JPS63103098A - Surface treatment of amorphous alloy material - Google Patents

Surface treatment of amorphous alloy material

Info

Publication number
JPS63103098A
JPS63103098A JP25048086A JP25048086A JPS63103098A JP S63103098 A JPS63103098 A JP S63103098A JP 25048086 A JP25048086 A JP 25048086A JP 25048086 A JP25048086 A JP 25048086A JP S63103098 A JPS63103098 A JP S63103098A
Authority
JP
Japan
Prior art keywords
amorphous alloy
oxide
resistance
alloy ribbon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25048086A
Other languages
Japanese (ja)
Other versions
JPH0430474B2 (en
Inventor
Yasuo Okazaki
靖雄 岡崎
Hideo Sugano
秀雄 菅野
Kazukiyo Terayama
寺山 一清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25048086A priority Critical patent/JPS63103098A/en
Publication of JPS63103098A publication Critical patent/JPS63103098A/en
Publication of JPH0430474B2 publication Critical patent/JPH0430474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the iron loss, interlayer resistance, and corrosion resistance of the title material by using a multi-stage electrolytic cell, and coating a material having a magnetic deterioration inhibiting action on the surface of the material at the time of depositing an oxide on the surface of the material by anodization. CONSTITUTION:A thin amorphous alloy band A travels between the cathodes 4 of the electrolytic cells 1a-1c which are arranged in multiple stages and provided with conductor rolls 2 and sink rolls 3. The distance L between the respective rolls 21 and 22 in the lengthwise direction of the thin band A is controlled so that the voltage drop due to the length of the electrode is not remarkably increased. By this method, the thin band A is continuously anodized at a high rate without deteriorating the electrolysis efficiency, and an oxide-based insulating coated film can be formed on the surface. The coating material having a magnetic deterioration inhibiting action is then coated on the surface, and the material can be uniformly coated at this time and coated over the whole surface of the thin band A in cooperation with the oxide. Accordingly, the electric resistance of the surface of the interlayer resistance is increased, and an eddy current is also reduced. Since the thin band A having high activity is not exposed directly to the atmosphere, the corrosion resistance is also improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トランス、回転機等の電気機器の鉄心として
使用される非晶質合金材料の表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface treatment of amorphous alloy materials used as cores of electrical equipment such as transformers and rotating machines.

〔従来の技術〕[Conventional technology]

変圧器1回転機等の電気機器に使用される鉄心材料とし
ては、励磁特性が良好であり、鉄を貝の低いことが要求
される。この鉄損を低下させるためには、材料内の欠陥
を少なくし、内部応力を下げることにより、ヒステリシ
スtUを低減させ、また電気抵抗を高め、板厚を薄くす
ることにより、渦電流を員を低減させることが必要であ
る。このような条件を満たす材料として、珪素鋼板がこ
れまで用いられている。
Iron core materials used in electrical equipment such as single-rotation transformers are required to have good excitation characteristics and low iron density. In order to reduce this iron loss, we can reduce hysteresis tU by reducing defects in the material and lowering internal stress, and also reduce eddy currents by increasing electrical resistance and reducing plate thickness. It is necessary to reduce the A silicon steel plate has been used so far as a material that satisfies these conditions.

珪素鋼板は、鋳造、熱延、冷延、焼鈍等の工程を経る従
来の方法により製造されるものである。
Silicon steel sheets are manufactured by conventional methods including casting, hot rolling, cold rolling, annealing, and other steps.

これに対して、合金を高温の溶融状態から超急冷するこ
とにより、液体と同様な構造をもつ非晶質合金薄帯を製
造する方法が最近開発された。
On the other hand, a method has recently been developed to produce an amorphous alloy ribbon with a structure similar to that of a liquid by ultra-quenching the alloy from a high-temperature molten state.

この非晶質合金の製造方法によるとき、薄帯を圧延等の
工程を経ず直接的に製造することができる。また、得ら
れた非晶質合金薄帯の電気抵抗が高く、非晶質構造のた
め鉄損が著しく低減され、異方性もない、更に、この非
晶質合金薄帯は、励磁特性も優れているので鉄心材料と
して大いに期待される材料である。
When using this method for producing an amorphous alloy, a ribbon can be produced directly without going through a process such as rolling. In addition, the electrical resistance of the obtained amorphous alloy ribbon is high, iron loss is significantly reduced due to the amorphous structure, and there is no anisotropy.Furthermore, this amorphous alloy ribbon has excellent excitation characteristics. Due to its excellent properties, it is a material that is highly anticipated as an iron core material.

この非晶質合金薄帯を加工して電気機器の鉄心等として
使用する場合、眉間抵抗、耐食性等が問題となる。
When this amorphous alloy ribbon is processed and used as an iron core for electrical equipment, problems such as glabellar resistance and corrosion resistance arise.

