JPS63103803A - Apparatus for producing liquid ozone - Google Patents

Apparatus for producing liquid ozone

Info

Publication number
JPS63103803A
JPS63103803A JP24689386A JP24689386A JPS63103803A JP S63103803 A JPS63103803 A JP S63103803A JP 24689386 A JP24689386 A JP 24689386A JP 24689386 A JP24689386 A JP 24689386A JP S63103803 A JPS63103803 A JP S63103803A
Authority
JP
Japan
Prior art keywords
ozone
gas
cylindrical dielectric
creeping discharge
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24689386A
Other languages
Japanese (ja)
Other versions
JP2553338B2 (en
Inventor
Senichi Masuda
増田 閃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61246893A priority Critical patent/JP2553338B2/en
Publication of JPS63103803A publication Critical patent/JPS63103803A/en
Application granted granted Critical
Publication of JP2553338B2 publication Critical patent/JP2553338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To improve the production efficiency of ozone gas, by placing a surface opposite to a corona electrode on a surface of a cylindrical dielectric interposing a gas channel therebetween and cooling the surface below the liquefying temperature of ozone. CONSTITUTION:An oxygen gas supplying tube 16 is inserted into the center of an ozone-liquefying part 14 and the lower end of the tube is connected to a gas channel 15a. Oxygen gas regulated to a definite pressure is introduced into the apparatus through the tube 16, passed through the gas channel 15a and supplied to a creeping discharge region 15. The oxygen gas supplied to the creeping discharge region 15 is converted to ozone by the action of creeping discharge. The ozone gas is immediately transferred through the gas channel 15a by the diffusing action to the surface 14a of the ozone-liquefying part 14. The ozone is cooled in contact with the surface 14a, attached to the surface 14a in the form of liquid ozone 19 and accumulated to form a layer on the surface 14a. Finally, the liquefied ozone is flowed down along the surface 14a by gravitation force, transferred through the funnel-shaped bottom 20 to a dripping port 21 and dripped and stored in a liquid ozone reservoir 22.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は殺菌、消毒及び漂白、その他一般の酸化等に
使用する液体オゾンの製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an apparatus for producing liquid ozone used for sterilization, disinfection, bleaching, and other general oxidation.

従来の技術 従来の液体オゾンの製造装置の1つとして、筒状誘電体
の内面に複数の線状放電極を設け、その筒状誘電体の肉
厚内、或はその外面に面状誘導電極を設け、これらの両
電極間に交流高電圧、又はパルス電圧を印加して、該内
面に沿面放電を発生させるオゾナイザにおいて、ここで
生成したオゾンガスを別の装置で冷却して液化する装置
がある。
2. Description of the Related Art As one of the conventional liquid ozone manufacturing apparatuses, a plurality of linear discharge electrodes are provided on the inner surface of a cylindrical dielectric material, and a planar induction electrode is provided within the thickness of the cylindrical dielectric material or on its outer surface. In the ozonizer, a creeping discharge is generated on the inner surface by applying an AC high voltage or pulse voltage between these two electrodes, and there is a device in which the ozone gas generated here is cooled and liquefied with another device. .

この装置はその沿面放電区域に酸素ガス又は空気を供給
し、そこを流動する間にオゾンガスを生成するものであ
るので、該沿面放電区域を通過する際、一旦生成された
オゾンの一部が上記沿面放電自体によって分解し、再び
酸素に戻るので、オゾン生成効率が低下する。
This device supplies oxygen gas or air to its creeping discharge area and generates ozone gas while flowing through it, so when passing through the creeping discharge area, some of the ozone once generated is The creeping discharge itself decomposes it and returns to oxygen, reducing the ozone production efficiency.

発明が解決しようとする問題点 この発明は沿面放電区域で一旦生成されたオゾンガスが
そこで再び酸素に戻ることのないようにして、オゾンガ
スの生成効率を向上することを目的とするものである。
Problems to be Solved by the Invention The object of the present invention is to improve the efficiency of ozone gas production by preventing the ozone gas once produced in the creeping discharge area from returning to oxygen there.

