JPS63104699A - Method for controlling operation of anaerobic tank by underwater stirrer - Google Patents

Method for controlling operation of anaerobic tank by underwater stirrer

Info

Publication number
JPS63104699A
JPS63104699A JP24895686A JP24895686A JPS63104699A JP S63104699 A JPS63104699 A JP S63104699A JP 24895686 A JP24895686 A JP 24895686A JP 24895686 A JP24895686 A JP 24895686A JP S63104699 A JPS63104699 A JP S63104699A
Authority
JP
Japan
Prior art keywords
anaerobic
aerobic
activated sludge
tanks
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24895686A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
好雄 堺
Risuke Nakajima
中島 利助
Masaroku Kawauchi
正六 川内
Tetsuo Fujita
哲雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDOU JIGYODAN
Hanshin Engineering Co Ltd
Original Assignee
NIPPON GESUIDOU JIGYODAN
Hanshin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDOU JIGYODAN, Hanshin Engineering Co Ltd filed Critical NIPPON GESUIDOU JIGYODAN
Priority to JP24895686A priority Critical patent/JPS63104699A/en
Publication of JPS63104699A publication Critical patent/JPS63104699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To eliminate wasteful electric power consumption and to economize costs by permitting free change of the volume ratios and disposition of anaerobic tanks and aerobic tanks and controlling the stirring intensity of an arbitrary number of underwater stirrers in common use for both anaerobic and aerobic treatments according to the purposes of treatments. CONSTITUTION:The underwater stirrers 4 in common use for both the anaerobic and aerobic treatments are installed in the respective sections of plural pieces of partitioned bioreaction vessels 3 so that the stirrers can be converted to either of the anaerobic tanks A or aerobic tanks O in an anaerobic and aerobic activated sludge method. The free change of the volumetric ratios and disposition of the anaerobic tanks A and the aerobic tanks O is permitted so that the anaerobic and aerobic activated sludge treatment can be made. The stirring intensity of an arbitrary number among all the stirrers 4 is controlled automatically and continuously or automatically and intermittently or by a suitable manual operation according to the concn. of the activated sludge in the anaerobic tanks A in consideration for the purpose of the treatment. As a result, the wasteful consumption by the inadequate operation is eliminated and the costs are economized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、下水・し尿・ごみ汁廃水・工場廃水などの各
分野における汚水を対象とした水中攪拌機による嫌気槽
の運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for controlling the operation of an anaerobic tank using a submersible agitator for wastewater in various fields such as sewage, human waste, garbage water wastewater, and factory wastewater.

く従来技術〉 有機廃水浄化処理の方法として従来広く用いられてきた
通常の活性汚泥法は、窒素、燐等栄養塩類の満足な除去
が得られず、このため内海あるいは湖沼等、閉鎖性水域
の富栄養化による各種弊害を招いていることは一般に知
られているとおりで、これを防止までは改善するため、
下水・舅尿をはじめ各種汚水から窒素・燐を除去するこ
とが社会的課題となっており、これまで各種方法、vt
置例えば特許第936293号並びに特許第11472
69号案が開発検討されてきたが、長斯間に亘り国内に
広く普及した活性汚泥法とその施設の効用を図る観、α
より、その目的を達するに当たっては嫌気・好気活性汚
泥法が注目されるに至っている。
Conventional technology> The conventional activated sludge method, which has been widely used as a method for purifying organic wastewater, cannot satisfactorily remove nutrient salts such as nitrogen and phosphorus. It is generally known that eutrophication causes various adverse effects, and in order to prevent or improve this,
Removing nitrogen and phosphorus from various types of wastewater, including sewage and father's urine, has become a social issue.
For example, Patent No. 936293 and Patent No. 11472
Plan No. 69 has been under consideration for development, but the activated sludge method, which has been widely used throughout the country during the Nagasaki period, and the concept of improving the effectiveness of its facilities, α
Therefore, anaerobic/aerobic activated sludge methods are attracting attention in achieving this goal.

嫌気・好気活性汚泥法による窒素、燐除去の方法の内先
ず窒素除去については、好気槽(以下、○糟と謂う)に
於いて活性汚泥の生物反応により硝酸化、亜硝酸化した
窒素成分を無酸素の嫌気槽(以下、A梢と謂う)で脱窒
し、窒素ガスとして大気中に発散させる。
Among the methods for removing nitrogen and phosphorus using the anaerobic/aerobic activated sludge method, the first step is to remove nitrogen through nitrification and nitrite oxidation through biological reactions in activated sludge in an aerobic tank (hereinafter referred to as ○kasu). The components are denitrified in an oxygen-free anaerobic tank (hereinafter referred to as A-tree) and released into the atmosphere as nitrogen gas.