しかし、表面に絶縁被膜を設けることにより層間砥埠を
増加させ、渦電流に起因する鉄損の悪化を防止しようと
すると、非晶質合金薄帯の表面にある凹凸のためにその
絶縁被膜の厚みが不均一になる。たとえば、通常の浸漬
法、ロールコート。
However, when attempting to increase the interlayer abrasiveness by providing an insulating film on the surface to prevent deterioration of core loss caused by eddy currents, the insulating film is The thickness becomes uneven. For example, the usual dipping method, roll coating.

バーコード、スプレーコート等の塗布方法によって絶縁
被膜を非晶質合金薄帯の表面に設けようとすると、凸部
における絶縁被膜の厚みが小さくなり、凹部においては
それが大きくなる。その結果、被覆された非晶質合金薄
帯を6i場焼鈍すると、非晶質合金薄帯に加わる応力が
不均一になり、磁束に対して抵抗となるような磁区が発
生し、鉄損の悪化を招く。
When an insulating coating is applied to the surface of an amorphous alloy ribbon using a coating method such as a bar code or spray coating, the thickness of the insulating coating becomes smaller in the convex portions and becomes larger in the concave portions. As a result, when a coated amorphous alloy ribbon is annealed in a 6i field, the stress applied to the amorphous alloy ribbon becomes non-uniform, creating magnetic domains that provide resistance to magnetic flux, and reducing iron loss. cause deterioration.

このような欠点を解消すべく、本発明者は、陽極処理に
よって酸化物系絶縁被膜を設けることを開発し、これを
特願昭60−67215号として先に出願した。
In order to eliminate such drawbacks, the present inventor developed a method of providing an oxide-based insulating film by anodizing, and filed an application for the same in Japanese Patent Application No. 67215/1983.

この酸化物系絶縁被膜は、陽極処理によって施されたも
のであるから、被処理対象である非晶質合金薄帯の表面
形状に倣って均一に設けられる。
Since this oxide-based insulating coating is applied by anodization, it is uniformly provided following the surface shape of the amorphous alloy ribbon to be treated.

したがって、酸化物系絶縁被膜によりコーティングされ
た非晶質合金薄帯に不均一な応力が加わることな(層間
抵抗の増加及び耐食性の向上を図ることが可能となった
Therefore, uneven stress is not applied to the amorphous alloy ribbon coated with the oxide-based insulating film (it is possible to increase interlayer resistance and improve corrosion resistance).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

非晶質合金薄帯の表面に設けられる酸化物系絶縁被膜は
、前述の特願昭60−67215号においては、革位板
厚μ当たり通常10nr/r/以下の厚みとしている。
In the above-mentioned Japanese Patent Application No. 60-67215, the thickness of the oxide-based insulating coating provided on the surface of the amorphous alloy ribbon is usually 10 nr/r/or less per the thickness μ of the thin film.

これは、酸化物系絶縁被膜の厚みが大きすぎると、不均
一応力を生じ易く、磁気特性、特に商用周波数鉄損を劣
化させる傾向がでてくるためである。ところが、本発明
者等は、このように設けられた酸化物系絶縁被膜が非晶
質合金薄帯の磁気特性を改善する上でも効果があること
を、その後の研究により解明し、これを別途出願した。
This is because if the thickness of the oxide-based insulating film is too large, nonuniform stress tends to occur, which tends to deteriorate magnetic properties, especially commercial frequency iron loss. However, through subsequent research, the present inventors discovered that the oxide-based insulating film provided in this way was also effective in improving the magnetic properties of the amorphous alloy ribbon. I applied.

この陽極処理によって非晶質合金薄帯の表面に酸化物系
絶縁被膜を設けようとするとき、非晶質合金薄帯の抵抗
が大きいことから、電圧降下が大きくなる。たとえば、
走行している非晶質合金薄帯の長手方向に沿って電極を
配置し、連続処理を行おうとすると、一般の単槽式電解
槽では電極長を大きくする必要があるが、非晶質合金薄
帯の場合には、第2図、に示すように電極の長さに応じ
て電圧が極端に低下する。
When attempting to provide an oxide-based insulating film on the surface of the amorphous alloy ribbon by this anodization, the voltage drop increases because the resistance of the amorphous alloy ribbon is large. for example,
In order to perform continuous processing by arranging electrodes along the longitudinal direction of the traveling amorphous alloy ribbon, it is necessary to increase the electrode length in a general single-cell electrolytic cell, but in the case of amorphous alloy In the case of a thin ribbon, the voltage drops extremely depending on the length of the electrode, as shown in FIG.

