0.025%,
Sb: Contains 0.025%, the remainder is substantially F
A 2, On thick hot-rolled plate having a composition of e was heated at 900°C in the atmosphere.
After annealing 3i+in, pickling and 0.65u
It was cold rolled to a thickness of 0.23 m and then subjected to intermediate annealing at 950°C for 2 min. A comparative example of the normal process in which decarburization annealing was performed at 830°C x 4 min at a heating rate of 13°C/see in wet hydrogen immediately after degreasing, and 550°C in warm hydrogen.
After the first stage heat treatment for 1 min,
Raise the temperature at 18℃/s'e c to 50℃ to 830℃
The second stage heat treatment of decarburization annealing was carried out using a heat treatment method according to the present invention, which was subjected to a second stage heat treatment of decarburization annealing using a 4x4 iron ink. A final finish annealing of 1200'c x 10h was performed in the chamber.

このようにして得られた成品の磁気特性と成品板の平均
粒径を以下に示す。
The magnetic properties of the product thus obtained and the average grain size of the product plate are shown below.

リムtzs*(W/kg)  Bze(T)  平均粒
径(鶴)比較例  0.96    1.894   
8.8本発明の適合例の成品板磁気特性は、比較例の磁
気特性に比べて十分に鉄損値が低く 、Boo値が高く
、また成品板の平均結晶粒径も減少した。
Rim tzs* (W/kg) Bze (T) Average particle size (Tsuru) comparative example 0.96 1.894
8.8 Compared with the magnetic properties of the comparative example, the magnetic properties of the finished plate of the conforming example of the present invention were sufficiently lower than the magnetic properties of the comparative example, the Boo value was high, and the average crystal grain size of the finished plate was also reduced.

実施例2 C: 0.039%、  Si  :3.24%、 M
n  :0.075%。
Example 2 C: 0.039%, Si: 3.24%, M
n: 0.075%.

Se :O,016%、 S : 0.012%、  
Sb  1.029%。
Se: O, 016%, S: 0.012%,
Sb 1.029%.

Mo  : 0.021%を含有し、残部実質的にFe
よりなる2、2龍厚の熱延板を、925℃x2minの
熱延板焼鈍を施したのち、酸洗して0.60u厚に冷延
し、続く中間焼鈍を950℃X2+ein間均熱で焼鈍
し、仕上厚0.20mに冷延した。脱脂した後、直ちに
湿水素中で昇温速度11℃/secで840℃X311
inの脱炭焼鈍を行った通常工程の比較例と、脱炭焼鈍
に先立ち、N、中で500℃×510の第1段熱処理を
第1段熱処理炉で実施した後、一旦冷却し、第2段熱処
理を、脱炭焼鈍ラインで湿水素中で750℃まで18℃
/seeで昇温した後、840℃×3■in処理した本
発明の適合例とを、MgOを主体とする分離剤を塗布し
た後、N8中で860℃×35h焼鈍し、ついで1(2
中で1200℃X 10hの最終焼鈍を施した。このよ
うにして得られた成品の磁気特性と成品板の平均粒径を
示す。
Mo: Contains 0.021%, the remainder is substantially Fe
A hot-rolled sheet with a thickness of 2.2 dragons, which is made of It was annealed and cold rolled to a finished thickness of 0.20 m. Immediately after degreasing, heat in wet hydrogen at 840°C x 311°C at a heating rate of 11°C/sec.
A comparative example of a normal process in which decarburization annealing was carried out, and a first stage heat treatment at 500°C Two-stage heat treatment in wet hydrogen at 18℃ to 750℃ in decarburization annealing line
/see, and then treated at 840°C x 3 in. After applying a separating agent mainly composed of MgO, annealed at 860°C x 35 h in N8, and then heated at 860°C x 35 h in N8.
Final annealing was carried out at 1200° C. for 10 hours. The magnetic properties of the product thus obtained and the average grain size of the product plate are shown below.

W/+tzs*(W/kjr)  Bto(T)  平
均粒径(tm )比較例  0.92    1.89
1   8.9本発明の適合例の成品板磁気特性は、比
較例の磁気特性に比べて十分に鉄損値が低く、B、値が
高くまた成品板の平均結晶粒径も減少した。
W/+tzs*(W/kjr) Bto(T) Average particle size (tm) Comparative example 0.92 1.89
1 8.9 The magnetic properties of the finished plate according to the present invention were sufficiently lower than those of the comparative example, the iron loss value was sufficiently low, the B value was high, and the average crystal grain size of the finished plate was reduced.