燐については同じく活性汚泥の燐に対する生物反応によ
る。即ち、有機物存在下のA槽で体内の燐を放出した活
性汚泥は、次の○槽で前記放出量以上の燐を体内に摂取
するという活性汚泥の燐代謝特性を利用する。
Regarding phosphorus, it is also due to the biological reaction to phosphorus in activated sludge. That is, activated sludge that releases phosphorus from the body in tank A in the presence of organic matter takes advantage of the phosphorus metabolic characteristics of activated sludge, such that in the next tank ○, more phosphorus than the released amount is taken into the body.

この原理に基づく嫌気・好気活性汚泥法には、硝化液循
環法、非循環法、B urdenpho法などがあり、
対象とする汚水の成分や目標処理水質等、処理条件に応
じた選択がおこなわれている。
Anaerobic/aerobic activated sludge methods based on this principle include the nitrification liquid circulation method, non-circulation method, and Burdenpho method.
Selection is made according to treatment conditions, such as target wastewater components and target treated water quality.

何れの処理方法に於いてもAWiとO槽がもうけられる
が、この相反する槽内環境の両者に共通する必要機能は
攪拌である。
In either treatment method, an AWi tank and an O tank are created, but the necessary function common to both of these contradictory tank environments is stirring.

攪拌の手段は通常、機械攪拌と空気攪拌が考えられ、空
気攪拌とした場合は混合液中に酸素の移動が起こるので
、好気攪拌が行える反面、嫌気ゾーンが実現せず、よっ
てA槽には従来よQtfi械攪拌方式が多く採用されて
きたが、0槽に散気板、故気筒等単−機能が採用されて
いる限りに於いては、当初上りA槽と0槽の容量比なら
びに配置が固定されているに等しい。
Mechanical agitation and air agitation are usually considered as the means of agitation.If air agitation is used, oxygen will move into the mixed liquid, allowing aerobic agitation, but on the other hand, an anaerobic zone will not be created, and therefore Conventionally, the Qtfi mechanical stirring system has been widely adopted, but as long as single functions such as a diffuser plate and a dead cylinder are used in the 0 tank, the initial capacity ratio between the upstream A tank and the 0 tank, It is equivalent to having a fixed position.

生物反応を原理とする活性汚泥法は温度の影響が大であ
る。
The activated sludge method, which is based on biological reactions, is greatly affected by temperature.

生物反応速度は温度に密接に関係し、脱窒速度、硝化速
度の比も温度によって変わってくる。このような場合A
槽と○槽の容量比を変更すれば合理的な処理を行うこと
ができるが、上記のように機能的に容量比が固定されて
いるに等しい従来技術ではこれが不可能であった。
Biological reaction rates are closely related to temperature, and the ratio of denitrification rate to nitrification rate also changes depending on temperature. In such a case A
Although it is possible to carry out rational processing by changing the capacity ratio between the tank and the ○ tank, this was not possible with the conventional technology in which the capacity ratio is functionally fixed as described above.

またAffiに於いては活性汚泥が沈澱しない最低限度
の攪拌強度で処理を行うことがエネルギー消費の観点で
は最も合理的であるが、活性汚泥の沈澱しない最低限度
は、流入水質や処理条件によって生成される活性汚泥の
性状によって異なってくる。そのため、従来は安全を見
込んで必要以上の攪拌を行い、エネルギーを無駄に消費
する傾向があった。
Furthermore, in terms of energy consumption, it is most rational to perform treatment at the minimum agitation intensity that does not cause activated sludge to settle in Affi, but the minimum amount of agitation that does not allow activated sludge to settle depends on the quality of the influent water and the treatment conditions. It varies depending on the properties of activated sludge. Therefore, in the past, there has been a tendency to perform more stirring than necessary in consideration of safety, which wastes energy.

〈発明が解決しようとする問題点〉 流入汚水の温度、水量、水質等、季節変動に対して適切
な生物反応環境を一定′8′積の中でつくり出すことに
より、従来技術が達し得ながった下記問題点を解決する
<Problem to be solved by the invention> By creating a biological reaction environment within a constant volume that is suitable for seasonal changes in temperature, water volume, water quality, etc. of inflowing sewage, it is possible to solve problems that the conventional technology could not achieve. The following problems were solved.

