JPS63103872A - Method of joining nitride base ceramics and metal member for joint - Google Patents

Method of joining nitride base ceramics and metal member for joint

Info

Publication number
JPS63103872A
JPS63103872A JP24651286A JP24651286A JPS63103872A JP S63103872 A JPS63103872 A JP S63103872A JP 24651286 A JP24651286 A JP 24651286A JP 24651286 A JP24651286 A JP 24651286A JP S63103872 A JPS63103872 A JP S63103872A
Authority
JP
Japan
Prior art keywords
nitride
ceramics
bonding
metal member
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24651286A
Other languages
Japanese (ja)
Inventor
世良 時夫
信彦 原
明 新田
土取 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Original Assignee
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture filed Critical Hiroshima Prefecture
Priority to JP24651286A priority Critical patent/JPS63103872A/en
Publication of JPS63103872A publication Critical patent/JPS63103872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、窒化珪素など窒化物系セラミックスの接合
方法と接合用中間金属部材に関するものであり、特にセ
ラミックス同士或いはセラミックスと金属との接合に係
るものである。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to a method for joining nitride-based ceramics such as silicon nitride, and an intermediate metal member for joining, and particularly relates to joining ceramics to each other or ceramics to metals. It is something.

(発明の技術的背景とその問題点) 窒化珪素、サイアロンなど窒化物系セラミソクスは、特
に耐熱性、耐摩耗性、高強度及び、耐蝕性にすぐれてい
るため、酸化物系セラミックスとは異なった耐熱材料と
して、従来のセラミックスに対してファインセラミック
スと呼ばれ、その応用分野の開発が進められている。例
えば内燃機関部品、熱交換器部品、高温用治具またはダ
イカスト部品など応用が検討されているが、高硬度から
来る加工性の悪さ制限されている。
(Technical background of the invention and its problems) Nitride-based ceramics such as silicon nitride and Sialon have particularly excellent heat resistance, abrasion resistance, high strength, and corrosion resistance, so they are different from oxide-based ceramics. As heat-resistant materials, conventional ceramics are called fine ceramics, and their application fields are being developed. For example, applications are being considered for internal combustion engine parts, heat exchanger parts, high-temperature jigs, and die-cast parts, but they are limited by poor workability due to high hardness.

そのため、このような各種部品の機能を向上させるため
に接合が、必要となり、種々の形状をしたファインセラ
ミックス同士の接合技術及びそのための接合用材料の開
発が不可欠となっている。
Therefore, bonding is required to improve the functions of these various parts, and it is essential to develop bonding techniques for fine ceramics of various shapes and materials for bonding.

従来、窒化珪素に代表される窒化物系セラミックスの接
合技術に関しては、該物質が溶融物質との濡れ性が悪い
ことや、反応性が非常に低いことから、その改良を意図
してセラミックス同士の間に挿入する中間材料について
種々検討されているが、接合機能、実用性などでいまだ
充分なる中間材料は報告されていない。
Conventionally, bonding technology for nitride-based ceramics, such as silicon nitride, has been found to have poor wettability with molten substances and extremely low reactivity. Various intermediate materials to be inserted between the two have been studied, but no intermediate material with sufficient bonding function, practicality, etc. has yet been reported.

明廁古の浄書(内容に変更なし)(z’ニゲ−J/ρy
l)例えば、特開昭58−55381の様に/IN、N
bN、Be2Nz 、ZrN、TiNなどの高融点窒化
物を溶融させて接合する方法や、特公昭59−2475
5のようにCaF2またはCaF2+カオリンの混合物
を利用し、主成分CaF。
Ming-Liang ancient engraving (content unchanged) (z'nige-J/ρy
l) For example, as in JP-A-58-55381 /IN,N
A method of melting and joining high melting point nitrides such as bN, Be2Nz, ZrN, TiN, etc.
5, a mixture of CaF2 or CaF2 + kaolin is used, and the main component is CaF.

