JPS63105920A - Method for heat treating cast iron - Google Patents

Method for heat treating cast iron

Info

Publication number
JPS63105920A
JPS63105920A JP25258386A JP25258386A JPS63105920A JP S63105920 A JPS63105920 A JP S63105920A JP 25258386 A JP25258386 A JP 25258386A JP 25258386 A JP25258386 A JP 25258386A JP S63105920 A JPS63105920 A JP S63105920A
Authority
JP
Japan
Prior art keywords
temperature
cast iron
treatment
temp
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25258386A
Other languages
Japanese (ja)
Inventor
Hirotoshi Kitajima
北島 博利
Hisashi Shiraki
白木 久史
Yoichiro Kashiwagi
陽一郎 柏木
Seiji Sugiyama
清治 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP25258386A priority Critical patent/JPS63105920A/en
Publication of JPS63105920A publication Critical patent/JPS63105920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain excellent bainite cast iron product having sufficient hardness needed for strength and the wear resistance without any hindrance to cutting work based on a transformation introduced in working, by heating the cast iron product to austenizing temp., then over-cooling under the specific condition and then executing isothermal treatment. CONSTITUTION:The iron product is heated to the austenizing temp. and then over-cooled at cooling speed, which is sufficient to avoid the pearlite transformation zone in the temp. range that the actual internal temp. is lower than the isothermal treatment temp. and higher than the starting temp. of martensite transformation. In succession, the isothermal treatment is executed to this cast iron product at 400-550 deg.C. Further, each treatment of the above heating, cooling and isothermal is desirable to be executed in a fluid bed furnace.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鋳鉄品にオーステンパー処理を施して組織を
ベーナイト化する熱処理方法に係り、詳しくは被処理材
の切削加工性の改善を金回した熱処理方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat treatment method for austempering a cast iron product to change its structure to bainite. The present invention relates to a heat treatment method.

[従来の技術] 非合金若しくは合金鋳鉄品の強度を高め、同時に延性、
靭性をもたせた基地組織の強化方法として、オーステン
パー処理により基地をベーナイト組織とすることは知ら
れている。
[Prior art] Increasing the strength of non-alloyed or alloyed cast iron products, and at the same time improving the ductility and
As a method of strengthening the base structure to impart toughness, it is known to transform the base into a bainite structure through austempering treatment.

一般にオーステンパー処理を施すに当っては、鋳鉄品を
固溶体形成温度(830〜1000℃)に一定時間加熱
保持してオーステナイト化したのち、たとえばベーナイ
ト生成温度(220〜400℃)に保持した塩浴中でベ
ーナイト変態が完了するまで恒温保持するという方法が
採られている。
Generally, when performing austempering treatment, cast iron is heated and held at a solid solution formation temperature (830 to 1000°C) for a certain period of time to form austenite, and then, for example, in a salt bath held at a bainite formation temperature (220 to 400°C). A method is adopted in which the temperature is maintained at a constant temperature until the bainite transformation is completed.

つまり冷却とオーステンパー処理とを一つの浴で行うい
わゆる一般オーステンバー法(第1図に破線で示す)が
これであるが、かかる方法ではとくに厚肉の鋳鉄品を取
扱う際、表面部に比して冷却の遅い内部においてはam
の変態が進行して、場合によってはパーライトが生成す
ることになる。
In other words, this is the so-called general austempering method (indicated by the broken line in Figure 1) in which cooling and austempering are performed in one bath. am
As the metamorphosis progresses, pearlite may be produced in some cases.

このような欠点に鑑み、ベーナイト恒温変態開始時期を
遅延させるためのNl、Moなど高価な合金成分を添加
することなくこれを解決する手段として、所定のオース
テンパー処理温度よりも低温に設定した予備塩浴に一旦
浸漬して急冷し、所定のオーステンパー処理温度に近づ
けた後、所定のオーステンパー処理温度に設定した塩浴
若しくは熱処理炉にすみやかに移しかえて継続熱処理を
行ういわゆる二段オーステンパー法(特開昭59−11
0719号)もまた知られている。
In view of these drawbacks, as a means to solve this problem without adding expensive alloying components such as Nl and Mo to delay the start of bainite isothermal transformation, we have developed a preliminary method that is set at a temperature lower than the predetermined austempering temperature. So-called two-stage austempering, in which the process is immersed in a salt bath, rapidly cooled, brought close to the specified austempering temperature, and then immediately transferred to a salt bath or heat treatment furnace set at the specified austempering temperature for continuous heat treatment. Act (Japanese Unexamined Patent Publication No. 59-11
No. 0719) is also known.