他の目的は生成されたオゾンガスを液化温度以下に冷却
して液化し、筒状誘電体の内面にトラップせしめること
である。
Another purpose is to cool the generated ozone gas below its liquefaction temperature, liquefy it, and trap it on the inner surface of the cylindrical dielectric.

又、他の目的は生成されたオゾンガスを、その生成区域
で冷却することによフてオゾンガス生成区域の圧力を低
下し、この低下現象によってその区域に新たな酸素を自
動釣に供給することである。
Another purpose is to reduce the pressure in the ozone gas generation area by cooling the generated ozone gas in the generation area, and this lowering phenomenon can supply new oxygen to that area for automatic fishing. be.

問題点を解決するための手段 筒状誘電体の肉厚の少なくともその一部分を介して、該
筒状誘電体の内面又は外面のコロナ電極と面状誘導電極
を互いに対向せしめ、両電極の間に高圧交流電源を接続
したオゾナイザに於いて、該コロナ電極の形成する沿面
放電域とガス空間を介して対向せる位置に生成オゾンを
捕集液化するためのすシンガス液化温度以下に強冷され
たオゾン液化部を設け、更に筒状誘電体の下端部に液体
オゾンの落下口を設けたものである。
Means for Solving the Problem A corona electrode and a planar induction electrode on the inner or outer surface of the cylindrical dielectric are made to face each other through at least a part of the thickness of the cylindrical dielectric, and there is a gap between the two electrodes. In an ozonizer connected to a high-voltage AC power source, ozone strongly cooled to below the liquefaction temperature of the syngas to collect and liquefy the generated ozone is placed at a position facing the creeping discharge region formed by the corona electrode via a gas space. A liquefaction section is provided, and a drop port for liquid ozone is provided at the lower end of the cylindrical dielectric.

作  用 コロナ電極と面状誘導電極との間に交流高電圧を印加し
、筒状t11100コロナ電極を配設せる表面に沿面放
電を発生し、ここに酸素ガス又は空気を供給して、オゾ
ンガスを生成する。この際、該沿面放電域に対向せるオ
ゾン液化部はその附属冷却機構によってオゾンガスの液
化温度以下に冷却され、前記生成したオゾンガスは熱拡
散により急速にオゾン液化部に運ばれ、そこで強冷され
て液体オゾンとなり、該オゾン液化部の表面にトラップ
されると共に、体積が収縮してこの部分の圧力が低下す
る。
Operation: An AC high voltage is applied between the corona electrode and the planar induction electrode to generate a creeping discharge on the surface on which the cylindrical T11100 corona electrode is disposed, and oxygen gas or air is supplied here to generate ozone gas. generate. At this time, the ozone liquefaction section facing the creeping discharge area is cooled to below the liquefaction temperature of ozone gas by its attached cooling mechanism, and the generated ozone gas is rapidly transported to the ozone liquefaction section by thermal diffusion, where it is intensely cooled. The ozone becomes liquid and is trapped on the surface of the ozone liquefaction part, and the volume contracts and the pressure in this part decreases.

トラップされた液体オゾンはオゾン液化部の表面に沿っ
て、重力によって流下し、落下孔から外部に清下し、そ
こに予じめ用意された容器に貯溜される。
The trapped liquid ozone flows down by gravity along the surface of the ozone liquefaction section, is purified to the outside through the drop hole, and is stored there in a container prepared in advance.

実施例 。Example .