の分解温度(1400〜1500℃)以上に加熱する方
法では、作業の実用性に問題がある。更に、特開昭6O
−180968(7)ように0r20〜70%を含有し
、残部Fe及び/又はNi合金のように高融点中間金属
もあるが、融点以下の1300〜1350℃で拡散接合
する方法は、固体拡散のために反応速度が遅く接合に長
時間を要すると共に、接着強度の小さいことが欠点とな
って現れる。
The method of heating above the decomposition temperature (1,400 to 1,500°C) has a problem with the practicality of the work. Furthermore, JP-A-6O
-180968 (7), which contains 0r20~70% and the balance is Fe and/or high melting point intermediate metals such as Ni alloys, but the method of diffusion bonding at 1300~1350℃ below the melting point is a solid diffusion bonding method. Therefore, the reaction rate is slow, it takes a long time to bond, and the adhesive strength is low.

一方、特開昭58−2276 (Mnを含む合金層)、
特開昭60−151292 (Cr含有金属層)のよう
に、ロー付けの考え方に基いて、低融点合金を接合材と
して利用する方法も考案されているが、仮に接合部の強
度が得られても接合されるセラミックスの耐熱性が有効
活用されず、実用的に接合材の融点にその使用限界が規
制されることになる。
On the other hand, JP-A-58-2276 (alloy layer containing Mn),
JP-A-60-151292 (Cr-containing metal layer) has devised a method of using a low-melting point alloy as a bonding material based on the concept of brazing, but even if the strength of the bonded part cannot be obtained, However, the heat resistance of the ceramics to be bonded is not effectively utilized, and the practical limit of its use is regulated by the melting point of the bonding material.

(発明の目的) 本発明の目的は、上記従来技術並びにそこに利用される
接合材(もしくは中間金属材料)の問題点を解消し、窒
化物系セラミックスの高温特性を損なうことなく、又、
実用性ある処理温度で且つ、短時間で協力な接着強度の
得られる窒化物系セラミックス(特にS;3N4)同士
或いは、窒化物系セラミックスと金属との接合方法並び
にそのための中間金属部材を提供するものである。
(Objective of the Invention) The object of the present invention is to solve the problems of the above-mentioned conventional techniques and the bonding materials (or intermediate metal materials) used therein, without impairing the high-temperature characteristics of nitride-based ceramics, and
To provide a method for bonding nitride ceramics (especially S; 3N4) or nitride ceramics and metal, which can obtain good adhesive strength in a short time at a practical processing temperature, and an intermediate metal member for the same. It is something.

(発明の概要) 本発明は、窒化珪素、サイアロンのような窒化物系セラ
ミックス同士の接合に際して、該セラミックスの表面層
解離によって生ずる構成元素窒素と親和性を有する金属
元素を含有する合金部材を被接合材の間に密着状態にて
介在させ、減圧または真空下の非酸化性状態にて中間金
属部材を溶融状態もしくは一部固相を含む半溶融状態に
するとともに、窒化物系セラミックスの表面層解離を同
時進行させ、ここに遊離した該セラミックスの構成元素
である窒素と中間合金部材に含有される窒化物生成元素
により反応生成窒化物を形成せしめることによって接着
強度が著しく向上することを見出して本発明を完成した
ものである。中間金属部材は窒化物生成第1成分元素と
してCr、V。
(Summary of the Invention) The present invention provides a method for bonding nitride-based ceramics such as silicon nitride and Sialon with each other by covering an alloy member containing a metal element that has an affinity with nitrogen, a constituent element produced by dissociation of the surface layer of the ceramics. The intermediate metal member is brought into a molten state or a semi-molten state containing a portion of a solid phase by interposing the bonding material in close contact with each other in a non-oxidizing state under reduced pressure or vacuum, and the surface layer of the nitride-based ceramic is It has been discovered that adhesive strength can be significantly improved by allowing dissociation to proceed simultaneously and forming a reaction product nitride with the released nitrogen, which is a constituent element of the ceramic, and the nitride-forming element contained in the intermediate alloy member. This completes the present invention. The intermediate metal member contains Cr and V as the nitride-forming first component elements.

Nb、Bを含有し、且つ上記第1成分元素の窒化物生成
による接合を効果的に安定して発揮させる第2成分元素
としてZr、Ti、Aeを含有することを特徴としてい
る。
It is characterized in that it contains Nb and B, and also contains Zr, Ti, and Ae as second component elements that effectively and stably exhibit bonding by forming nitrides of the first component elements.