すなわち、電極の長さを40c+i以上長くとると、陽
極である非晶質合金薄帯に印加される電圧が20%程度
まで低下し、アルミナの電解析出を円滑に行うことがで
きなくなる。また、アルミナの析出を高速度で行うため
に印加する電圧を箭めても、それが有効に電解に利用さ
れる効率が低いものとなる。
That is, if the length of the electrode is increased by 40c+i or more, the voltage applied to the amorphous alloy ribbon serving as the anode decreases to about 20%, making it impossible to perform electrolytic deposition of alumina smoothly. Further, even if the applied voltage is limited in order to perform alumina precipitation at a high speed, the efficiency with which the voltage is effectively utilized for electrolysis is low.

そこで、本発明は、このような電圧降下により電解効率
が低下することを解消し、連続且つ高速で非晶質合金材
料の陽極処理を行い、更にその陽極処理により生成した
酸化物系絶縁被膜の欠点を補完し、非晶質合金材料の鉄
損1層間抵抗、耐食性等を改善することことを目的とす
る。
Therefore, the present invention eliminates the decrease in electrolysis efficiency caused by such a voltage drop, performs continuous and high-speed anodization of an amorphous alloy material, and further improves the oxide-based insulating film produced by the anodization. The purpose is to compensate for the shortcomings and improve the core loss, interlayer resistance, corrosion resistance, etc. of amorphous alloy materials.

〔問題点を解決するための手段〕・ 本発明の表面処理方法は、その目的を達成するために、
多段階電解槽を使用して陽極電解によって非晶質合金材
料の表面に高絶縁抵抗の酸化物を付着させ、次いで該表
面に磁性劣化抑制作用をもつコーティング材を塗布する
ことを特徴とする。
[Means for solving the problem] In order to achieve the objective, the surface treatment method of the present invention has the following features:
The method is characterized in that an oxide with high insulation resistance is deposited on the surface of the amorphous alloy material by anodic electrolysis using a multi-stage electrolytic cell, and then a coating material having a magnetic deterioration suppressing effect is applied to the surface.

以下、本発明を具体的に説明する。なお、本願明細書で
いう非晶質合金材料としては、薄帯、板材、線材等種々
の形状のものがあるが、以下の説明では薄帯を例にとっ
ている。
The present invention will be explained in detail below. Note that the amorphous alloy material referred to in this specification has various shapes such as a ribbon, a plate, and a wire, but the following explanation uses a ribbon as an example.

高絶縁抵抗の酸化物は、陽極処理によって非晶質合金薄
帯の表面にたとえば粒子状となって形成される。すなわ
ち、多段階に配置した複数の電解槽に電解液を収容し、
非晶質合金薄帯を陽極としてその電解液内を通過させる
。このとき、非晶質合金薄帯の電気抵抗が大きいことが
ら、電圧降下による電解効率の低下を無視できない。そ
こで、この電圧降下の影響を小さくするため、個々の電
解槽における電極長を短(する。この点で、電解槽を多
段階に設けることが効果的である。また、隣接する電解
槽の間を走行する非晶質合金薄帯が乾燥しないように、
その間の距離を短くしたり、コンダクタ−ロール部に電
解液を供給することもできる。このようにして多段階電
解槽を採用すること轡より、高速処理が可能となる。
The oxide having high insulation resistance is formed, for example, in the form of particles, on the surface of the amorphous alloy ribbon by anodizing. That is, the electrolyte is stored in multiple electrolytic cells arranged in multiple stages,
An amorphous alloy ribbon is passed through the electrolyte as an anode. At this time, since the electrical resistance of the amorphous alloy ribbon is large, the reduction in electrolytic efficiency due to voltage drop cannot be ignored. Therefore, in order to reduce the effect of this voltage drop, the length of the electrodes in each electrolytic cell should be shortened.In this respect, it is effective to provide electrolytic cells in multiple stages. To prevent the amorphous alloy ribbon from drying out,
It is also possible to shorten the distance therebetween or to supply electrolyte to the conductor roll. By employing a multi-stage electrolytic cell in this manner, high-speed processing becomes possible.

各電解槽における電極長は、10〜40craの範囲に
とることが好ましい。電極長がlQcm未満のときには
、多数の電解槽を設けることが必要となり、保守・管理
が複雑となり、しかも設備費の高騰を招くので好ましく
ない。他方、電極長が40amを越えると、第2図に示
したように電圧降下が大きくなり、電解効率が低下する
。なお、第2図の縦軸は電極長=Oの場合を100と仮
定して、実際に電極を介在させたときのこれに対する電
圧降下量を%で表示したものである。
The electrode length in each electrolytic cell is preferably in the range of 10 to 40 cra. When the electrode length is less than 1Qcm, it is not preferable to provide a large number of electrolytic cells, which complicates maintenance and management and increases equipment costs. On the other hand, if the electrode length exceeds 40 am, the voltage drop will increase as shown in FIG. 2, and the electrolytic efficiency will decrease. The vertical axis in FIG. 2 is assumed to be 100 when the electrode length=O, and represents the voltage drop amount in % when an electrode is actually interposed.