■A[とO槽の容量比ならびに配置を自由に変更し得る
装置の実現。
■Realization of a device in which the capacity ratio and arrangement of A and O tanks can be freely changed.

■A槽に於いて、生物反応速度を低下させない必要最少
攪拌強度の探知と、その維持。
■Detection and maintenance of the minimum required stirring intensity that does not reduce the rate of biological reaction in tank A.

〈問題点を解決するための手段〉 嫌気・好気活性汚泥法に於いて、仕切られた複数個の生
物反応槽の夫々の区分に嫌気・好気両用水中攪拌様を設
置して、嫌気槽或は好気槽の何れにも変換できるように
すると共に、該嫌気槽と好気槽の容量比と配置何れをも
自由に変更1.得るようにして嫌気・好気活性汚泥処理
を可能にし、前記全攪拌への内任意台数の攪拌強度を、
処p!、目的に照らし、嫌気槽を活性汚泥濃度に応じて
、自動連続的に、或は自動間歇的に、或は適宜手動操作
で制御する。
<Means for solving the problem> In the anaerobic/aerobic activated sludge method, an anaerobic/aerobic underwater stirring system is installed in each section of multiple partitioned biological reaction tanks, and the anaerobic tank is Alternatively, it can be converted to either an aerobic tank, and the capacity ratio and arrangement of the anaerobic tank and aerobic tank can be freely changed.1. It enables anaerobic/aerobic activated sludge treatment in such a way that the agitation intensity of an arbitrary number of units is added to the total agitation.
Where p! Depending on the purpose, the anaerobic tank is automatically controlled continuously, automatically intermittently, or manually as appropriate depending on the activated sludge concentration.

ぐ実施例〉 以下、本発明について実施例により現明する。Examples Hereinafter, the present invention will be elucidated by way of examples.

第1図に示すように、一定容積の生物反応槽1を隔I!
!2 、2・・・で仕切って連続セル3.3・・・とな
し、各セル3,3・・・に第2図(a)または1図(b
)に示すように、上記、嫌気・好気両用水中攪拌様4を
設置し、全磯に空気配Ir7Gを施してブロワ−5がら
送気可能ならしめれば、AmとO槽の容量比ならびに配
置を自由に変更することができる。尚、fjrJ2図(
b)は深底槽反応槽の例を示す。
As shown in FIG. 1, a biological reaction tank 1 with a constant volume is separated by I!
! 2, 2... are divided into consecutive cells 3, 3..., and each cell 3, 3... is divided by Figure 2 (a) or Figure 1 (b).
), if the above-mentioned anaerobic/aerobic underwater agitation type 4 is installed and the air distribution Ir7G is applied to the entire rocky shore so that air can be supplied from the blower 5, the capacity ratio of the Am and O tanks and the The arrangement can be changed freely. In addition, fjrJ2 figure (
b) shows an example of a deep-bottom reactor.

例えば、A梢と0411IIの配置V#戊によって第3
図(a)、第3図(b)のような硝化液循環法、又は第
3図(c)、第3図(d)のような非循環法、第3図(
e)、第3図(f)のようなりardenpho法など
が自由に選択的に手湾成できる。
For example, by arrangement V# of A tree and 0411II, the third
The nitrifying solution circulation method as shown in Figures (a) and 3(b), or the non-circulating method as shown in Figures 3(c) and 3(d),
e), the ardenpho method as shown in FIG. 3(f) can be freely and selectively constructed.

このようにA槽と○槽の容量比ならびに配置を自由に変
更することにより、A槽は活性汚泥の沈澱堆積および短
絡流が生じない程度の省エネルギー的無酸素攪拌を、該
攪拌様の回軒数制御により達する。
In this way, by freely changing the capacity ratio and arrangement of tanks A and ○, tank A can perform energy-saving, oxygen-free stirring to the extent that activated sludge sedimentation and short-circuit flow will not occur, and the number of times of stirring can be adjusted. Reached through control.

実施例は第4図に示すように11個に仕切られた生物反
応槽の各セルに嫌気・好気両用水中攪41!磯が空気配
管を伴って設置され、A槽と0槽の容量比並びに配置を
自由に変更し得る嫌気・好気活性汚泥処理装置を形成し
、処理条件に応じて流入側aから順にA、A、A、O,
○、O,O,A、A、A、0として脱窒、脱燐処理が行
なわれ、表−1に示すように極めて良好な処理水質が得
られている。又、この処理における機器の消費電力量を
表−2に示す。
In this embodiment, as shown in Fig. 4, each cell of a biological reaction tank partitioned into 11 cells is equipped with both anaerobic and aerobic underwater stirring 41! A rock is installed with air piping to form an anaerobic/aerobic activated sludge treatment device in which the capacity ratio and arrangement of tanks A and 0 can be freely changed. A, A, O,
Denitrification and dephosphorization treatments were carried out as O, O, O, A, A, A, 0, and extremely good treated water quality was obtained as shown in Table 1. Table 2 shows the amount of power consumed by the equipment in this process.