又、前記窒化物系セラミックスとCu系、Ap系など非
鉄金属及びその合金、Fe系合金、Ni系合金、Co系
合金など金属との接合に際しては、上記中間金属部材を
接合した後、或いは接合前に中間金属部材と金属の間に
インバー、コバール、W、Moなど熱膨張係数の小さい
材料を介在させ接合することが出来る。
In addition, when joining the nitride-based ceramics to non-ferrous metals such as Cu-based and Ap-based metals, their alloys, Fe-based alloys, Ni-based alloys, Co-based alloys, etc., after joining the intermediate metal members, or Before joining, a material with a small thermal expansion coefficient such as Invar, Kovar, W, or Mo can be interposed between the intermediate metal member and the metal.

本発明にて適用しうるセラミックスは、その中に含有さ
れる窒素成分が中間金属部材中の窒化物生成元素と反応
して窒化物を形成しうるちのであリ、特に窒化珪素、サ
イアロンなどの窒化物系セラミックスである。また、窒
化珪素としてもその製法(反応焼結、ホットプレス、雰
囲気焼結など)によらず適用でき、接合機構より焼結助
剤の有無、種類によらない。
Ceramics that can be applied in the present invention are particularly made of silicon nitride, sialon, etc., because the nitrogen component contained therein can react with nitride-forming elements in the intermediate metal member to form nitrides. It is a nitride ceramic. Furthermore, it can be used as silicon nitride regardless of its manufacturing method (reactive sintering, hot pressing, atmosphere sintering, etc.), and the bonding mechanism is independent of the presence or absence of a sintering aid and its type.

このような窒化物系セラミックス同士或いは、低熱膨張
係数材料を介して窒化物基セラミックスと金属を接合し
、充分なる接着強度を得るために、被接合材間に介在せ
しめる中間金属部材中の窒化物生成第1成分元素が該セ
ラミックスの解離によって生ずる窒素と容易に反応しう
る状態にする必要がある。従って、該中間金属部材を箔
、線、粉、膜のいずれかの状態で、上記セラミックスの
接合面に密着させ、これを真空又は減圧下で溶融状態又
は半溶融状態となし、かかる状態にて解離した該セラミ
ックス中の窒素と反応して窒化物を形成し、該セラミッ
クス同士の接合に大きく寄与し、かかる効果は窒化物生
成第1成分元素より窒素との親和性の大き°い前記第2
成分元素を含有させることによって接合速度、接合強度
が一層改善されることが明らかとなった。
In order to bond such nitride-based ceramics to each other or to a nitride-based ceramic and a metal via a material with a low coefficient of thermal expansion, and to obtain sufficient bonding strength, nitrides in an intermediate metal member interposed between the bonded materials are used. It is necessary to bring the produced first component element into a state where it can easily react with nitrogen produced by dissociation of the ceramic. Therefore, the intermediate metal member, in the form of foil, wire, powder, or film, is brought into close contact with the bonding surface of the ceramic, and is brought into a molten or semi-molten state under vacuum or reduced pressure. It reacts with the dissociated nitrogen in the ceramics to form a nitride, which greatly contributes to the bonding of the ceramics.
It has become clear that the joining speed and joining strength are further improved by including the component elements.

ここに、中間金属部材の合金組成は、窒化物生成第1成
分元素としてCr0.2〜10.0重世%、Nb0,2
〜10.0重量%、■0.2〜10.0重量%又は、8
0.01〜0.50重重景から選ばれる単独又は2種以
上と、第2成分元素として0.1〜3.0重量%のZr
、Tj、Affiのうちから選ばれる単独又は2種以上
を含有するCu合金又はNi30.0重世%以下を含有
するNi−Cu合金である。ここに窒化物生成元素の限
定理由は次の通り。
Here, the alloy composition of the intermediate metal member is 0.2 to 10.0% Cr and 0.2% Nb as the first component element for nitride formation.
-10.0% by weight, ■0.2-10.0% by weight, or 8
One or more selected from 0.01 to 0.50 heavy weight, and 0.1 to 3.0% by weight of Zr as a second component element.
, Tj, and Affi, or a Ni--Cu alloy containing 30.0 weight percent or less of Ni. The reasons for limiting the nitride-forming elements are as follows.