第1図に示す如くファインセラミック等で形成された円
筒状誘電体1の内面2に、本例では線状電極より成るコ
ロナ電極3を設け、該円筒状誘電体1の肉厚内に面状話
導?I!極4を埋設して、該線状コロナ電極3と面状誘
導電極4との間に円筒状誘電体1の肉厚の一部分を介在
せしめ、線状コロナ電41i 3と面状誘導電極4との
間に交流高圧電源5を接続し、この間に交流高電圧を印
加し、円筒状誘電体1の内面2に沿って沿面放電を発生
させ、面状の沿面放電域15を形成せしめる。
As shown in FIG. 1, a corona electrode 3 consisting of a linear electrode in this example is provided on the inner surface 2 of a cylindrical dielectric 1 made of fine ceramic or the like, and a planar electrode 3 is provided within the thickness of the cylindrical dielectric 1. Guide the conversation? I! The pole 4 is buried, and a part of the wall thickness of the cylindrical dielectric 1 is interposed between the linear corona electrode 3 and the planar induction electrode 4, so that the linear corona electrode 41i 3 and the planar induction electrode 4 are connected to each other. An AC high-voltage power supply 5 is connected between them, and an AC high voltage is applied between them to generate a creeping discharge along the inner surface 2 of the cylindrical dielectric 1 to form a planar creeping discharge region 15.

円筒状誘電体1の外周面に第3図の冷却フィン6付金属
f7を第2図の如く捲き付けて第1図の如く、円筒状誘
電体1の外周面1aのほぼ全面に亘って冷却フィン6を
形成する。
The metal f7 with cooling fins 6 shown in FIG. 3 is wrapped around the outer peripheral surface of the cylindrical dielectric 1 as shown in FIG. 2, and as shown in FIG. Fins 6 are formed.

なおこの金属IFTは第3図に示すように、アルミニュ
ーム等の帯状金属帯7の両側7a。
As shown in FIG. 3, this metal IFT is formed on both sides 7a of a band-shaped metal band 7 made of aluminum or the like.

7aを折り曲げて断面溝形フbに形成し、その両側折り
曲げ片7g、7aに夫々多汐の切り込み7c、7cを入
れて、刷子状に形成したちのである。
7a is bent to form a groove-shaped cross section b, and the bent pieces 7g and 7a on both sides are made with wide incisions 7c and 7c, respectively, to form a brush shape.

斯様にして円筒状誘電体1の外周面に形成された冷却フ
ィン6の外側にそれを囲むように蛇管8を設け、蛇管8
の前記冷却フィン6側に複数の噴出孔10を穿設し、蛇
管8の人口11から送り込んだ液体窒素等の液体ガスを
各噴出孔10から、冷却フィン6に向けて吹き付け、液
体ガスの冷熱で冷却フィン6を強冷し、円筒状誘電体1
の内面2の温度をオゾンガスの液化温度(−112℃)
よりやや高い一100℃にする。
A flexible tube 8 is provided on the outside of the cooling fin 6 formed on the outer circumferential surface of the cylindrical dielectric body 1 so as to surround it.
A plurality of jet holes 10 are formed on the side of the cooling fins 6, and a liquid gas such as liquid nitrogen, which is sent from the tube 11 of the corrugated pipe 8, is blown from each jet hole 10 toward the cooling fins 6, thereby discharging the cold heat of the liquid gas. The cooling fins 6 are strongly cooled, and the cylindrical dielectric body 1 is
The temperature of inner surface 2 of is the liquefaction temperature of ozone gas (-112℃)
Set the temperature to slightly higher than -100℃.

蛇管8の外側を断熱性筐体12で包囲し、その内部の冷
熱を外部に逃げないようにする。
The outside of the flexible pipe 8 is surrounded by a heat insulating casing 12 to prevent the cold and heat inside thereof from escaping to the outside.

更に円筒状誘電体1の内側に円筒状オゾン液化部14を
同心的に挿入し、その表面14aと筒状誘電体1の内面
2との間にガス流通路15aを形成する。
Further, a cylindrical ozone liquefier 14 is concentrically inserted inside the cylindrical dielectric 1, and a gas flow path 15a is formed between the surface 14a and the inner surface 2 of the cylindrical dielectric 1.

オゾン液化部14の中心部に酸素ガス供給管16を挿入
し、その下端を前記ガス流通路15aと連通し、この酸
素ガス供給管16から一定圧力に調整された酸素ガスを
送入し、該ガス流通路15aを通過せしめつつ沿面放電
区域15に供給する。
An oxygen gas supply pipe 16 is inserted into the center of the ozone liquefaction section 14, and its lower end is communicated with the gas flow passage 15a. Oxygen gas adjusted to a constant pressure is supplied from the oxygen gas supply pipe 16, and the oxygen gas is supplied with a constant pressure. The gas is supplied to the creeping discharge area 15 while passing through the gas flow path 15a.