[発明が解決しようとする問題点1 上述のようにオーステンパー処理を施した被処理材の基
地組織は一般にベーナイト化が不完全で約20〜50%
のオーステナイ1へが残留する。この残留オーステナイ
トの量と被処理材の靭性とは密接な関係にあり、基地組
織のほとんど全部をベーナイト化したものは、かえって
伸びが低下するとも言われている。ところがこのような
有用な残留オーステナイトも被処理材の後工程に切削加
工を伴う場合、外力の付加によってマルテンサイト変態
が進行するいわゆる加工誘起変態を生じて加工性を極端
に悪化させるという反面を有している。
[Problem to be solved by the invention 1 As mentioned above, the base structure of the austempered material is generally incompletely converted into bainite, with a ratio of about 20 to 50%.
Austenai 1 remains. There is a close relationship between the amount of retained austenite and the toughness of the material to be treated, and it is said that elongation of materials in which almost all of the base structure is converted to bainite actually decreases. However, such useful retained austenite has the disadvantage that when the post-processing of the processed material involves cutting, so-called deformation-induced transformation, in which martensitic transformation progresses due to the addition of external force, occurs, resulting in extremely poor workability. are doing.

勿論、残留オーステナイトを減少させるために単に恒温
処理時間を長くしたり、恒温処理温度を上昇させること
も考えられるが、前者では時間とエネルギー損失が大き
く、後者では残留オーステナイトの減少に付随して被処
理材の硬さや強度も不満足な値まで低下してしまうとい
う現象を生じる。
Of course, it is also possible to simply lengthen the isothermal treatment time or raise the isothermal treatment temperature in order to reduce retained austenite, but the former would result in a large loss of time and energy, while the latter would result in a loss of energy due to the reduction in retained austenite. A phenomenon occurs in which the hardness and strength of the treated material decrease to unsatisfactory values.

、本発明は、強度及び耐摩耗性に必要とする十分な硬度
を保持し、しかも切削加工性にも優れた鋳鉄品を得るこ
とを解決すべき技術課題とするものである。
The technical problem to be solved by the present invention is to obtain a cast iron product that maintains sufficient hardness necessary for strength and wear resistance, and also has excellent machinability.

E問題点を解決するための手段] 本発明は上記課題解決のため、鋳鉄品をオーステナイト
化温度に加熱したのち、パーライト変態域を回避するに
十分な冷却速度で、実体内部温度が+r1温処理温度以
下、マルテンサイト変態開始温度以上の範囲に過冷し、
次いで該鋳鉄品を400〜550’Cの温度で恒温処理
するという新規な構成を採用している。
Means for Solving Problem E] In order to solve the above problem, the present invention heats a cast iron product to an austenitizing temperature, and then performs treatment at a cooling rate sufficient to avoid the pearlite transformation region, so that the internal temperature of the product is +r1. Supercooled to a range below the temperature and above the martensitic transformation start temperature,
A novel configuration is adopted in which the cast iron product is then subjected to constant temperature treatment at a temperature of 400 to 550'C.

本発明方法においてもっとも望ましい形態は、加熱、冷
却、恒温保持の各処理工程を流動層炉で行うことである
The most desirable form of the method of the present invention is to perform each treatment step of heating, cooling, and constant temperature maintenance in a fluidized bed furnace.