実施例3 C: 0.053%、  St  :3.to%、 M
n  :0.089%。
Example 3 C: 0.053%, St: 3. to%, M
n: 0.089%.

S : 0.023%、  Sat A l :0.0
31%、 N : 0.0084%を含有し、残部実質
的にFeよりなる2、4mm厚の熱延板を、1050℃
X 2.5 winの焼鈍を施した後、酸洗し、直ちに
0.23u厚に冷間圧延して仕上げ厚とした。その後、
脱脂して温水素中で昇温速度16’c /secで85
0℃X4m1nの脱炭焼鈍を行った通常工程の比較例と
、仕上冷延板を脱炭焼鈍に先立ち、第1段熱処理をバッ
チ炉においてNZ中で475℃×1.5h焼鈍後冷値し
、引続き第2段熱処理を、温水素中で19℃/secで
750℃まで昇温し845℃×3,5w1nの脱炭焼鈍
を施した本発明の適合例とを、MgOを主体とする分罷
剤を塗布したのち、Hよ中で1200℃X 10hの最
終仕上焼鈍を施した。
S: 0.023%, Sat Al: 0.0
A 2.4 mm thick hot-rolled plate containing 31% N, 0.0084% N, and the remainder substantially Fe was heated at 1050°C.
After annealing of X 2.5 win, pickling was performed, and immediately cold rolling was performed to a thickness of 0.23u to give a final thickness. after that,
Degrease and heat in warm hydrogen at a heating rate of 16'c/sec to 85
A comparative example of the normal process in which decarburization annealing was performed at 0°C x 4 ml, and a first stage heat treatment was performed on the finished cold-rolled sheet prior to decarburizing annealing in a batch furnace at 475°C x 1.5 h in NZ followed by cold value annealing. , followed by a second stage heat treatment in which the temperature was increased to 750°C at 19°C/sec in warm hydrogen and decarburization annealing was performed at 845°C x 3.5 w1n. After applying a scintillating agent, final annealing was performed at 1200° C. for 10 hours in an H bath.

このようにして得られた成品板の磁気特性と平均粒径を
示す。
The magnetic properties and average grain size of the finished plate thus obtained are shown below.

讐八wza*(W/kg)  Bt。(T)  平均粒
径(1暮)比較例  0.95    1.924  
14.3本発明の適合例の磁気特性は、比較例に比べて
優れており、粒径も減少した。
Reihachiwza* (W/kg) Bt. (T) Average particle size (1 day) Comparative example 0.95 1.924
14.3 The magnetic properties of the adapted examples of the present invention were superior to those of the comparative examples, and the particle size was also reduced.

実施例4 C: 0.043%、  St  :3.18%、 M
n  :0.073%。
Example 4 C: 0.043%, St: 3.18%, M
n: 0.073%.

Se  :0.023%、 Mo  :0.025%残
部実質的にFeよりなる1、8fi厚の熱延板を930
℃x2minの焼鈍後、酸洗して0゜50鶴厚に冷間圧
延した後、980℃X 2.5 winの中間焼鈍を実
施したのち、0.181℃厚に冷延して仕上げた。脱脂
後、直ちに湿水素中で18℃/seeの昇温速度で、8
35℃×3履inの脱炭焼鈍を施した通常工程の比較例
と、上記仕上冷延板を脱脂後、温水素雰囲気中の脱炭焼
純の際、昇温途中でまず550℃X 60secの第1
段熱処理を行い、連続して第2段熱処理として、36℃
/Beeで750℃まで急熱し、825℃X3m1nの
脱炭焼鈍を施した本発明の適合例とを、MgOを主体と
する分離剤を塗布した後、N、中で845℃×45hの
保定焼鈍して、Hz中で1200℃×10hの最終焼鈍
を施した。。
Se: 0.023%, Mo: 0.025%, the balance substantially consisting of Fe, a 1.8fi thick hot-rolled plate 930
After annealing at 0.degree. C. for 2 minutes, pickling and cold rolling to a thickness of 0.50 degrees, intermediate annealing at 980.degree. Immediately after degreasing, heat in wet hydrogen at a heating rate of 18°C/see to 8°C.
A comparative example of a normal process in which decarburization annealing was performed at 35°C x 3 in. After degreasing the above-mentioned finished cold-rolled sheet, decarburization annealing was performed in a warm hydrogen atmosphere. 1st
Stage heat treatment is performed, followed by a second stage heat treatment at 36°C.
/Bee to 750°C and decarburization annealing at 825°C x 3 ml. After applying a separation agent mainly composed of MgO, annealing at 845°C x 45 hours in N was carried out. Then, final annealing was performed at 1200° C. for 10 hours in Hz. .