本発明になる接着強度は、中間金属部材中の窒化物生成
第1成分元素と被接合材の窒化物系セラミックスの解離
による窒素の反応生成窒化物によるものであり、上記窒
化物生成第1成分元素の下限値は、反応生成窒化物によ
る接着強度の影響が現れる最低値である。一方、窒化物
生成第1成分元素の含有量が過剰になると、上記窒化物
と同時に、他の解離元素である珪素との反応によるシリ
サイドも形成されて接着強度を低下させることを確認し
ている。このことから、上記窒化物生成第1成分元素の
上限値は、反応生成窒化物よりも反応生成シリサイドの
影響が接着強度により強く現れる最低値である。
The adhesive strength of the present invention is due to the nitride produced by the reaction between the nitride-forming first component element in the intermediate metal member and the nitride-based ceramic of the bonded material, and The lower limit value of the element is the lowest value at which the influence of the reaction-generated nitride on the adhesive strength appears. On the other hand, it has been confirmed that when the content of the nitride-forming first component element becomes excessive, silicide is also formed due to the reaction with silicon, which is another dissociated element, at the same time as the nitride, reducing the adhesive strength. . From this, the upper limit of the nitride-forming first component element is the lowest value at which the influence of the reaction-generated silicide is stronger than that of the reaction-generated nitride.

従って、反応生成窒化物と反応生成シリサイドの接着強
度への相乗効果、並びに、反応生成窒化物の生成量によ
る接着強度の点から窒化物生成第1成分元素の含有量と
して前記組成範囲を選定したものである。
Therefore, the above composition range was selected as the content of the nitride-forming first component element from the viewpoint of the synergistic effect on the adhesive strength between the reaction-generated nitride and the reaction-generated silicide, and the adhesive strength depending on the amount of reaction-generated nitride produced. It is something.

一方、窒化物生成第2成分元素Zr、Ti、A2は窒化
物系セラミックス接合面を真空下又は減圧下においてそ
の接合面を清浄化し、且つ減圧度又は真空度、接合温度
、接合時間など接合条件の僅かな変動による窒化物系セ
ラミックスの解離速度、解離量の変動に関係することな
く第1成分元素による窒化物生成を安定して行わしめ、
接合強度を安定化させるためのものであって、その含有
量は前記の如く0.1〜3.0重量%である。
On the other hand, the nitride-forming second component elements Zr, Ti, and A2 are used to clean the bonding surface of nitride-based ceramics under vacuum or reduced pressure, and to clean the bonding surface under vacuum or reduced pressure, and to adjust the bonding conditions such as the degree of reduced pressure or degree of vacuum, bonding temperature, bonding time, etc. nitrides are stably produced by the first component element, regardless of fluctuations in the dissociation rate and amount of nitride-based ceramics due to slight fluctuations in
It is for stabilizing the bonding strength, and its content is 0.1 to 3.0% by weight as described above.

その下限値0.1重量%は、第2成分元素による上記作
用の現れる最低値であり、一方、3.0重量%以上にな
ると、第2成分元素の窒化物が窒化物系セラミックスと
中間金属部材の接合面に優先生成され、第1成分元素の
窒化物生成を阻害し、接合強度上好ましくない。
The lower limit value of 0.1% by weight is the minimum value at which the above-mentioned effect by the second component element appears.On the other hand, when it exceeds 3.0% by weight, the nitride of the second component element is mixed with the nitride-based ceramic and the intermediate metal. It is preferentially generated on the joint surfaces of the members, inhibits the formation of nitride of the first component element, and is unfavorable in terms of joint strength.

ベース金属としては、窒化物系セラミックスとして代表
される窒化珪素、サイアロンなどの解離によって生ずる
珪素と相溶性を有する金属が好ましく、Cu合金、N 
1−Cu合金が選定される。
As the base metal, metals that are compatible with silicon produced by dissociation such as silicon nitride and sialon, which are represented by nitride ceramics, are preferable, and Cu alloys, N
1-Cu alloy is selected.