第4図は流動層炉10の一例を示すもので、炉体12の
下部にはポーラスメタルや焼結体など多数の小孔を有す
る分散板14が取付けられ、該分散板14上には平均粒
径6o〜90メツシュ程度の粒状の熱媒体16が装填さ
れている。炉体12の外周には加熱器18が配設される
とともに、同炉体12の底部にはポンプ20が通気管2
2で連結されている。なお、24は通気管22に介装さ
れたバルブであり、26は炉内に懸吊状態で装入された
鋳鉄品である。
FIG. 4 shows an example of a fluidized bed furnace 10, in which a distribution plate 14 having many small holes such as porous metal or sintered material is attached to the lower part of the furnace body 12. A granular heat medium 16 having a particle size of about 6 to 90 mesh is loaded. A heater 18 is disposed around the outer periphery of the furnace body 12, and a pump 20 is connected to a ventilation pipe 2 at the bottom of the furnace body 12.
It is connected by 2. Note that 24 is a valve installed in the vent pipe 22, and 26 is a cast iron product suspended in the furnace.

上記粒状の熱媒体16としては、たとえばA又to3.
5ifz、ZrO2、MQOなどの金属酸化物が用いら
れ、該熱媒体16の流動用気体としては空気のぽか、窒
素、アルゴン、炭酸ガスなどが使用される。
As the granular heat medium 16, for example, A or to3.
Metal oxides such as 5ifz, ZrO2, MQO, etc. are used, and as the gas for flowing the heat medium 16, air, nitrogen, argon, carbon dioxide, etc. are used.

鋳鉄品の熱処理は第1図に示す熱処理サイクルに従つて
行われる。
Heat treatment of cast iron products is carried out according to the heat treatment cycle shown in FIG.

まず加熱工程においては、鋳鉄品を流動層加熱炉に装入
してオーステナイト化温度(830〜1oOO℃)に加
熱し、0.5〜1時間保持する。
First, in the heating step, the cast iron product is charged into a fluidized bed heating furnace, heated to an austenitizing temperature (830 to 100°C), and held for 0.5 to 1 hour.

次いで冷却工程に移り、流動層加熱炉から取出した鋳鉄
品を流動層冷却炉に装入する。流動層冷却炉の炉内温度
は5〜100℃(通常は常温)となるよう調節されてお
り、装入された鋳鉄品を、パーライト変態域を回避する
に十分な冷却速度(16〜b 温処理温度以下、マルテンサイト変態開始温度以上の範
囲(250〜400℃)好ましくは300〜380℃ま
で過冷する。
Next, the process moves to a cooling step, and the cast iron product taken out from the fluidized bed heating furnace is charged into a fluidized bed cooling furnace. The temperature inside the fluidized bed cooling furnace is adjusted to 5 to 100°C (usually room temperature), and the charged cast iron is cooled at a rate sufficient to avoid the pearlite transformation region (16 to 100°C). It is supercooled to a range below the treatment temperature and above the martensitic transformation start temperature (250 to 400°C), preferably 300 to 380°C.

この状態は第2図の連続冷却変態線図に明瞭に示されて
おり、かかる゛過冷操作によって一部生じた硬くて強靭
な微細ベーナイトが、以下に述べる高温の恒温処理操作
にともなう軟化現象を効果的に補填するものである。な
お、工業的に実施する場合、上記過冷温度は鋳鉄品の肉
厚に応じた在炉時間〈10〜180sec)によって制
御される。
This state is clearly shown in the continuous cooling transformation diagram in Fig. 2, and the hard and tough fine bainite partially produced by the supercooling operation is softened by the high temperature isothermal treatment described below. This effectively compensates for the In addition, in the case of industrial implementation, the above-mentioned supercooling temperature is controlled by the in-furnace time (10 to 180 seconds) depending on the thickness of the cast iron product.

恒温保持工程においては、鋳鉄品の実体内部温度が上記
過冷温度に達した時点で流動層冷却炉から取出し、該鋳
鉄品をさらに流動層恒温保持炉へと移し換える。流動層
恒温保持炉の炉内温度は400〜550℃、好ましくは
420〜500℃の範囲で、上記過冷温度との関連によ
り選択的に設定されており、約1時間の比較的短い恒温
処理を経たのち、鋳鉄品は炉外で冷却される。
In the constant temperature holding step, when the actual internal temperature of the cast iron product reaches the supercooling temperature, it is taken out from the fluidized bed cooling furnace, and the cast iron product is further transferred to a fluidized bed constant temperature holding furnace. The temperature inside the fluidized bed constant temperature holding furnace is selectively set in the range of 400 to 550°C, preferably 420 to 500°C, in relation to the above-mentioned supercooling temperature, and the constant temperature treatment is relatively short for about 1 hour. After passing through this process, the cast iron products are cooled outside the furnace.