ここで、用いられた嫌気・好気両用水中攪拌様は、目詰
まりを全(生ずることなく空気のwIjllII気泡化
を促す気泡面転翼には揚水攪拌と空気破砕の2つの機能
を具備しており、これらが同時に達成せられるように空
気は回転翼の下(上流側)に供給するよう設計されてい
るので、空気が供給された場合は機内水路に気泡の上昇
力が作用し、回転翼に掛ける揚水抵抗が軽減される結果
、好気攪拌時の消費電力は表−2からも明らかなように
著しく減少する特徴を有している。
Here, the anaerobic/aerobic underwater agitation system used was designed to completely eliminate clogging and promote air bubbling without causing clogging.The bubbling blade has two functions: pumping water agitation and air crushing. The design is such that air is supplied below the rotor blades (on the upstream side) so that these can be achieved at the same time, so when air is supplied, the upward force of the bubbles acts on the in-flight waterway, causing the rotor blades to rise. As a result of the reduced pumping resistance, the power consumption during aerobic agitation is significantly reduced, as is clear from Table 2.

そして、空気の供給が遮断された無酸素(fi気)攪拌
では上記の作用がないので動力減少は起こらない。
In anoxic (fi-air) stirring in which the supply of air is cut off, the above effect does not occur, so no reduction in power occurs.

本実施例に於いても他の全ての活性汚泥処理における攪
件故気装置同様に、機器選定に当たっては、好気処理に
要する酸素量を満足し得る能力が基準となっており、そ
の基準に照らして上記容量(表−2の定格動力値)のも
のが採用されている。
In this example, as in all other activated sludge treatment agitated waste air systems, equipment selection was based on the ability to satisfy the amount of oxygen required for aerobic treatment; In light of this, the one with the above capacity (rated power value in Table 2) is adopted.

そしてこの時点では回転数制御を行わない一定速の運転
でありながら、同−機種であっても嫌気攪拌と好気攪拌
とでは、消費電力量に差異が生じているのは上記理由に
よっている。そして、通常攪拌様の運転と酸素移動との
関係は次のようになる。
The above reason is why there is a difference in power consumption between anaerobic agitation and aerobic agitation even if the machine is of the same model, even though the machine is operating at a constant speed without any rotational speed control at this point. The relationship between normal stirring-like operation and oxygen transfer is as follows.

■−一定速運転し、空気の供給を遮断すれば酸素の移動
はなく、攪拌動力と攪拌強度は一定である。
(2) If the device is operated at a constant speed and the air supply is cut off, there will be no movement of oxygen, and the stirring power and stirring intensity will remain constant.

■−一定速運転し、空気の供給を行えば、供給された空
気の量に応じて酸素移動量、並びに攪拌動力と攪拌強度
は変動する。
(2) If the device is operated at a constant speed and air is supplied, the amount of oxygen transferred, as well as the stirring power and intensity will vary depending on the amount of supplied air.

実施例では当初、攪拌強度と生物反応の関係に対する知
見が充分でなかったことと、活性汚泥の沈澱および異物
等による攪拌障害防止の観点のみから、あえて好気攪拌
時に使用する高速の電動機をそのままの能力で嫌気攪拌
にも使用したため、表−2に示すとおり嫌気攪拌時の消
費電力量が最も多くなったものである。
Initially, in the example, the high-speed electric motor used during aerobic agitation was intentionally used as is, because there was insufficient knowledge about the relationship between agitation intensity and biological reactions, and only from the perspective of preventing agitation failures due to activated sludge sedimentation and foreign matter. Since it was also used for anaerobic stirring with a capacity of

従って省エネルギーの観点からは、主としてA槽におけ
る攪拌動力低減を図るための調査、研究ならびに対策が
中心であることは明らかである。
Therefore, from the perspective of energy conservation, it is clear that investigations, research, and measures to reduce the stirring power in tank A are the main focus.