この陽極処理により生成された酸化物は、非晶質合金薄
帯表面の凹凸に倣って均一な厚みで付着している。すな
わち、凹部に厚く、凸部に薄くなるような状態で、生成
されることがない。
The oxide produced by this anodizing adheres to the surface of the amorphous alloy ribbon with a uniform thickness, following the irregularities on the surface of the ribbon. That is, it is not generated in a state where it is thick in the concave portions and thin in the convex portions.

ここで使用される酸化物として、溶液電解法により陽極
上に付着する全ての酸化物を使用することができ、具体
的にはA1z03. ZrO2,Tact等がある。た
だし、この酸化物は、非晶質合金薄帯の眉間抵抗を増加
させる上で、高絶縁性のものであることが必要とされる
As the oxide used here, all oxides that are deposited on the anode by solution electrolysis can be used, and specifically A1z03. There are ZrO2, Tact, etc. However, this oxide is required to be highly insulating in order to increase the glabellar resistance of the amorphous alloy ribbon.

この酸化物は、非晶質合金薄帯の片面又は両面のいずれ
に付着させても良い0片面にのみ付着させる場合、単ロ
ール法で鋳造された非晶質合金薄帯においては、表面粗
さの大きなロール側表面に酸化物を付着させる方が、自
由面に付着させることに比較し、鉄損を向上させる上で
より効果的゛である。また、片面に酸化物を付着させる
方法は、ロール面上で非晶質合金薄帯に電解液を連続的
に供給することにより行うことができるので、生産性に
優れている。
This oxide may be attached to either one or both sides of the amorphous alloy ribbon.If it is attached only to one side, the surface roughness of the amorphous alloy ribbon cast by the single roll method It is more effective to attach an oxide to the roll side surface, which has a large surface area, than to attach it to the free surface, in improving iron loss. Furthermore, the method of attaching the oxide to one side can be carried out by continuously supplying an electrolyte to the amorphous alloy ribbon on the roll surface, and is therefore excellent in productivity.

陽極処理による酸化物の付着量は、5〜500■/dの
範囲とすることが望ましい、この付着量を厚みに換算す
ると、平均厚みでおおよそ0.003〜0,3μである
。付着量が5■/dを下回るとき、初期の絶縁抵抗が得
られず、また耐食性の向上も図られない。他方、付着量
が500■/rdを越えるとき、圧縮応力となる不均一
応力を生じ易く、鉄損が劣化することになる。また、付
着された酸化物が発粉し易くなる欠点も生じる。
The amount of oxide deposited by anodizing is preferably in the range of 5 to 500 .mu./d. When this amount of deposition is converted into thickness, the average thickness is approximately 0.003 to 0.3 .mu.m. When the amount of adhesion is less than 5 .mu./d, initial insulation resistance cannot be obtained and corrosion resistance cannot be improved. On the other hand, when the amount of adhesion exceeds 500 .mu./rd, non-uniform compressive stress is likely to occur, resulting in deterioration of iron loss. Further, there is also a drawback that the attached oxide tends to become powder.

次いで、陽極処理された非晶質合金薄帯の表面に、磁性
劣化抑制作用をもつコーティング材を塗布する。このコ
ーティング材としては、クロム酸。
Next, a coating material that suppresses magnetic deterioration is applied to the surface of the anodized amorphous alloy ribbon. This coating material is chromic acid.

或いはリン酸、シリカ、コロイダルシリカ等から選ばれ
た少なくとも1種以上とクロム酸との混合物からえられ
る酸化物、水和物等、或いは存機質樹脂等がある。
Alternatively, there are oxides, hydrates, etc. obtained from a mixture of at least one selected from phosphoric acid, silica, colloidal silica, etc. and chromic acid, or organic resins.

また、その付着量は、1〜200■/dとすることが望
ましい。この付着量が200■/n(を越えるとき鉄損
の劣化を生じ、1■/d未満では磁性1耐食性等の改善
効果がみられない。この付@量のより好ましい範囲は、
3〜20mg/rtrである。
Further, the amount of adhesion is preferably 1 to 200 .mu./d. When the amount of this adhesion exceeds 200 s/n, iron loss deteriorates, and when it is less than 1 s/d, there is no improvement in magnetic properties such as corrosion resistance.The more preferable range of this amount is as follows:
It is 3 to 20 mg/rtr.

このコーティング材は、浸清法、バーコード。This coating material is immersion method and barcode.

ロールコート、スプレーコート等の通常採用されている
塗布方法によって、非晶質合金薄帯の表面に塗布するこ
とができる。
The coating can be applied to the surface of the amorphous alloy ribbon by a commonly used coating method such as roll coating or spray coating.