本発明のとくに重要な特徴は、上記過冷操作と組合わせ
た高温の恒温処理操作にあり、これによって第5図に示
すように、所望の硬さくHV285〜315)を保持し
ながら残留オーステナイト量を10%以下、好ましくは
0%に減品させることである。恒温処理設定温度と残留
オーステナイト量との関係を示したのが第3図であり、
400〜420℃の遷移点を超えると残留オーステナイ
トは急激にほぼ0%にまで減少して、はとんどすべてが
ベーナイト組織に移行する。すなわち後工程における切
削加工の重大な障害原因であった残留オーステナイトの
加工誘起変態は、完全に若しくは少なくとも実害のない
程度に消去される。
A particularly important feature of the present invention is the high-temperature isothermal treatment operation combined with the above-mentioned supercooling operation, whereby, as shown in FIG. The aim is to reduce the amount by 10% or less, preferably 0%. Figure 3 shows the relationship between the constant temperature treatment setting temperature and the amount of retained austenite.
When the transition point of 400 to 420° C. is exceeded, retained austenite rapidly decreases to almost 0%, and almost all of it transitions to a bainite structure. That is, the process-induced transformation of retained austenite, which was a major cause of failure in cutting processes in subsequent steps, is completely eliminated, or at least to the extent that no actual damage occurs.

[発明の効果] 以上詳述したように本発明方法は、鋳鉄品にオーステン
パー処理を施すに当って、遷移点を超える高い設定温度
の恒温処理により残留オーステナイトを消去することと
、これによって生じる鋳鉄品の軟化を前工程において、
同処理温度よりも低い到達温度の急速過冷処理によって
巧みに補填するようにしたものであるから、耐摩耗性に
必要な十分な硬さを保持し、かつ加工誘起変態に起因す
る切削加工障害のない優れたベーナイト鋳鉄品を得るこ
とができる。
[Effects of the Invention] As detailed above, the method of the present invention, when austempering a cast iron product, eliminates residual austenite by constant temperature treatment at a high temperature exceeding the transition point, and eliminates residual austenite caused by this. The softening of cast iron products is done in the previous process.
This is skillfully compensated for by rapid supercooling treatment at a temperature lower than the same treatment temperature, so it maintains sufficient hardness necessary for wear resistance and prevents machining damage caused by machining-induced transformation. It is possible to obtain excellent bainitic cast iron products without .

しかも過冷処理の到達温度から恒温!I8理温度まで昇
温する過程で微細なベーナイト組織を生ぜしめることが
できるので、直接恒温処理温度に冷却したものに比べて
より高強度のベーナイト組織が待られる。
Moreover, the temperature is constant from the temperature reached by supercooling process! Since a fine bainite structure can be generated in the process of heating up to the I8 temperature, a higher strength bainite structure can be expected compared to the one directly cooled to the constant temperature treatment temperature.

とくに本発明の各処理を一貫して流動層炉によって行え
ば、広域な温度管理や搬送操作の簡易化のみにとどまら
ず、たとえば塩浴の洗浄等付随作業を一切省略できる利
点がある。
In particular, if each process of the present invention is consistently carried out in a fluidized bed furnace, there are advantages not only in wide-range temperature control and simplification of transport operations, but also in the ability to completely omit incidental operations such as cleaning the salt bath.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例 流動層加熱炉において900℃に加熱し、30分間保持
した中5Qms、長さ1001輪、厚さ10Iの球状黒
鉛鋳鉄製供試材を、懸吊搬送手段により該流動層加熱炉
から取出し、流動層冷却炉へと移し換える。流動層冷却
炉の炉内温度は常温(20℃)に保持されており、熱媒
体の流動調節により供試材は19℃/SeGの冷却速度
でパーライト変態域を回避して急速に冷却される。そし
て供試材の内部温度が350℃の過冷温度に到達した時
点(在炉時間で40秒)で、該供試材を再び懸吊搬送手
段により該流動層冷却炉から取出し、流動層恒温保持炉
へと移し換える。流動層恒温保持炉の炉内温度は430
℃に設定されており、60分間の恒温処理を経た供試材
は炉外に放出して冷却した。
Example: A spheroidal graphite cast iron specimen having a medium temperature of 5Qms, a length of 1001 rings, and a thickness of 10I was heated to 900°C in a fluidized bed heating furnace and held for 30 minutes, and was taken out from the fluidized bed heating furnace by a suspended conveyance means. , transferred to a fluidized bed cooling furnace. The temperature inside the fluidized bed cooling furnace is maintained at room temperature (20°C), and by adjusting the flow of the heat medium, the specimen material is rapidly cooled at a cooling rate of 19°C/SeG, avoiding the pearlite transformation region. . When the internal temperature of the test material reaches the supercooling temperature of 350°C (40 seconds in the furnace time), the test material is again taken out from the fluidized bed cooling furnace by the suspended conveyance means and kept at a constant fluidized bed temperature. Transfer to a holding furnace. The temperature inside the fluidized bed constant temperature furnace is 430
℃, and the sample material after undergoing constant temperature treatment for 60 minutes was discharged outside the furnace and cooled.