攪拌動力と攪拌強度は電動機の回転数の′X乗に比例し
、?If勤磯の回転数は電源周波数に正比例する。
The stirring power and stirring intensity are proportional to the number of rotations of the electric motor to the power of 'X', and ? If the rotation speed of the engine is directly proportional to the power supply frequency.

そこで既存の設備に改造を加えることなく該攪拌機の攪
拌強度を変え得る方法として周波数変換器を該攪拌の電
源(操作m)に装着し、ダイヤルを手動操作して無段階
任意の回転数(攪拌強度)が得られるようにし、更にA
WIの底部には活性汚泥の濃度変化を探知するべくML
SSセンサーを設置して槽内盈視装置となし、生物反応
速度を低下させず、かつ活性汚泥の沈澱を生じない範囲
で、どの程度まで回転数(攪拌強度)を下げ得るかを実
態調査によってその結果を得るに至った。
Therefore, as a method to change the stirring intensity of the stirrer without modifying the existing equipment, a frequency converter is attached to the stirring power supply (operation strength), and further A
ML is installed at the bottom of the WI to detect changes in the concentration of activated sludge.
An SS sensor was installed to act as an in-tank observation device, and a field survey was conducted to determine to what extent the rotation speed (agitation intensity) could be lowered without reducing the biological reaction rate and without causing activated sludge sedimentation. I got the result.

尚、本実態調査に用いた主な設備は次の通りである。The main equipment used in this survey is as follows.

嫌気槽容量 285[m2/セル]=幅6.8[+耐×
艮0.8[mlX水深6[+a] 攪拌様仕様 定格5.5[kw]、4r’ 60[l1
z1.回転数192[r四1(減速機直結) また、ある設定した周波数(周波数変換器使用)におけ
る攪拌所要動力、活性汚泥の分布状態、省エネルギー効
率および処理水′11等の調査結果を表−3に示す。
Anaerobic tank capacity 285 [m2/cell] = width 6.8 [+ resistance ×
0.8 [ml x water depth 6 [+a] Stirring specifications Rated 5.5 [kw], 4r' 60 [l1
z1. Number of revolutions: 192 [r41 (directly connected to reducer) Table 3 also shows the investigation results of the required stirring power, activated sludge distribution, energy saving efficiency, treated water '11, etc. at a certain set frequency (using a frequency converter). Shown below.

表−3に於いて、周波数変換器を操作することにより、
60〜22.3[Hzlまで大幅に攪拌強度を減少させ
ているにも拘らず、活性汚泥は適度の混合状態を維持し
ていることが判る。
In Table 3, by operating the frequency converter,
It can be seen that the activated sludge maintains an appropriate mixed state even though the stirring intensity is significantly reduced to 60 to 22.3 Hzl.

20[11zlにて上下に若干の濃度差の広がる傾向が
見られるので大体この辺りが限界がと推定されるが、安
全性を見込んで25.5[11z ]をこの場合の最低
制御限界としても省エネルギー効率は実に84.2[%
]にも達している。
At 20[11zl, there is a tendency for the concentration difference to widen slightly above and below, so the limit is estimated to be around this area, but considering safety, we set 25.5[11z] as the minimum control limit in this case. Energy saving efficiency is actually 84.2%
] has also been reached.

また、この時の処理水質を見ても、除去対象とする窒素
、燐の残留濃度値は(io[IIz](Ii!11い攪
拌)IL?のそれ以下となっている。
Also, looking at the quality of the treated water at this time, the residual concentration values of nitrogen and phosphorus to be removed are lower than that of (io[IIz] (Ii!11 stirring) IL?.

この¥J、験運転で下限基準とした25.5[1121
時の嫌気攪拌消費電力量を表−2の場合に適用すると、
消費電力は、W=0.87[kw/台1×6[台]=5
.22[kwlで、回転数制御を行うことにより達する
省エネルギー効率は、 lへ=+(33−5,22)/331X100=84.
2[%J好気攪拌も含めた全体では、 η=[+74−(23+18+5.22)l/74]X
IQQ=37.5[%1の省エネルギーとなる。
This ¥J was 25.5[1121
If the power consumption of anaerobic stirring is applied to the case of Table 2,
Power consumption is W = 0.87 [kW/unit 1 x 6 [unit] = 5
.. The energy saving efficiency achieved by controlling the rotation speed at 22 kwl is: To l=+(33-5,22)/331X100=84.
2[%JIn total including aerobic stirring, η=[+74-(23+18+5.22)l/74]X
Energy saving of IQQ=37.5[%1].