〔作用〕[Effect]

鋳造されたままの非晶質合金材料の表面には、鋳造時に
空気や不活性ガス等が溶湯とロール表面との間に巻き込
まれること等に起因して、凹凸が生じる。この凹凸は、
非晶質合金板を重ねた場合に、板同士が面接触すること
を防ぎ、眉間抵抗の低下ひいては渦電流の増加を生起さ
せない上で効果があるものとされている。しかし、他方
では、この凹凸により磁区の方向が乱され、特に磁場焼
鈍を施した際に、印加した磁場の方向とは逆向きに指向
する局部的な磁区を生じさせることにもなる。
The surface of the as-cast amorphous alloy material has irregularities due to air, inert gas, and the like getting caught between the molten metal and the roll surface during casting. This unevenness is
When stacking amorphous alloy plates, it is said to be effective in preventing surface contact between the plates, reducing glabellar resistance, and preventing an increase in eddy current. However, on the other hand, the unevenness disturbs the direction of the magnetic domains, and particularly when magnetic field annealing is performed, local magnetic domains are generated that are oriented in the opposite direction to the direction of the applied magnetic field.

そこで、先願の特願昭60−67215号では、陽極処
理により酸化物を非晶質合金材料の表面に付着させ、こ
れを絶縁層として使用している。しかし、該先願に示さ
れた陽極処理方法は生産性が低く、また長尺の非晶質合
金材料を連続処理するための具体的手段も未解決のまま
である。
Therefore, in the earlier application, Japanese Patent Application No. 60-67215, an oxide is attached to the surface of an amorphous alloy material by anodization and used as an insulating layer. However, the anodizing method shown in the prior application has low productivity, and a concrete means for continuously processing a long amorphous alloy material remains unresolved.

これに対して、本発明にあっては、前述したように、多
段階に配置した複数の電解槽を通して非晶質合金材料を
連続走行させることにより、高速で酸化物を非晶質合金
材料表面に付着させることを可能にしている。また、各
電解槽における電極長を短くすることができるので、電
圧降下の影古を小?クシで高電解効率で陽極処理を行う
ことができる。
In contrast, in the present invention, as described above, by continuously running the amorphous alloy material through a plurality of electrolytic cells arranged in multiple stages, oxides are removed from the surface of the amorphous alloy material at high speed. It allows it to be attached to. Also, since the electrode length in each electrolytic cell can be shortened, the effect of voltage drop can be reduced. Anodic treatment can be performed with a comb with high electrolytic efficiency.

そして、このように酸化物が付着した非晶質合金材料に
対して磁性劣化抑制作用をもつコーティング材を塗布す
ることによって、その酸化物の間隙を充填し、或いは被
覆している。このため、非晶質合金材料を磁場焼鈍する
際に酸化物が収縮することに起因する応力が、コーティ
ング材の収縮によって非晶質合金材料の表面方向に沿っ
た張力に変換される。その結果、磁区の整列化及び細分
化が促進され、鉄損の改良が行われる。
Then, by applying a coating material having a magnetic deterioration suppressing effect to the amorphous alloy material to which the oxide has adhered, the gaps between the oxides are filled or covered. Therefore, stress caused by contraction of the oxide when magnetically annealing the amorphous alloy material is converted into tension along the surface direction of the amorphous alloy material by contraction of the coating material. As a result, alignment and subdivision of magnetic domains are promoted, and iron loss is improved.

このコーティング材は、非晶質合金材料の表面がすてに
陽極処理によって生成した酸化物により覆われているた
め、良好な濡れ性をもって非晶質合金材料の表面に均一
に塗布される。
This coating material has good wettability and is uniformly applied to the surface of the amorphous alloy material because the surface of the amorphous alloy material is already covered with the oxide generated by the anodization.

そして、このコーティング材が酸化物と共同して非晶質
合金材料の全面を覆うことになるので、表面の電気抵抗
ひいては眉間抵抗が増加し、渦電流損を少なくすること
ができる。また、活性度の高い非晶質合金が雰囲気に直
接さらされることがなくなるので、耐食性の向上も図ら
れる。そのため、磁気特性の経時的な劣化も少ない。
Since this coating material works with the oxide to cover the entire surface of the amorphous alloy material, the electrical resistance of the surface and the resistance between the eyebrows increase, and eddy current loss can be reduced. Furthermore, since the highly active amorphous alloy is no longer directly exposed to the atmosphere, corrosion resistance can also be improved. Therefore, there is little deterioration of magnetic properties over time.

〔実施例〕〔Example〕

以下、図面に示した実施例により、本発明の効果を具体
的に説明する。
Hereinafter, the effects of the present invention will be specifically explained with reference to embodiments shown in the drawings.

第1図は、本実施例で使用した電解装置の概略を示すも
のである。
FIG. 1 schematically shows the electrolysis apparatus used in this example.