又、酸素ガス供給管16と前記表面14aとの間に冷却
室17を形成し、ここに液体窒素等の液化ガス18を注
入し、その液化ガス18の冷熱で表面14aをその内側
から強冷してその表面温度をオゾンガスの液化温度−1
12℃より充分に低い温度、本例では一130℃に保つ
Additionally, a cooling chamber 17 is formed between the oxygen gas supply pipe 16 and the surface 14a, into which a liquefied gas 18 such as liquid nitrogen is injected, and the cold heat of the liquefied gas 18 strongly cools the surface 14a from the inside. and its surface temperature is the liquefaction temperature of ozone gas - 1
The temperature is kept well below 12°C, in this example at -130°C.

沿面放電域15に供給された酸素ガスは前述の沿面放電
の作用をうけてオゾンガスとなり、それが直ちに拡散作
用によりガス流通路15aを通ってオゾン液化部14の
表面14aに運ばれ、これに接して液化温度以下に冷却
されて液体オゾン19となって表面14aに付着し、徐
々に累積して表面14aに層を形成し、やがて重力によ
り、14aに沿って流下し、漏斗状底面20を経て落下
孔21に達し、ここに接続された液体オゾン容器22内
に滴下して貯溜される。
The oxygen gas supplied to the creeping discharge area 15 becomes ozone gas under the action of the above-mentioned creeping discharge, which is immediately carried to the surface 14a of the ozone liquefaction section 14 through the gas flow passage 15a by the diffusion action and comes into contact with it. The ozone is cooled to below the liquefaction temperature, becomes liquid ozone 19, and adheres to the surface 14a, gradually accumulates to form a layer on the surface 14a, and eventually flows down along the surface 14a due to gravity, passing through the funnel-shaped bottom 20. It reaches the drop hole 21, drops into a liquid ozone container 22 connected thereto, and is stored there.

又オゾン液化部14の表面14aでオゾンガスが、上述
のように液化される際、その体積を減じて圧力が低下す
るので、酸素ガス供給管16を通じて酸素ガスは前記圧
力の低下した沿面放電区域15に自動釣に供給され、斯
様にオゾンの液化と酸素ガスの供給を継続的に行うもの
である。
Furthermore, when the ozone gas is liquefied on the surface 14a of the ozone liquefaction section 14 as described above, its volume is reduced and the pressure is lowered, so the oxygen gas is transferred to the creeping discharge area 15 where the pressure has decreased through the oxygen gas supply pipe 16. It is supplied to automatic fishing equipment, and in this way it continuously liquefies ozone and supplies oxygen gas.

効   果 この発明は上述の通りの構成であり、沿面放電を発生す
る筒状誘電体1の内面2の全域に対向して、ガス流通路
をへたてて円筒状のオゾン液化部14があり、その内側
冷却座17に導入せる液体窒素等の冷熱によってその表
面14aがオゾン液化温度以下に冷却され、上記沿面放
電によって生成されたオゾンは熱放散によって直ちにオ
ゾン液化部14の表面14aに運ばれ、ここで液化して
表面14aに付着するの従ってオゾンの生成効率が前記
従来のものと比較して著しく向上できる。
Effects This invention has the configuration as described above, and there is a cylindrical ozone liquefaction section 14 with a gas flow path flattened, facing the entire inner surface 2 of the cylindrical dielectric 1 that generates creeping discharge. The surface 14a is cooled to below the ozone liquefaction temperature by the cold heat of liquid nitrogen or the like introduced into the inner cooling seat 17, and the ozone generated by the creeping discharge is immediately carried to the surface 14a of the ozone liquefaction section 14 by heat dissipation. Here, the ozone is liquefied and attached to the surface 14a, so that the ozone production efficiency can be significantly improved compared to the conventional method.