処理性能面では、 ■高速攪拌(強い攪拌)と低速攪拌(弱い攪拌)とでは
、生物反応速度は略同等か、もしくは弱い攪拌の方が若
干優位の傾向にある。
In terms of treatment performance, ① The biological reaction rate is approximately the same with high-speed stirring (strong stirring) and low-speed stirring (weak stirring), or weak stirring tends to be slightly superior.

■極めて弱い攪拌の場合、A槽表面にスカム層ができる
ことがあるが、スカム層がない場合よりも生物反応(脱
窒)は進む。
■In the case of extremely weak agitation, a scum layer may form on the surface of tank A, but the biological reaction (denitrification) will progress more than if there was no scum layer.

■攪拌を全く停止しても汚泥界面下では、活性汚泥の濃
度に応じた脱窒速度をもっで脱窒が進行する。
■Even if stirring is completely stopped, denitrification proceeds below the sludge interface at a denitrification rate that depends on the concentration of activated sludge.

以上より、攪拌強度そのものは生物反応速度と直接的に
は余りtxl係しないが、攪拌強度を強めるとA槽表面
の流れが強くなり、気液界面からの酸素溶は込みが多く
なる結果、”嫌気における生物反応”に必要な条件が悪
化する傾向を生むことが↑りる。A槽における攪拌強度
は弱い方が処理性能は向上するとの結論に至り、処理性
能の向上と省エネルギーは完全に両立することがここに
見出だせたのである。
From the above, the stirring intensity itself does not have much direct relation to the biological reaction rate, but as the stirring intensity increases, the flow on the surface of tank A becomes stronger, and as a result, the oxygen solution from the gas-liquid interface increases. The conditions necessary for anaerobic biological reactions tend to deteriorate. We came to the conclusion that treatment performance improves when the agitation intensity in tank A is weaker, and it was found here that improvement in treatment performance and energy saving are completely compatible.

但し、満足な処理水質を得るに必要な、”活性汚泥と被
処理水との充分な混合”を行うためには、活性汚泥の沈
澱や短絡流は避けなければならない。
However, in order to achieve "sufficient mixing of activated sludge and water to be treated" necessary to obtain satisfactory treated water quality, sedimentation of activated sludge and short-circuit flow must be avoided.

従って、活性汚泥の濃度を探知(監視)し、常時、所要
最小攪拌強度を維持することがポイントになる。
Therefore, it is important to detect (monitor) the concentration of activated sludge and maintain the required minimum stirring intensity at all times.

A槽に於いてはMLSSセンサーが探知する活性汚泥C
度に連動して周波数変換器の自動制御可能なるよう電気
的に接続することにより、註攪拌磯の回転数を自動連続
制御する。
In tank A, activated sludge C is detected by the MLSS sensor.
By electrically connecting the frequency converter to enable automatic control of the frequency converter, the rotational speed of the stirring rock can be automatically and continuously controlled.

また掻作盤にタイマーをセットして該変換器と電気的に
接続、連動させ、予め設定する周波数を自動間歇的に繰
り返し、時に応じて自動体止、自動再起動などの制御も
可能にする。
In addition, by setting a timer on the scraping board and electrically connecting and interlocking it with the converter, the preset frequency can be automatically repeated intermittently, allowing controls such as automatic stop and automatic restart depending on the time. .

上記、自動連続制御、および自動間歇制御の夫々の場合
に応じて設けられる該変換器制御連絡回路を、OFFに
することにより任意手動繰作も可能である。
Arbitrary manual operation is also possible by turning off the converter control communication circuit provided for each of the automatic continuous control and automatic intermittent control described above.

以上、嫌気・好気両用水中攪tt4P1による嫌気・好
気活性汚泥法を処理目的に応じて、硝化液循環法、非循
環法、B ardenpho法その他を使い分けるに当
たり、攪拌代の回転数を制御することは、単に省エネル
ギーのみならず、斯る汚水処理装置が最上使命とすると
ころの処理水質の向上と安定性を同時に達成する極めて
ff!要な事項を内在している。
As mentioned above, when using the anaerobic/aerobic activated sludge method using anaerobic/aerobic underwater stirring tt4P1, the nitrification liquid circulation method, non-circulation method, Bardenpho method, etc. depending on the treatment purpose, the rotation speed of the stirring allowance should be controlled. This means that it not only saves energy, but also improves and stabilizes the quality of treated water, which is the ultimate mission of such sewage treatment equipment. Contains important matters.