本例の電解装置は、複数の電解槽1a+ lb、 lc
を多段に配置している。そして、それぞれの電解槽la
、 lb、 Icには、コンダクタ−ロール2.12□
及びジンクロール3..3□が設けられている。この電
解装置に配置された陰極4の間を、陽極処理される非晶
質合金薄帯Aが走行する。なお、図示の例においては、
非晶質合金薄帯Aの両面に対向して陰極4を配置して、
その両面に酸化物系絶縁被膜を形成している。しかし、
本発明は、これに拘束されるものではな(、たとえば非
晶質合金薄帯Aの片面のみに陰極4を対向配置し、他面
にはマスキング等の適宜の手段を施すことにより、酸化
物系絶縁被膜を片面に析出させるようにしても良い。
The electrolysis device of this example includes a plurality of electrolytic cells 1a+ lb, lc
are arranged in multiple stages. And each electrolytic cell la
, lb, Ic, conductor roll 2.12□
and Zin Chlor3. .. 3□ is provided. An amorphous alloy ribbon A to be anodized runs between cathodes 4 arranged in this electrolyzer. In addition, in the illustrated example,
A cathode 4 is arranged facing both sides of the amorphous alloy ribbon A,
An oxide-based insulating film is formed on both sides. but,
The present invention is not limited to this (for example, by arranging the cathode 4 facing only on one side of the amorphous alloy ribbon A and applying appropriate means such as masking on the other side, the oxide The system insulating film may be deposited on one side.

それぞれのコンダクタ−ロール21,2□の非晶質合金
薄帯A長手方向に沿つた距離りは、第2図に示した電極
長による電圧降下が著しくならないような距離、具体的
には10〜40cmにしている。なお、第2図の縦軸は
、電極長=0の場合を100と仮定して、距離りが長く
なったことによる電圧の降下をそれに対する%で示して
いる。
The distance along the longitudinal direction of the amorphous alloy ribbon A of each conductor roll 21, 2□ is such a distance that the voltage drop due to the electrode length shown in FIG. 2 does not become significant, specifically 10~ It is set to 40cm. Note that the vertical axis in FIG. 2 indicates the voltage drop due to an increase in the distance in %, assuming that the electrode length is 100 when the electrode length is 0.

また、隣接する電解槽1a、 lb、 Ic間のコンダ
クタ−ロール2□、28間の距離lは、非晶質合金薄帯
Aが先行する電解槽1a又はlbから次の電解+ilb
又はlcに走行する間に、その表面が乾かないような距
離、具体的には5〜500cmとするのが良い、これに
よって、非晶質合金薄帯Aが濡れたままで隣接する電解
槽1a+ 1b、lcの間を走行するので、コンダクタ
−ロール21.2gを介した非晶質合金薄帯Aへの通電
が効果的となる。この距離lが50csを越えるとき、
非晶質合金薄帯Aの通板速度及び溶液温度にもよるが、
その表面が乾き易く、コンダクタ−ロール21と非晶質
合金薄帯Aとの間の接触抵抗が大きくなり、それに伴い
電圧降下が増加するので、好ましくない。
Further, the distance l between the conductor rolls 2□, 28 between adjacent electrolytic cells 1a, lb, Ic is the distance between the electrolytic cell 1a or lb in which the amorphous alloy ribbon A precedes the next electrolytic +ilb
Alternatively, it is preferable to set the distance so that the surface does not dry out while traveling to the lc, specifically, 5 to 500 cm.This allows the amorphous alloy ribbon A to remain wet while moving into the adjacent electrolytic cell 1a+ 1b. , lc, it is effective to energize the amorphous alloy ribbon A through the conductor roll 21.2g. When this distance l exceeds 50 cs,
Although it depends on the threading speed of the amorphous alloy ribbon A and the solution temperature,
This is undesirable because its surface tends to dry out easily and the contact resistance between the conductor roll 21 and the amorphous alloy ribbon A increases, resulting in an increase in voltage drop.

なお、コンダクタ−ロール2□2.に電解液を別途供給
し、コンダクタ−ロール25,2□を常に濡れた状態に
維持することが、前述の接触抵抗を低下させる上で効果
的な手段である。
In addition, conductor roll 2□2. An effective means for reducing the contact resistance is to separately supply an electrolytic solution to the conductor rolls 25, 2□ to keep them constantly wet.

この電解装置において、距AI L = 20cn+ 
、距A1[x−5c11とし、電解液として次の組成の
ものを使用し、非晶質合金薄帯Aを陽極として電解処理
を行った。
In this electrolyzer, the distance AI L = 20cn+
, the distance A1[x-5c11, the following composition was used as the electrolytic solution, and electrolytic treatment was performed using the amorphous alloy ribbon A as an anode.