このようにして得られた成品の磁気特性と成品板の平均
粒径を示す。
The magnetic properties of the product thus obtained and the average grain size of the product plate are shown below.

W/+tzs+(W/kg)  B+。(T)  平均
粒径(■鳳)比較例  0.89    1.894 
  8.3本発明の適合例の磁気特性は、比較例に比べ
十分に優れ、また平均粒径も減少した。
W/+tzs+ (W/kg) B+. (T) Average particle size (■Otori) Comparative example 0.89 1.894
8.3 The magnetic properties of the example adapted to the present invention were sufficiently superior to those of the comparative example, and the average particle size was also reduced.

実施例5 C: 0.055%、  Si  :3.15%、 M
n  :0.080%。
Example 5 C: 0.055%, Si: 3.15%, M
n: 0.080%.

Se  :0.025%、 Sol A1:0.033
%、 N : 0.0095%、  Sb  :0.0
21%、  Sn  :0.095%、残部実質的にF
eよりなる2 、7 mm厚の熱延板を、1050℃×
5 winで焼鈍し、酸洗して、1.20ta厚に冷間
圧延した後、1050℃X2IIlinの中間焼鈍を実
施して、0.20ta厚に冷延して仕上げた。脱脂後、
直ちに湿水素中で13℃/5ecO昇温速度で840℃
X4m1nの脱炭焼鈍した通常工程の比較例と、上記冷
延仕上板を脱脂してから脱炭焼鈍に先立ち、N2中で5
00℃x2hの第1段熱処理をバッチ炉で行い、室温ま
で冷却した後、第2段熱処理を湿水素中で39℃/se
cで750℃まで昇温し840℃X4m1nの脱炭焼鈍
を施した本発明の適合例とを、MgOを主体とする分離
剤を塗布した後、Hz中で1200℃X 15hの仕上
焼鈍を施した。
Se: 0.025%, Sol A1: 0.033
%, N: 0.0095%, Sb: 0.0
21%, Sn: 0.095%, remainder substantially F
A 2.7 mm thick hot-rolled plate made of
After annealing at 5 win, pickling, and cold rolling to a thickness of 1.20 ta, intermediate annealing at 1050° C. After degreasing,
Immediately heated to 840℃ in wet hydrogen at a heating rate of 13℃/5ecO.
A comparative example of the normal process of decarburizing annealing of
The first stage heat treatment was carried out at 00℃ x 2h in a batch furnace, and after cooling to room temperature, the second stage heat treatment was carried out at 39℃/se in wet hydrogen.
After applying a separating agent mainly composed of MgO, the sample was subjected to finish annealing at 1200°C for 15 hours in Hz. did.

このようにして得られた成品の磁気特性と、平均粒径を
示す。
The magnetic properties and average particle size of the product thus obtained are shown.

W/ + t/so (W/ kg )  B+ o 
(T)  平均粒径(鶴)比較例  0.91    
1.919  13.3本発明の適合例の磁気特性は、
比較例に比べて十分に改善された。
W/ + t/so (W/ kg) B+ o
(T) Average particle size (Tsuru) Comparative example 0.91
1.919 13.3 The magnetic properties of the adapted example of the present invention are:
This was sufficiently improved compared to the comparative example.