〈発明の効果〉 本発明方法は、周波数変換器を用いて攪拌を蔑の回転数
を変換することにより、8′易に好気性攪拌或は嫌気性
攪拌の何れにも適した回転数を得られるので専用授(子
機である必要はなく、構成が簡単である。
<Effects of the Invention> The method of the present invention can easily obtain a rotation speed suitable for either aerobic stirring or anaerobic stirring by converting the rotation speed for stirring using a frequency converter. Since it can be used as a dedicated terminal (it does not need to be a slave unit, the configuration is simple).

そして、上記のように処理法や、汚泥の種類、濃度等に
適した回転をすることができるので不適正な運転による
無駄な電力消費がなく、経費を節約することができる。
As described above, since the rotation can be performed in a manner appropriate to the treatment method, type of sludge, concentration, etc., there is no wasted power consumption due to improper operation, and costs can be saved.

本発明方法によれば、酸素移動量に対する動力の利用効
率に優れ、常時30〜40(%)の省エネルギーとなり
、又、送気、断気何れの場合にも散気板、故気箭にこれ
まで発生したような目詰まりがみられず、性能を長期間
一定に保つことができるなど多くの優れた効果を有する
According to the method of the present invention, the efficiency of using power with respect to the amount of oxygen transferred is excellent, and energy saving of 30 to 40% is achieved at all times. It has many excellent effects, such as no clogging that occurred in previous years, and the ability to maintain constant performance over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施例を示す処J”l!槽の↑
+YI成を側面図、 第2図(、)は、浅底処理槽の側面略図、第2図(b)
は、深底処理槽の側面略図、第3図し)(+1)は、硝
化液循環法の構成例を示す70シート、 第3図(c)(d)は、非循環法の構成例を示す70シ
ート、 第3図(e)(f)は、上記他の構成例を示す70ン−
ト、 Pt54図は、循環法による処JTl¥槽の配置構成例
の70シートの側面略図である。
Figure 1 shows an example of the method of the present invention.
Figure 2 (,) is a side view of the +YI configuration, Figure 2 (a) is a schematic side view of the shallow treatment tank, Figure 2 (b)
3) (+1) is a 70 sheet showing an example of the configuration of the nitrification liquid circulation method, and Figures 3(c) and (d) are examples of the configuration of the non-circulation method. 70 sheets shown in FIG. 3(e) and (f) are 70 sheets showing other configuration examples above
Figure Pt54 is a schematic side view of 70 sheets of an example of the arrangement of a JTl tank for treatment using the circulation method.

Claims (1)

【特許請求の範囲】[Claims] 1、嫌気・好気活性汚泥法に於いて、仕切られた複数個
の生物反応槽の夫々の区分に嫌気・好気両用水中攪拌機
を設置して、嫌気槽或は好気槽の何れにも変換できるよ
うにすると共に、該嫌気槽と好気槽の容量比と配置何れ
をも自由に変更し得るようにして嫌気・好気活性汚泥処
理を可能にし、前記全攪拌機の内任意台数の攪拌強度を
、処理目的に照らし、嫌気槽を活性汚泥濃度に応じて、
自動連続的に、或は自動間歇的に、或は適宜手動操作で
制御するようにしたことを特徴とする水中攪拌機による
嫌気槽の運転制御方法。
1. In the anaerobic/aerobic activated sludge method, an anaerobic/aerobic underwater agitator is installed in each section of multiple partitioned biological reaction tanks, so that neither the anaerobic tank nor the aerobic tank can be used. In addition, the capacity ratio and arrangement of the anaerobic tank and the aerobic tank can be freely changed to enable anaerobic/aerobic activated sludge treatment, and any number of agitators among the above-mentioned agitators can be used. The strength of the anaerobic tank is adjusted according to the treatment purpose and the activated sludge concentration.
A method for controlling the operation of an anaerobic tank using an underwater agitator, characterized in that the operation is controlled automatically continuously, automatically intermittently, or manually as appropriate.
JP24895686A 1986-10-20 1986-10-20 Method for controlling operation of anaerobic tank by underwater stirrer Pending JPS63104699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24895686A JPS63104699A (en) 1986-10-20 1986-10-20 Method for controlling operation of anaerobic tank by underwater stirrer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24895686A JPS63104699A (en) 1986-10-20 1986-10-20 Method for controlling operation of anaerobic tank by underwater stirrer

Publications (1)

Publication Number Publication Date
JPS63104699A true JPS63104699A (en) 1988-05-10

Family

ID=17185903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24895686A Pending JPS63104699A (en) 1986-10-20 1986-10-20 Method for controlling operation of anaerobic tank by underwater stirrer