N i  Cu合金において、Ni含有量は、30゜0
重量%以下である。これは、本発明になる接合が中間金
属部材の溶融状態又は、半溶融状態にて行われることか
ら、接合温度の高温化は被接合材である窒化物系セラミ
ックスの分解を促進し、セラミックスの接合面が荒れ、
接合温度が低下すると共に、Ni含有量の多量化は、窒
化物系セラミックスの分解を促進し、作業性並びに接合
強度の安定性の面から30.0重量%以上の含有は好ま
しくない。
In the Ni Cu alloy, the Ni content is 30°0
% by weight or less. This is because the joining according to the present invention is carried out with the intermediate metal members in a molten or semi-molten state, and therefore, increasing the joining temperature promotes the decomposition of the nitride ceramics that are the materials to be joined, and The joint surface becomes rough,
In addition to lowering the bonding temperature, increasing the Ni content promotes decomposition of nitride-based ceramics, and from the viewpoint of workability and stability of bonding strength, a content of 30.0% by weight or more is not preferable.

上記窒化物生成元素を含有する中間金属部材の被接合材
間の密着介在に当たっては、一般に該合金を大気溶解ま
たは真空溶解によって作成した後、冷延または熱延によ
って箔または膜(好ましくは30〜500μm)とした
後、接合面間に介在させるが、該中間金属部材の粉末を
作成し、これをペースト状に調整し、セラミックス接合
面に塗布または該中間金属部材を真空蒸着又は、スパッ
タリング等で表面上に密着しても良い。
In order to provide close contact between the intermediate metal members containing the above-mentioned nitride-forming elements, the alloy is generally melted in the atmosphere or in vacuum, and then cold-rolled or hot-rolled into a foil or film (preferably 30 to 500 μm), the intermediate metal member is interposed between the bonding surfaces by creating a powder of the intermediate metal member, adjusting it into a paste, and applying it to the ceramic bonding surface, or applying the intermediate metal member by vacuum evaporation, sputtering, etc. It may be attached closely to the surface.

介在させるに当たり、中間金属部材と被接合材の反応性
を促進するために密着度を向上させることは有効であり
、被接合材接合面間に載荷荷重を加えることも接着強度
の増加に利用される。しかも、その荷重も5 kg f
 /cnl以下と低載荷荷重であ効果が得られる。
When intervening, it is effective to improve the degree of adhesion in order to promote the reactivity between the intermediate metal member and the materials to be joined, and applying a load between the joining surfaces of the materials to be joined can also be used to increase adhesive strength. Ru. Moreover, the load is 5 kg f
The effect can be obtained with a low applied load of less than /cnl.

又、本発明になる中間金属部材を用いての窒化物系セラ
ミックス同士或いは、低膨張係数材料を介しての窒化物
系セラミックスと金属の接合において中間金属部材中の
窒化物生成第2成分元素又は、炭素(高温真空中で炭素
被膜を形成する如き有機物質)を被接合窒化物系セラミ
ックスの接合面上に定め蒸着した後、第1成分元素のみ
を含有する中間金属部材を密着、介在し、窒化物系セラ
ミックス同士或いは、低膨張係数材料を介して金属と接
合させることも可能である。又、逆に第1成分元素のみ
を含有する中間金属部材上に上記蒸着を施した後に、同
様に接合工程を実施しても上記と同様な効果は得られる
Further, in joining nitride-based ceramics to each other or to a nitride-based ceramic and a metal via a low expansion coefficient material using the intermediate metal member according to the present invention, the nitride-forming second component element or , after depositing carbon (an organic substance that forms a carbon film in a high-temperature vacuum) on the bonding surface of the nitride-based ceramics to be bonded, an intermediate metal member containing only the first component element is closely attached and interposed; It is also possible to bond nitride-based ceramics to each other or to metal via a low expansion coefficient material. On the other hand, even if the bonding step is performed in the same manner after the vapor deposition is performed on the intermediate metal member containing only the first component element, the same effect as described above can be obtained.

以下、本発明の詳細を実施例で説明する。Hereinafter, the details of the present invention will be explained with reference to Examples.