〈発明の効果〉 以上に説明したように、本発明によれば、一方向性けい
素m仮の脱炭焼鈍の工程を、450〜575℃で10s
ec 〜5 h、好適には10sec 〜5m1n保持
する第1段熱処理工程と、引続き直ちに、あるいは一旦
冷却した後、750℃まで10℃/sec以上、好適に
は20℃/sec以上で昇熱し、750〜950℃で均
熱する第2段熱処理工程とからなるようにしたので、優
れた磁気特性を有する一方向性けい素鋼板を製造するこ
とが可能である。
<Effects of the Invention> As explained above, according to the present invention, the step of unidirectional silicon m temporary decarburization annealing is performed at 450 to 575°C for 10 seconds.
ec ~5 h, preferably 10 sec ~ 5 m1n, the first stage heat treatment step, followed by heating up to 750 ° C. at 10 ° C / sec or more, preferably 20 ° C / sec or more, immediately or after cooling, Since the second heat treatment step includes soaking at 750 to 950°C, it is possible to produce a grain-oriented silicon steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱炭焼鈍の焼鈍途中における第1段熱処理工
程の温度と時間が磁気特性に及ぼす影響を示した図、第
2図は、第1段熱処理後、750℃まで昇温するときの
昇温速度と鉄損値の関係を示した線図である。
Figure 1 shows the influence of temperature and time on magnetic properties during the first stage heat treatment during decarburization annealing, and Figure 2 shows the effect of temperature and time on magnetic properties when the temperature is increased to 750°C after the first stage heat treatment. FIG. 3 is a diagram showing the relationship between the temperature increase rate and the iron loss value.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.010〜0.080wt%およびSi:
2.5〜4.0wt%を含むけい素鋼熱延板を、1回も
しくは中間焼鈍を挟む2回以上の冷間圧延によって最終
板厚としたのち、脱炭焼純ついで最終仕上焼鈍を施す一
連の工程よりなる一方向性けい素鋼板の製造方法におい
て、前記脱炭焼純の工程を、450〜575℃で10秒
〜5時間保持する第1段熱処理工程と、引続き750℃
まで10℃/sec以上で昇温し、750〜950℃で
熱処理する第2段熱処理工程とからなることを特徴とす
る一方向性けい素鋼板の製造方法。
(1) C: 0.010-0.080wt% and Si:
A series of hot-rolled silicon steel sheets containing 2.5 to 4.0 wt% are cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, then subjected to decarburization annealing and final finish annealing. In the method for producing a grain-oriented silicon steel sheet, the decarburization and sintering step is followed by a first heat treatment step of holding at 450 to 575°C for 10 seconds to 5 hours, and then 750°C.
1. A method for producing a grain-oriented silicon steel sheet, comprising a second heat treatment step of raising the temperature at a rate of 10° C./sec or more to 750° C. to 950° C..
(2)C:0.010〜0.080wt%およびSi:
2.5〜4.0wt%を含むけい素熱延板を、1回もし
くは中間焼鈍を挟む2回以上の冷間圧延によって最終板
厚としたのち、脱炭焼鈍ついで最終仕上焼鈍を施す一連
の工程よりなる一方向性けい素鋼板の製造方法において
、前記脱炭焼鈍の工程を、450〜575℃で10秒〜
5時間保持する第1段熱処理工程と、ついで一旦冷却す
る冷却工程と、引続き750℃まで10℃/sec以上
で昇温し、750〜950℃で熱処理する第2段熱処理
工程とからなることを特徴とする一方向性けい素鋼板の
製造方法。
(2) C: 0.010-0.080wt% and Si:
A series of steps in which a hot-rolled silicon plate containing 2.5 to 4.0 wt% is cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, and then subjected to decarburization annealing and final finish annealing. In the method for producing a unidirectional silicon steel sheet comprising steps, the decarburization annealing step is performed at 450 to 575°C for 10 seconds to
It consists of a first stage heat treatment step in which it is held for 5 hours, a cooling step in which it is then cooled once, and a second stage heat treatment step in which the temperature is raised to 750 °C at a rate of 10 °C / sec or more and heat treated at 750 to 950 °C. Features: A method for producing unidirectional silicon steel sheets.
JP25068886A 1986-10-23 1986-10-23 Manufacture of grain-oriented silicon steel sheet Pending JPS63105926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25068886A JPS63105926A (en) 1986-10-23 1986-10-23 Manufacture of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25068886A JPS63105926A (en) 1986-10-23 1986-10-23 Manufacture of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS63105926A true JPS63105926A (en) 1988-05-11

Family

ID=17211567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25068886A Pending JPS63105926A (en) 1986-10-23 1986-10-23 Manufacture of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS63105926A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039971B1 (en) 2008-10-30 2011-06-09 현대하이스코 주식회사 Oriented electrical steel sheet manufacturing method using comercial quality steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
WO2014017590A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
WO2014017589A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
WO2014017591A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
JP2014074210A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
WO2014126089A1 (en) * 2013-02-14 2014-08-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2014132930A1 (en) * 2013-02-28 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
JP2014173103A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
JP2014194077A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
JP2015199974A (en) * 2014-04-04 2015-11-12 Jfeスチール株式会社 Manufacturing method of oriented magnetic steel sheet excellent in iron loss characteristics
US20160012948A1 (en) * 2013-02-27 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
CN109112287A (en) * 2012-09-03 2019-01-01 杰富意钢铁株式会社 The continuous annealing method of steel plate
US20220170131A1 (en) * 2014-10-06 2022-06-02 Jfe Steel Corporation Method of manufacturing low iron loss grain oriented electrical steel sheet

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039971B1 (en) 2008-10-30 2011-06-09 현대하이스코 주식회사 Oriented electrical steel sheet manufacturing method using comercial quality steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
US9738949B2 (en) 2012-07-26 2017-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014017590A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
WO2014017591A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Oriented electromagnetic steel plate production method
JP2014025106A (en) * 2012-07-26 2014-02-06 Jfe Steel Corp Method for producing grain oriented silicon steel sheet
CN104471085A (en) * 2012-07-26 2015-03-25 杰富意钢铁株式会社 Method for producing oriented electromagnetic steel sheet
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
CN104471084B (en) * 2012-07-26 2016-06-29 杰富意钢铁株式会社 The manufacture method of orientation electromagnetic steel plate
EP2878687A4 (en) * 2012-07-26 2016-03-16 Jfe Steel Corp Method for producing oriented electromagnetic steel sheet
JP5716870B2 (en) * 2012-07-26 2015-05-13 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2014017589A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
CN108359896A (en) * 2012-07-26 2018-08-03 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
CN104471084A (en) * 2012-07-26 2015-03-25 杰富意钢铁株式会社 Oriented electromagnetic steel plate production method
CN108486342A (en) * 2012-07-26 2018-09-04 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate
CN104160044A (en) * 2012-07-26 2014-11-19 杰富意钢铁株式会社 Oriented electromagnetic steel plate production method
JP5679090B2 (en) * 2012-07-26 2015-03-04 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN109112287A (en) * 2012-09-03 2019-01-01 杰富意钢铁株式会社 The continuous annealing method of steel plate
JP2014074210A (en) * 2012-10-05 2014-04-24 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2014114499A (en) * 2012-12-12 2014-06-26 Jfe Steel Corp Grain oriented silicon steel plate
US10643770B2 (en) 2012-12-12 2020-05-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
RU2608914C2 (en) * 2012-12-12 2017-01-26 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrical steel sheet
US20150318090A1 (en) * 2012-12-12 2015-11-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
RU2621497C2 (en) * 2013-02-14 2017-06-06 ДжФЕ СТИЛ КОРПОРЕЙШН Manufacturing method of plate from grain-oriented electrical steel
JP2014152392A (en) * 2013-02-14 2014-08-25 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
WO2014126089A1 (en) * 2013-02-14 2014-08-21 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
US10192662B2 (en) 2013-02-14 2019-01-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
EP2957644A4 (en) * 2013-02-14 2016-07-13 Jfe Steel Corp Method for producing grain-oriented electrical steel sheet
CN104903473A (en) * 2013-02-14 2015-09-09 杰富意钢铁株式会社 Method for manufacturing grain-oriented electrical steel sheet
KR20150086362A (en) * 2013-02-14 2015-07-27 제이에프이 스틸 가부시키가이샤 Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US20160012948A1 (en) * 2013-02-27 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
WO2014132930A1 (en) * 2013-02-28 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
CN105008557A (en) * 2013-02-28 2015-10-28 杰富意钢铁株式会社 Production method for grain-oriented electrical steel sheets
KR20150121012A (en) * 2013-02-28 2015-10-28 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheets
JP5737483B2 (en) * 2013-02-28 2015-06-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2014194077A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
US10134514B2 (en) 2013-02-28 2018-11-20 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet
JP2014167147A (en) * 2013-02-28 2014-09-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheets
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2014173103A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2015199974A (en) * 2014-04-04 2015-11-12 Jfeスチール株式会社 Manufacturing method of oriented magnetic steel sheet excellent in iron loss characteristics
US20220170131A1 (en) * 2014-10-06 2022-06-02 Jfe Steel Corporation Method of manufacturing low iron loss grain oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JPS63105926A (en) Manufacture of grain-oriented silicon steel sheet
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH09125148A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0949022A (en) Production of grain oriented silicon steel sheet with low iron loss and high magnetic flux density
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS62290824A (en) Production of grain oriented silicon steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH0617201A (en) Grain-oriented magnetic steel sheet and its manufacture
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
CN117203355A (en) Method for producing oriented electrical steel sheet
CN117062921A (en) Method for producing oriented electrical steel sheet
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property