Country Status (1)

Country Link
JP (1) JPS63104699A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009047A1 (en) * 1999-08-02 2001-02-08 Asio, S.R.O. Municipal waste-water treatment method
KR100304058B1 (en) * 1998-09-02 2001-11-22 이정국 Reactor tank bulkhead and sewage treatment system used in sewage treatment system
KR100348528B1 (en) * 1999-07-27 2002-08-14 주식회사 청우네이처 Method and Apparatus of Biological Nutrient Removal for the Purification of Wastewater
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
JP2013212490A (en) * 2011-11-08 2013-10-17 Toshiba Corp Nitrogen/phosphor removal treatment method and nitrogen/phosphor removal treatment apparatus
JP2017080667A (en) * 2015-10-27 2017-05-18 住友重機械エンバイロメント株式会社 Agitation system and water treatment equipment
JP2017094305A (en) * 2015-11-27 2017-06-01 住友重機械エンバイロメント株式会社 Agitation system
US10384963B2 (en) 2015-03-25 2019-08-20 Xylem Europe Gmbh Method for controlling a treatment apparatus arrangement, a treatment apparatus arrangement for a treatment plant as well as a treatment plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537959A (en) * 1978-09-11 1980-03-17 Tokyo Shibaura Electric Co Control rod drive mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537959A (en) * 1978-09-11 1980-03-17 Tokyo Shibaura Electric Co Control rod drive mechanism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304058B1 (en) * 1998-09-02 2001-11-22 이정국 Reactor tank bulkhead and sewage treatment system used in sewage treatment system
KR100348528B1 (en) * 1999-07-27 2002-08-14 주식회사 청우네이처 Method and Apparatus of Biological Nutrient Removal for the Purification of Wastewater
WO2001009047A1 (en) * 1999-08-02 2001-02-08 Asio, S.R.O. Municipal waste-water treatment method
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus
JP2013212490A (en) * 2011-11-08 2013-10-17 Toshiba Corp Nitrogen/phosphor removal treatment method and nitrogen/phosphor removal treatment apparatus
US10384963B2 (en) 2015-03-25 2019-08-20 Xylem Europe Gmbh Method for controlling a treatment apparatus arrangement, a treatment apparatus arrangement for a treatment plant as well as a treatment plant
JP2017080667A (en) * 2015-10-27 2017-05-18 住友重機械エンバイロメント株式会社 Agitation system and water treatment equipment
JP2017094305A (en) * 2015-11-27 2017-06-01 住友重機械エンバイロメント株式会社 Agitation system

Similar Documents

Publication Publication Date Title
JP4994265B2 (en) Water treatment apparatus and water treatment method
JPS63104699A (en) Method for controlling operation of anaerobic tank by underwater stirrer
CN108609728A (en) A kind of system and control method using dissolved oxygen modified sewage sludge filamentary discharges
CN201777962U (en) Oxidation ditch system for processing sewage
KR100935914B1 (en) Advanced wastewater treatment apparatus with two stage reactor
CN214270604U (en) Single-power sewage treatment system and sewage treatment tank thereof
CN212269592U (en) Wig production sewage treatment plant
CN110526397B (en) (AO) 2 Integrated multistage sedimentation circulating reactor
WO1986003734A1 (en) Nitrification/denitrification of waste material
CN210825614U (en) (AO)2- -precipitation integrated multistage circulation reactor
CN107963782B (en) Biological contact oxidation reaction system with enhanced denitrification function
JPH0461716B2 (en)
JPS607997A (en) Process and apparatus for purifying filthy turbid water in anaerobic and aerobic treating tank using underwater stirring
CN220300561U (en) Automatic sewage denitrification and dephosphorization device of control
CN215975171U (en) Limited response aeration water pollution treatment system
CN219546810U (en) Sewage treatment plant of integral type MABR membrane
CN216711838U (en) High concentration waste water MBR integration integrated system
CN219972006U (en) Combined aeration device for magnetic biochemical process
CN218810837U (en) Automatic allocation type biological denitrification device for high-organic high-ammonia-nitrogen wastewater treatment
JPH04193399A (en) Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method
CN221254225U (en) High-efficient sewage denitrification dephosphorization processing system
CN217600471U (en) Integrated sewage treatment equipment
CN215365079U (en) Pump station with deodorization and silt deposit prevention functions
CN221217513U (en) Integrated treatment device for landfill leachate
CN217148794U (en) Sewage treatment integrated device with air as power source