比較例1 雰囲気炉において900℃に加熱し、30分間保持した
同様の供試材を該雰囲気炉から取出し、恒温保持炉(塩
浴炉)へと移し換える。恒温保持炉の炉内温度は375
℃に設定されており、6゜分間の+M温処理を経た供試
材は炉外に放出して洗浄し冷却した。
Comparative Example 1 A similar test material heated to 900° C. in an atmospheric furnace and held for 30 minutes is taken out from the atmospheric furnace and transferred to a constant temperature furnace (salt bath furnace). The temperature inside the constant temperature furnace is 375
The temperature was set at 0.degree. C., and the test material that had undergone the +M temperature treatment for 6.degree. was discharged outside the furnace, washed, and cooled.

比較例2 上記恒温保持炉の炉内温度を430℃に設定した以外、
比較例1と同様の方法で熱処理を行った。
Comparative Example 2 Except that the temperature inside the constant temperature holding furnace was set at 430°C,
Heat treatment was performed in the same manner as in Comparative Example 1.

上記実施例及び比較例1.2で得られた供試材の特性の
比較及び孔明加工によるドリル寿命試験の結果を表1に
示す。
Table 1 shows a comparison of the characteristics of the sample materials obtained in the above Examples and Comparative Example 1.2, and the results of the drill life test by drilling.

なお、ドリル寿命試験の諸元は次の通りである。The specifications of the drill life test are as follows.

(1)使用刃具・・・・・・ 3IImのコバルトハイス製ドリル (2)加工条件・・・・・・ ドリル回転数106Or、 pSm ドリル送り速度0.07m+/rev (以下余白) 表1(1) Cutting tools used... 3IIm cobalt high speed drill (2) Processing conditions... Drill rotation speed 106Or, pSm Drill feed speed 0.07m+/rev (Margin below) Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱処理サイクル線図、第2図は同連続
冷却変態線図、第3図は恒温処理設定温度と残留オース
テナイト量との関係を示す線図、第4図は流動層炉の一
例を示す模式図、第5図は冷却時の最低到達温度と内部
硬さとの関係を示す縮図である。
Figure 1 is a heat treatment cycle diagram of the present invention, Figure 2 is a continuous cooling transformation diagram of the same, Figure 3 is a diagram showing the relationship between constant temperature treatment setting temperature and amount of retained austenite, and Figure 4 is a fluidized bed furnace. FIG. 5 is a schematic diagram showing an example of the above, and FIG. 5 is a microcosm showing the relationship between the lowest temperature reached during cooling and the internal hardness.