又、生成されたオゾンガスが冷却されて液化するので、
沿面放電区域の圧力が低下し、ここに新たな酸素ガスを
自動釣に供給することができ、液体オゾンの生成を継続
的に行うことができる。
In addition, as the ozone gas produced is cooled and liquefied,
The pressure in the creeping discharge area is reduced, and fresh oxygen gas can be supplied to the automatic fishing line, allowing continuous production of liquid ozone.

上記の実施例においては筒状誘電体1の内面2にコロナ
電極3を設けた例を示したが、その外面1aにコロナ電
極3を設けてもよく、その時は誘電体1の外面1aに沿
ってガス流通路を設け、該ガス流通路を介して、その外
側に該誘電体1を囲繞してオゾン液化部14を設けると
よい。
In the above embodiment, an example was shown in which the corona electrode 3 was provided on the inner surface 2 of the cylindrical dielectric 1, but the corona electrode 3 may be provided on the outer surface 1a. It is preferable that a gas flow path is provided, and the ozone liquefier 14 is provided outside of the gas flow path surrounding the dielectric 1.

尚、沿面放電区域でのオゾン生成効率は温度が下るほど
上昇するので上記の如く筒状誘電体1の外側を冷却フィ
ン6を介して冷却し、その内面2の温度を充分低く保ち
、沿面放電域を強冷することにより、オゾンの生成効率
を大幅に上昇できる。しかし筒状誘電体1の内面2をオ
ゾンガスの液化温度(−112℃)以下にすると、ここ
でもオゾンが液化付着して沿面放電が阻害されるので好
ましくない。
Incidentally, since the ozone generation efficiency in the creeping discharge area increases as the temperature decreases, as described above, the outside of the cylindrical dielectric 1 is cooled via the cooling fins 6, and the temperature of the inner surface 2 is kept sufficiently low to prevent creeping discharge. By strongly cooling the area, the ozone production efficiency can be greatly increased. However, if the inner surface 2 of the cylindrical dielectric body 1 is made below the liquefaction temperature of ozone gas (-112 DEG C.), ozone will liquefy and adhere to the inner surface 2 of the cylindrical dielectric 1, which will inhibit creeping discharge, which is not preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオゾンガスの製造装置の縦断面図、第
2図はその一部分の構成を示す斜視図、第3図は第2図
の部分的拡大斜面図である。 1・・・・・・筒状誘電体 2・・・・・・筒状誘電体の内面 3・・・・・・線状コロナ電極 4・・・・・・面状誘導電極 5・・・・・・高圧交流電源 6・・・・・・冷却フィン 8・・・・・・液化ガス用蛇管 10・・・・・・噴出孔 14・・・・・・オゾン液化部 18・・・・・・液体オゾン 20・・・・・・落下孔 第1図 ↓
FIG. 1 is a longitudinal cross-sectional view of the ozone gas production apparatus of the present invention, FIG. 2 is a perspective view showing a partial configuration thereof, and FIG. 3 is a partially enlarged perspective view of FIG. 2. 1... Cylindrical dielectric 2... Inner surface of cylindrical dielectric 3... Linear corona electrode 4... Planar induction electrode 5... ... High-voltage AC power supply 6 ... Cooling fins 8 ... Liquefied gas serpentine pipe 10 ... Nozzle hole 14 ... Ozone liquefaction section 18 ... ...Liquid ozone 20...Drop hole diagram 1↓

Claims (1)