アルミン酸イオン 25呵/2 酒石酸      lO■/1 (pH11,5,温度40℃) なお、非晶質合金薄帯Aの通板速度を10m/分に維持
し、電解は電流密度6A/da+”で行った。
Aluminate ion 25/2 Tartaric acid 1O/1 (pH 11.5, temperature 40°C) The threading speed of the amorphous alloy ribbon A was maintained at 10 m/min, and the electrolysis current density was 6 A/da+. I went there.

その結果、別設の電圧降下を生じることなく、付着量6
0■/−のアルミナ被膜を非晶質合金薄帯Aの表面に形
成することができた。
As a result, it is possible to achieve a coating weight of 6.5 cm without causing a separate voltage drop.
It was possible to form an alumina film of 0.0 cm/- on the surface of the amorphous alloy ribbon A.

次いで、M2O,が付着された非晶質合金薄帯の表面を
、クロム酸5 g / Itの溶液に1秒間浸漬した。
Next, the surface of the amorphous alloy ribbon to which M2O was attached was immersed for 1 second in a solution of 5 g/It of chromic acid.

これによって、Cr2O3換算で5w/mのクロム酸が
1寸着した。
As a result, one inch of chromic acid of 5 w/m in terms of Cr2O3 was deposited.

このようにして表面処理された非晶質合金薄帯を、単板
及びトロイダル鉄心として、窒素ガス雰囲気中で磁場焼
鈍した。得られた製品の鉄損を、単板に付いては鉄損I
として、トロイダル鉄心に付いては鉄損■として、それ
ぞれ次表に示す、なお、この表には、湿度98%の湿潤
雰囲気下で50℃の恒温恒湿発錆テストを行った結果を
相対評価したものを併せて示している。
The thus surface-treated amorphous alloy ribbon was magnetically annealed in a nitrogen gas atmosphere as a single plate and a toroidal core. The iron loss of the obtained product is iron loss I for the veneer.
The iron loss for the toroidal core is shown in the table below.This table also shows the relative evaluation results of a constant temperature and humidity rusting test at 50℃ in a humid atmosphere with a humidity of 98%. The results are also shown.

この表から明らかなように、本発明の非晶質合金薄帯に
あっては、単板としての鉄…は無垢の非晶質合金薄帯の
それに等しく、アルミナ被膜やリン酸−クロム酸被膜を
設けたものより優れている。
As is clear from this table, in the amorphous alloy ribbon of the present invention, the iron as a veneer is equal to that of the solid amorphous alloy ribbon, and the alumina coating and phosphoric acid-chromic acid coating It is better than the one with .

ところが、無垢の非晶質合金薄帯をトロイダル状に巻き
加工した場合、鉄損が急激に劣化する。これに対し、本
実施例の場合には、鉄損が0.19W/にぎと小さく、
しかもその優れた鉄損特性が長期間にわたって持続され
る。また、無機系コーティング被膜を設けた従来例にあ
っては、単板での鉄を員が劣化しており、トロイダル鉄
心としたときの鉄損も大きくなっている。
However, when a solid amorphous alloy ribbon is wound into a toroidal shape, the iron loss rapidly deteriorates. On the other hand, in the case of this example, the iron loss is as small as 0.19W/Nigi.
Moreover, its excellent iron loss characteristics are maintained over a long period of time. In addition, in the conventional example in which an inorganic coating film is provided, the strength of the iron in the single plate deteriorates, and the iron loss when used as a toroidal core increases.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の表面処理方法において
は、多段配置した電解槽に非晶質合金薄帯を通過させる
ことにより、実効電極長を短くして陽極処理を行うこと
ができる。そのため、被処理対象が抵抗値の高い非晶質
合金薄帯であるにも拘らず、高い電流効率でその表面に
絶縁被膜を形成することができ、また高速通板も可能と
なる。
As explained above, in the surface treatment method of the present invention, by passing the amorphous alloy ribbon through electrolytic cells arranged in multiple stages, anodization can be performed by shortening the effective electrode length. Therefore, even though the object to be processed is an amorphous alloy ribbon with a high resistance value, an insulating film can be formed on the surface with high current efficiency, and high-speed threading is also possible.

この絶縁被膜は、更にその上に塗布される磁性劣化抑制
作用をもつコーティング材と相俟って、非晶質合金材料
を磁場焼鈍した際に酸化物の収縮に起因する応力がコー
ティング材により非晶質合金材料の表面に沿った張力に
変換され、磁束に対して抵抗となるような磁区の発生を
抑えることができ、磁区の細分化を図ると共に、鉄損を
大幅に改良する。また、酸化物及びコーティング材によ
り非晶質合金薄帯の全面を覆っているので、層間抵抗、
耐食性、耐久性等に優れた製品が得られる。
This insulating film, together with a coating material applied on top of it that has the effect of suppressing magnetic deterioration, prevents stress caused by contraction of oxides when an amorphous alloy material is annealed in a magnetic field. This is converted into tension along the surface of the crystalline alloy material, suppressing the generation of magnetic domains that act as resistance to magnetic flux, making the magnetic domains subdivided, and significantly improving iron loss. In addition, since the entire surface of the amorphous alloy ribbon is covered with oxide and coating material, interlayer resistance
A product with excellent corrosion resistance, durability, etc. can be obtained.