(実施例 1) アセトン洗浄した10mm角、厚さ6龍の窒化珪素(常
圧焼結)の接合面の間に表1に示す本発明になる中間金
属部材(厚さ200μm)を挿入した試料を1〜5 ×
10−’+n)(gの真空内で各中間金属部材の液相線
温度で15分間加熱し、接合処理した後自然冷却した(
なお、接合に際し、0゜5 kg f /ctの載荷荷
重を加えた)。
(Example 1) A sample in which an intermediate metal member according to the present invention (200 μm thick) shown in Table 1 was inserted between the joint surfaces of silicon nitride (atmospheric pressure sintered) of 10 mm square and 6 mm thick that had been cleaned with acetone. 1~5 ×
10-'+n) (g), heated for 15 minutes at the liquidus temperature of each intermediate metal member, and then cooled naturally after bonding process (
In addition, upon joining, a load of 0°5 kgf/ct was applied).

なお、中間金属部材は、所定組織の成分にて真空溶解し
て作成し、その後、表面層を0.5mm機械加工にて除
去した後、厚さ200μmに圧延し、膜とした。
Note that the intermediate metal member was created by vacuum melting the components of a predetermined structure, and then, after removing the surface layer by 0.5 mm by machining, it was rolled to a thickness of 200 μm to form a film.

上記方法により形成された接合部材及びその接着強度の
評価を第1図及び第2図に示す方法で行った。その結果
本発明合金は表1に示す様に優れた接着強度を示した。
The bonding members formed by the above method and their adhesive strength were evaluated by the method shown in FIGS. 1 and 2. As a result, the alloy of the present invention exhibited excellent adhesive strength as shown in Table 1.

各試験片のせん断試験後、Cr系中間金属部材の場合の
接合界面をX線回折した。結果、クロム窒化物が優先生
成されているのが確認された。一方、クロム含有量の低
い場合には(Cu、Ni)又は(Cu、Ni、Si)の
合金が、クロム含有量10〜13重量%以上になるとク
ロムシリサイドの生成が起こり、15重量%ではクロム
シリサイドの優先生成により接着強度が著しく低下した
After the shear test of each test piece, the bonding interface in the case of a Cr-based intermediate metal member was subjected to X-ray diffraction. As a result, it was confirmed that chromium nitride was preferentially produced. On the other hand, when the chromium content is low (Cu, Ni) or (Cu, Ni, Si) alloy, when the chromium content is 10 to 13% by weight or more, chromium silicide is formed, and when the chromium content is 15% by weight, chromium silicide is formed. Adhesive strength significantly decreased due to preferential formation of silicide.

(実施例 2) 窒化珪素の接合面に厚さ100A”の炭素を真空蒸着し
た後、中間金属部材として2.0重量%V−1.0重量
%A6−18重量%N i、残部CUから成る中間金属
部を窒化珪素間に介在させ、真空圧5 X 10−3t
lHg、接合温度1180℃。
(Example 2) After vacuum-depositing carbon with a thickness of 100A'' on the bonding surface of silicon nitride, an intermediate metal member of 2.0% by weight V-1.0% by weight A6-18% by weight Ni, the balance from CU The intermediate metal part consisting of
lHg, junction temperature 1180°C.

載荷荷重1.Okgf/antの接合条件にて接合し、
せん断試験を行った結果23.5kgf/+u”のせん
断強度を示した。
Applied load 1. Joined under Okgf/ant joining conditions,
A shear test showed a shear strength of 23.5 kgf/+u''.

(実施例 3) 1.0重量%Nb−25重量%Ni−残部Cuから成る
中間金属部材を用いて、その接合面にTiを80A0真
空Wした窒化珪素上にメタライズした後、0.3%炭素
鋼との間にコバールを介在させて、750°Cで拡散接
合(加圧力50 kg f /cn()シた結果、窒化
珪素並びに中間金属部材と窒化珪素との接合面には亀裂
の発生などの異常は認められなかった。
(Example 3) Using an intermediate metal member consisting of 1.0% by weight Nb, 25% by weight Ni, and the remainder Cu, Ti was metalized on the bonding surface on silicon nitride subjected to 80A0 vacuum, and then 0.3% As a result of diffusion bonding (applying force 50 kgf/cn) at 750°C with Kovar interposed between the carbon steel and the silicon nitride, cracks were generated on the joint surface between the silicon nitride and the intermediate metal member and the silicon nitride. No other abnormalities were observed.

異常のように本発明における窒化物生成元素を含有する
中間金属部材の利用により、優れた接着強度が得られ、
充分実用に供しうろことが、明らかとなった。又実施例
1に示していない窒化物生成第1成分元素と第2成分元
素の組合わせにおいても、本発明になる各組成範囲内で
あれば実用性ある充分なせん断強度を示した。
Exceptionally, by using the intermediate metal member containing the nitride-forming element in the present invention, excellent adhesive strength can be obtained.
It became clear that it could be put to practical use. Further, even in combinations of the nitride-forming first component element and second component element that are not shown in Example 1, sufficient practical shear strength was exhibited as long as the compositions were within the respective composition ranges of the present invention.

窒化物系セラミックスとしてのサイアロンの接着におい
ても実施例1と同様の方法で接着しうろことを確認して
いる。
It has been confirmed that sialon, which is a nitride-based ceramic, can be bonded using the same method as in Example 1.

表1Table 1

【図面の簡単な説明】 第1図は、この発明の一実施例を示す正面図、第2図は
、この発明の実施状態を示す説明図である。 (1)・・窒化物系セラミックス (2)・・中間金属
部材 特 許出願人  広  島  県 第1図 手続補正書Cカ幻 昭和62年2月9日 1 事件の表示
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the state of implementation of the invention. (1) Nitride-based ceramics (2) Intermediate metal member patent applicant Hiroshima Prefecture Chart 1 Procedural Amendment C illusion February 9, 1985 1 Indication of the case

Claims (1)

【特許請求の範囲】 [1]窒化物系セラミックス同士或いは窒化物系セラミ
ックスと金属との接合において、その接続部間に該セラ
ミックスの解離によって生ずる構成元素窒素と反応し、
窒化物を形成するクロム(Cr)、ニオビウム(Nb)
、バナジウム(V)、ボロン(B)、の単独又は2種以
上を第一成分元素としその窒化物形成を安定、推進させ
るジルコニウム(Zr)、アルミニウム(Al)、チタ
ン(Ti)の単独又は2種以上を第2成分元素とする銅
基又はニッケル30.0重量%以下のニッケル−銅基合
金を中間金属部材として介在させ接合することを特徴と
する窒化物系セラミックスの接合方法。 [2]0.02〜10.0重量%のCr、Nb、V又は
0.01〜0.50重量%のBの単独又は2種以上を上
記第1成分元素とし、0.1〜3.0重量%のZr、A
l、Tiの単独又は2種以上を上記第2成分元素とする
Cu基又はNi30.0重量%以下のNi−Cu基合金
であることを特徴とする窒化物系セラミックスの接合用
金属部材。 [3]窒化物系セラミックス同士或いは窒化物系セラミ
ックスと金属との接合に際し、そのセラミックス又は前
記中間金属部材(又は前記第1成分元素のみを含有する
中間金属部材)の接合面に炭素、Zr、Al、Tiから
選ばれる1種を蒸着後、接合することを特徴とする窒化
物系セラミックスの接合方法。
[Scope of Claims] [1] In joining nitride-based ceramics to each other or between nitride-based ceramics and a metal, reacting with constituent element nitrogen generated by dissociation of the ceramics between the connected parts,
Chromium (Cr), niobium (Nb) forming nitrides
, vanadium (V), boron (B), or two or more thereof as the first component element, and zirconium (Zr), aluminum (Al), or titanium (Ti) alone or in combination to stabilize and promote nitride formation. A method for joining nitride-based ceramics, characterized in that copper-based or nickel-copper-based alloy containing 30.0% by weight or less of nickel is interposed as an intermediate metal member for joining. [2] 0.02 to 10.0% by weight of Cr, Nb, V or 0.01 to 0.50% by weight of B alone or two or more are used as the first component element, and 0.1 to 3. 0 wt% Zr, A
1. A metal member for bonding nitride-based ceramics, characterized in that it is a Cu-based alloy or a Ni-Cu-based alloy containing 30.0% by weight or less of Ni, in which the second component element is one or more of Ti and Ti. [3] When bonding nitride-based ceramics to each other or nitride-based ceramics to a metal, carbon, Zr, A method for bonding nitride-based ceramics, characterized in that one type selected from Al and Ti is vapor-deposited and then bonded.
JP24651286A 1986-10-17 1986-10-17 Method of joining nitride base ceramics and metal member for joint Pending JPS63103872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24651286A JPS63103872A (en) 1986-10-17 1986-10-17 Method of joining nitride base ceramics and metal member for joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24651286A JPS63103872A (en) 1986-10-17 1986-10-17 Method of joining nitride base ceramics and metal member for joint

Publications (1)

Publication Number Publication Date
JPS63103872A true JPS63103872A (en) 1988-05-09

Family

ID=17149494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24651286A Pending JPS63103872A (en) 1986-10-17 1986-10-17 Method of joining nitride base ceramics and metal member for joint

Country Status (1)

Country Link
JP (1) JPS63103872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729907B2 (en) 2019-09-18 2023-08-15 Kabushiki Kaisha Toshiba Structure and circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811389A (en) * 1981-07-02 1983-01-22 キヤリア・コ−ポレイシヨン High-performance heat-transfer pipe and its manufacture
JPS59128279A (en) * 1983-01-11 1984-07-24 岡本 郁男 Soldering method
JPS6030593A (en) * 1983-07-29 1985-02-16 Hitachi Ltd Joining method of different kind of material
JPS61136605A (en) * 1984-12-07 1986-06-24 Keiichiro Shoji Joining method of sintered hard material and metallic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811389A (en) * 1981-07-02 1983-01-22 キヤリア・コ−ポレイシヨン High-performance heat-transfer pipe and its manufacture
JPS59128279A (en) * 1983-01-11 1984-07-24 岡本 郁男 Soldering method
JPS6030593A (en) * 1983-07-29 1985-02-16 Hitachi Ltd Joining method of different kind of material
JPS61136605A (en) * 1984-12-07 1986-06-24 Keiichiro Shoji Joining method of sintered hard material and metallic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729907B2 (en) 2019-09-18 2023-08-15 Kabushiki Kaisha Toshiba Structure and circuit board

Similar Documents

Publication Publication Date Title
US4516716A (en) Method of brazing with iron-based and hard surfacing alloys
US4630767A (en) Method of brazing using a ductile low temperature brazing alloy
US6616032B1 (en) Brazing composition and method for brazing parts made of alumina-based materials with said composition
US4448605A (en) Ductile brazing alloys containing reactive metals
ATE79365T1 (en) PROCESS FOR JOINING MOLDED PARTS MADE OF SIC WITH CERAMIC OR METAL.
JPS5929661B2 (en) Copper-based amorphous homogeneous alloy
WO2002094499B1 (en) High temperature melting braze materials for bonding niobium based alloys
US4604328A (en) Ductile brazing alloy containing reactive metals and precious metals
US4980243A (en) Direct bonding of ceramic parts by a silver alloy solder
US4623513A (en) Ductile low temperature brazing alloy
US4606981A (en) Ductile brazing alloys containing reactive metals
US4690876A (en) Article comprising a ductile brazing alloy foil containing reactive metals and precious metals
US4719081A (en) Palladium alloy for joining ceramics and method of use
EP0135603A1 (en) Ductile low temperature brazing alloy
JPS63103872A (en) Method of joining nitride base ceramics and metal member for joint
US3713790A (en) Joined body of pyrolytic graphite and metallic members
US4490437A (en) Ductile nickel based brazing alloy foil
WO1994003305A1 (en) Gold-nickel-vanadium brazing materials
US4316573A (en) Homogeneous brazing foils of copper based metallic glasses
US5301861A (en) Gold-nickel-vanadium brazing materials
JP2755455B2 (en) Brazing powder for ceramic bonding
JPS62168694A (en) Cladding solder
JPS6032648A (en) Method of metallizing ceramics and alloy foil for metallizing ceramics
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JPS59141395A (en) Brazing filler material