【特許請求の範囲】 1)筒状誘電体の表面のコロナ電極に対向して面状誘導
電極を、該筒状誘電体の肉厚の少なくとも一部分を介し
て設け、両電極間に高圧交流電源を接続したオゾナイザ
に於いて、該コロナ電極とガス通路をへだてて対向せる
位置にオゾンの液化温度以下に強冷せる表面をもったオ
ゾン液化部を設けたことを特徴とする液体オゾンの製造
装置。 2)オゾン液化部が液化ガスの冷熱を利用して冷却され
ることを特徴とする特許請求の範囲第1項記載の液体オ
ゾンの製造装置。 3)筒状誘電体が竪方向に形成され、その下端部に液体
オゾンの落下孔が形成されていることを特徴とする特許
請求の範囲1又は2記載の液体オゾンの製造装置。
[Scope of Claims] 1) A planar induction electrode is provided opposite to the corona electrode on the surface of the cylindrical dielectric, with at least a portion of the wall thickness of the cylindrical dielectric being interposed therebetween, and a high-voltage AC power source is connected between the two electrodes. An apparatus for producing liquid ozone, characterized in that an ozonizer connected to the corona electrode is provided with an ozone liquefaction section having a surface that can be strongly cooled to a temperature below the liquefaction temperature of ozone, at a position facing the corona electrode and the gas passage. . 2) The liquid ozone manufacturing apparatus according to claim 1, wherein the ozone liquefaction section is cooled using the cold energy of the liquefied gas. 3) The liquid ozone production apparatus according to claim 1 or 2, wherein the cylindrical dielectric body is formed in a vertical direction, and a drop hole for liquid ozone is formed at the lower end of the cylindrical dielectric body.
JP61246893A 1986-10-17 1986-10-17 Liquid ozone production equipment Expired - Lifetime JP2553338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246893A JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246893A JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Publications (2)

Publication Number Publication Date
JPS63103803A true JPS63103803A (en) 1988-05-09
JP2553338B2 JP2553338B2 (en) 1996-11-13

Family

ID=17155307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246893A Expired - Lifetime JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Country Status (1)

Country Link
JP (1) JP2553338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219455A (en) * 1988-07-05 1990-01-23 Mitsubishi Electric Corp Thin film forming device
JPH0687603A (en) * 1991-09-17 1994-03-29 Yanmaa Sangyo Kk Silent discharge ozonizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143793A (en) * 1974-04-22 1975-11-19
JPS5393196A (en) * 1977-01-26 1978-08-15 Hitachi Ltd Ozonizer
JPS53120507A (en) * 1977-03-30 1978-10-21 Sony Corp Tape recorder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143793A (en) * 1974-04-22 1975-11-19
JPS5393196A (en) * 1977-01-26 1978-08-15 Hitachi Ltd Ozonizer
JPS53120507A (en) * 1977-03-30 1978-10-21 Sony Corp Tape recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219455A (en) * 1988-07-05 1990-01-23 Mitsubishi Electric Corp Thin film forming device
JPH0687603A (en) * 1991-09-17 1994-03-29 Yanmaa Sangyo Kk Silent discharge ozonizer

Also Published As

Publication number Publication date
JP2553338B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5573733A (en) Inner electrode for an ozone generator, ozone generator containing said electrode and method of use of said ozone generator
JP4286777B2 (en) High frequency induction plasma reactor for mass production of nano powder
US4296003A (en) Atomized dielectric fluid composition with high electrical strength
US5871701A (en) Ozone generator with small-diameter dielectric tubes
CN103295868B (en) Plasma processing apparatus and method of plasma processing
JPWO2004061929A1 (en) Plasma generator, ozone generator, substrate processing apparatus, and semiconductor device manufacturing method
EP2848096A1 (en) Device for providing a flow of plasma
US3973133A (en) Ozone generator
JPS63103803A (en) Apparatus for producing liquid ozone
JP2008103323A (en) Plasma generating device, method of cleaning display panel, and method of manufacturing display panel using the same
KR20210011444A (en) Active gas generating device and film forming device
US20090211895A1 (en) Ozone generator
JP2553336B2 (en) Ozonizer
US3872313A (en) Ozone generator
JPH082500B2 (en) Plasma cutting torch
JPS62124079A (en) Plasma arc cutting torch
JPS6291405A (en) Ozonizer
JP2002087804A (en) Ozone generating device
JPH11157808A (en) Ozone generating device
JPH10101307A (en) Ozone generator
JP3341333B2 (en) Ozone generator
JPS61155206A (en) Ozonizer
US2284084A (en) Glow discharge lamp
RU2180315C1 (en) Tubular ozonizer
US1224150A (en) Arc-suppressing device.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514