Claims (2)

【特許請求の範囲】[Claims] (1)鋳鉄品をオーステナイト化温度に加熱したのち、
パーライト変態域を回避するに十分な冷却速度で、実体
内部温度が恒温処理温度以下、マルテンサイト変態開始
温度以上の範囲に過冷し、次いで該鋳鉄品を400〜5
50℃の温度で恒温処理することを特徴とする鋳鉄品の
熱処理方法。
(1) After heating the cast iron to the austenitizing temperature,
At a cooling rate sufficient to avoid the pearlite transformation region, the cast iron product is supercooled to a range where the internal temperature is below the isothermal treatment temperature and above the martensitic transformation start temperature, and then the cast iron is heated to 400 to 500 ml.
A method for heat treating cast iron products, characterized by constant temperature treatment at a temperature of 50°C.
(2)上記加熱、冷却、恒温の各処理を流動層炉により
行うことを特徴とする特許請求の範囲第1項記載の方法
(2) The method according to claim 1, wherein the heating, cooling, and constant temperature treatments are performed in a fluidized bed furnace.
JP25258386A 1986-10-23 1986-10-23 Method for heat treating cast iron Pending JPS63105920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25258386A JPS63105920A (en) 1986-10-23 1986-10-23 Method for heat treating cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25258386A JPS63105920A (en) 1986-10-23 1986-10-23 Method for heat treating cast iron

Publications (1)

Publication Number Publication Date
JPS63105920A true JPS63105920A (en) 1988-05-11

Family

ID=17239389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25258386A Pending JPS63105920A (en) 1986-10-23 1986-10-23 Method for heat treating cast iron

Country Status (1)

Country Link
JP (1) JPS63105920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448028A (en) * 1990-06-18 1992-02-18 Honda Motor Co Ltd Heat treatment of spheroidal graphite cast iron blank material and device therefor
CN112334584A (en) * 2018-07-11 2021-02-05 安赛乐米塔尔公司 Method for controlling the cooling of flat metal products
JP2021529886A (en) * 2018-07-11 2021-11-04 アルセロールミタル Heat transfer methods and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS60121253A (en) * 1983-12-05 1985-06-28 Nissan Motor Co Ltd Spheroidal graphite cast iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS60121253A (en) * 1983-12-05 1985-06-28 Nissan Motor Co Ltd Spheroidal graphite cast iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448028A (en) * 1990-06-18 1992-02-18 Honda Motor Co Ltd Heat treatment of spheroidal graphite cast iron blank material and device therefor
CN112334584A (en) * 2018-07-11 2021-02-05 安赛乐米塔尔公司 Method for controlling the cooling of flat metal products
JP2021529886A (en) * 2018-07-11 2021-11-04 アルセロールミタル Heat transfer methods and related equipment
JP2021531402A (en) * 2018-07-11 2021-11-18 アルセロールミタル How to control the cooling of flat metal products

Similar Documents

Publication Publication Date Title
EP2092089B1 (en) Austempered ductile iron, method for producing this and component comprising this iron
US6149743A (en) Method of complete bainite hardening
EP2982769A1 (en) Austempered steel, method for producing it, component and semi-finished bad
CN112501396B (en) Isothermal quenching heat treatment process method for third-generation bearing steel
CN105543463A (en) Atmosphere protection heat treatment technology of ultrahigh strength D6AC steel thin-wall tube
JPS63105920A (en) Method for heat treating cast iron
JP2001011533A (en) Heat treatment of heat resistant steel
US3826694A (en) Thermal treatment of steel
JPS63118048A (en) Sliding member made of cast iron and its manufacture
CN109576465A (en) A kind of compression mod steel martensitic structure fine method
Dossett Introduction to cast iron heat treatment
JP2001131688A (en) Air-hardened low or medium carbon steel for improving heat treatment
JP3915128B2 (en) Method of spheroidizing annealing of low alloy steel
JP3864492B2 (en) Spheroidizing annealing method for steel
US3444008A (en) Controlled atmosphere processing
SU901302A1 (en) Method of thermal treatment of cast austenite steels
CN1270238A (en) Soleplate of low-alloy austenite-bainite steel and its heat treatment process
CN113215376B (en) Loader bucket tooth and heat treatment method thereof
Ahlfors Heat treatment with unpreceded possibilities and flexibility
JPS6244522A (en) Manufacture of high strength ductile cast iron
CN115896415A (en) QI & T heat treatment process for enhancing toughness of low-carbon bainite-martensite phase steel
JPH10317095A (en) Non-heat treated steel for induction contour hardening
SU1102815A1 (en) Method for heat treating hypereutectoid steel
JPH05112817A (en) Method for heat treating adi parts
SU1650728A1 (en) Method of heat treatment of pearlite steels