このように、本発明によるとき、磁気特性の優れた非晶
質合金材料を迅速に且つ高い生産性で製造することが可
能となる。
As described above, according to the present invention, it is possible to quickly produce an amorphous alloy material with excellent magnetic properties with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例で使用した電解装置の概略を示し
、第2図は電圧降下に与える電極長の影響を示す。
FIG. 1 shows an outline of the electrolysis device used in the embodiment of the present invention, and FIG. 2 shows the influence of electrode length on voltage drop.

Claims (1)

【特許請求の範囲】[Claims] 1、多段階電解槽を使用して陽極電解によって非晶質合
金材料の表面に高絶縁抵抗の酸化物を付着させ、次いで
該表面に磁性劣化抑制作用をもつコーティング材を塗布
することを特徴とする非晶質合金材料の表面処理方法。
1. A multi-stage electrolytic cell is used to deposit an oxide with high insulation resistance on the surface of an amorphous alloy material by anodic electrolysis, and then a coating material having a magnetic deterioration suppressing effect is applied to the surface. A surface treatment method for amorphous alloy materials.
JP25048086A 1986-10-20 1986-10-20 Surface treatment of amorphous alloy material Granted JPS63103098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25048086A JPS63103098A (en) 1986-10-20 1986-10-20 Surface treatment of amorphous alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25048086A JPS63103098A (en) 1986-10-20 1986-10-20 Surface treatment of amorphous alloy material

Publications (2)

Publication Number Publication Date
JPS63103098A true JPS63103098A (en) 1988-05-07
JPH0430474B2 JPH0430474B2 (en) 1992-05-21

Family

ID=17208479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25048086A Granted JPS63103098A (en) 1986-10-20 1986-10-20 Surface treatment of amorphous alloy material

Country Status (1)

Country Link
JP (1) JPS63103098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211579A (en) * 1983-05-14 1984-11-30 Nippon Steel Corp Surface treatment of amorphous alloy
JPS602625A (en) * 1983-06-20 1985-01-08 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JPS60228684A (en) * 1984-04-26 1985-11-13 Nippon Steel Corp Annealing method of amorphous magnetic steel strip
JPS618903A (en) * 1984-06-25 1986-01-16 Kawasaki Steel Corp Characteristics of amorphous alloy thin belt and improvement of dieing workability thereof
JPS61227194A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Surface treatment of thin amorphous alloy strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211579A (en) * 1983-05-14 1984-11-30 Nippon Steel Corp Surface treatment of amorphous alloy
JPS602625A (en) * 1983-06-20 1985-01-08 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JPS60228684A (en) * 1984-04-26 1985-11-13 Nippon Steel Corp Annealing method of amorphous magnetic steel strip
JPS618903A (en) * 1984-06-25 1986-01-16 Kawasaki Steel Corp Characteristics of amorphous alloy thin belt and improvement of dieing workability thereof
JPS61227194A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Surface treatment of thin amorphous alloy strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method

Also Published As

Publication number Publication date
JPH0430474B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
KR100300209B1 (en) Method for producing oriented silicon steel sheet and oriented silicon steel decarburization annealing plate
JPS63103098A (en) Surface treatment of amorphous alloy material
KR960006448B1 (en) Method of manufacturing low iron loss grain oriented electromagnetic steel
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JP2827890B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
US4042425A (en) Process of pretreating cold-rolled steel sheet for annealing
JPS5814859B2 (en) Method for forming insulation coating on high magnetic flux density unidirectional silicon steel sheet
US4178194A (en) Electrolytic pickling of silicon electrical steel sheet
US4206004A (en) Process of pretreating cold-rolled steel sheet for annealing
JPH0586043B2 (en)
JPS61227194A (en) Surface treatment of thin amorphous alloy strip
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JPS63109194A (en) Surface treatment of amorphous alloy material
JPH028027B2 (en)
JPS6386894A (en) Surface treatment of amorphous alloy material
US4096001A (en) Boron-containing electrical steel having a calcium borate coating and magnesia overcoating, and process therefor
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet
GB1578911A (en) Silicon-iron sheet production involving electrocoating
US4160708A (en) Coated silicon-iron product and process therefor using calcium formate
US4160705A (en) Silicon-iron production and composition and process therefor
JPH0215639B2 (en)
JPH11181576A (en) Rain oriented silicon steel sheet good in film adhesion and extremely low in core loss value
JPS63118097A (en) Surface treatment of amorphous alloy material
KR100406391B1 (en) The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees