JPS63103048A - Temperature-sensitive magnetic material - Google Patents

Temperature-sensitive magnetic material

Info

Publication number
JPS63103048A
JPS63103048A JP61247853A JP24785386A JPS63103048A JP S63103048 A JPS63103048 A JP S63103048A JP 61247853 A JP61247853 A JP 61247853A JP 24785386 A JP24785386 A JP 24785386A JP S63103048 A JPS63103048 A JP S63103048A
Authority
JP
Japan
Prior art keywords
magnetic material
temperature
sensitive magnetic
heat
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61247853A
Other languages
Japanese (ja)
Other versions
JPH0443971B2 (en
Inventor
Masaaki Matsui
松井 正顯
Toshifumi Shimizu
清水 利文
Tatsuya Kobayashi
達也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61247853A priority Critical patent/JPS63103048A/en
Publication of JPS63103048A publication Critical patent/JPS63103048A/en
Publication of JPH0443971B2 publication Critical patent/JPH0443971B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE:To obtain a temp.-sensitive magnetic material generating a large quantity of heat by high frequency electromagnetic induction by specifying a compsn. consisting of Pt and Fe. CONSTITUTION:This temp.-sensitive magnetic material generating a large quantity of heat consists of 23.5-38.5atom% Pt and the balance essentially Fe or further contains 0.1-15.5atom% Si and has high magnetic permeability and proper specific resistance. The magnetic material can be utilized as an implant for thermotherapy by high frequency induction heating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物体内部の局所加熱に係り、高周波電磁誘導
により発熱する発熱量の大きい感温磁性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to local heating inside an object, and relates to a temperature-sensitive magnetic material that generates a large amount of heat due to high-frequency electromagnetic induction.

(従来の技術及び発明が解決しようとする問題点)人体
にわける悪性腫瘍(以下!11!瘍という)の治療手段
として、a熱蒸法がある。この療法において、生体組織
の温度を41℃ないしは45℃に上界きせると、治療効
果が現れることが知られている。Mfii烏が体表面に
ある場合は、温湯なとでff接あたためる方lムがある
。しかしながら、腫瘍が生体深部にある場合は、高周波
誘導加温あるいは電波により加温する方法が考えられて
いる。高周波誘導加温の方法とは、腫瘍内部に感温磁性
材料で作製された針(以下インブラントという)を埋込
み、外部コイルに高周波磁場を印加し、インブラントに
誘導7ri流を発生ざせて、そのジュール熱であたため
る方法である。しかし、高周波誘導加温を利用して、人
体のm瘍を治療する臨床例はなく、現在のところ、動物
実験による研究の段階である。最近、インブラントとし
て、Ni−Pd合金を使用した小動物のFA瘍の治療効
果に関する報告がなきれな(小林達也、木田義久、太田
昌幸、田中孝幸、景山if街、小林弘明、雨宮好文 N
eurol、 Wed。
(Prior Art and Problems to be Solved by the Invention) As a means of treating malignant tumors (hereinafter referred to as !11! tumors) in the human body, there is a thermal vaporization method. In this therapy, it is known that a therapeutic effect appears when the temperature of living tissue is raised to 41°C or 45°C. If the Mfii crow is on the surface of the body, there is a way to warm it up with warm water. However, if the tumor is located deep within the body, methods of heating using high-frequency induction heating or radio waves have been considered. The high-frequency induction heating method involves implanting a needle made of a temperature-sensitive magnetic material (hereinafter referred to as an implant) inside the tumor, applying a high-frequency magnetic field to an external coil, and generating an induced 7ri current in the implant. This is a method of heating using Joule heat. However, there are no clinical examples of using high-frequency induction heating to treat m-cancer in humans, and this is currently at the stage of research based on animal experiments. Recently, there have been many reports on the therapeutic efficacy of FA tumors in small animals using Ni-Pd alloy as an implant (Tatsuya Kobayashi, Yoshihisa Kida, Masayuki Ota, Takayuki Tanaka, Kageyama Ifgai, Hiroaki Kobayashi, Yoshifumi Amemiya N.
eurol, Wed.

Chir、 (Tokyo) 26(1986)116
)。この報告では、直径が約8c@の小型発振コイルと
100ワツトの出力を持つ発振器を使用し、良好な治療
効果を得たことが記載されている。しかしながら、人体
内部の1[1iの治療では、少なくとも、直径30cm
以上のコイルが必要となることと、人体内部の血流によ
る熱放散があることを、考慮すると、旧−Pd合金で を使用した場合、インブラントの発熱量が小といために
、100キロワット以上の出力を持つ発Muが必要とな
る。そのほかにも、Ni−Cuあるいは旧−Si合金を
インブラントとして使用した報告例もある。しかし、こ
れらの合金もNi−Pd合金と同様に発PA量が小きい
。従って発熱量の大きい感温磁性材料が必要になってい
る。
Chir, (Tokyo) 26 (1986) 116
). This report states that good therapeutic effects were obtained using a small oscillation coil with a diameter of about 8 cm and an oscillator with an output of 100 watts. However, for treatment of 1 [1i inside the human body, at least 30 cm in diameter
Taking into consideration the need for more coils and the heat dissipation due to the blood flow inside the human body, when using an old-Pd alloy, the heat output of the implant is small, so the power output is 100 kW or more. An emitter Mu with an output of is required. In addition, there are reports of Ni-Cu or old-Si alloys being used as implants. However, like the Ni-Pd alloy, these alloys also generate a small amount of PA. Therefore, there is a need for temperature-sensitive magnetic materials that generate a large amount of heat.

(問題点を解決するための手段) インブラントの発熱量はコイルの磁場と周波数ならびに
材料の比透磁率と比抵抗の大きざによって変化する。材
料の比透磁率が大きいほど発熱量は大きくなる。しかし
、比抵抗の値は、義電流の浸透深ざがインブラントの直
径の4分の1程度になるような値を持つことが必要であ
る。試算によれば、直径1■のインブラントを使用して
、周波数が100kllzで、比透磁率が40である場
合、最も発MJitの大きくなる比抵抗の値は125u
Ω−C■である。従って、この比抵抗の値に近いほど発
熱量は大きくなる。このように、発熱量の大きい感温磁
性材料は透磁率が大きいことと、比抵抗が適当な値であ
ることが必要である。
(Means for solving the problem) The amount of heat generated by the implant changes depending on the magnetic field and frequency of the coil, as well as the relative magnetic permeability and specific resistance of the material. The greater the relative magnetic permeability of the material, the greater the amount of heat generated. However, the value of the resistivity must be such that the depth of penetration of the positive current is approximately one quarter of the diameter of the implant. According to trial calculations, when using an implant with a diameter of 1 mm, the frequency is 100 kllz, and the relative permeability is 40, the value of resistivity that produces the largest MJit is 125 u.
Ω-C■. Therefore, the closer the resistivity is to the value, the greater the amount of heat generated. As described above, a temperature-sensitive magnetic material that generates a large amount of heat needs to have high magnetic permeability and appropriate resistivity.

本発明のFe−PtとFe−Pt−Si合金は前述の条
件を具備した感温磁性材料である。すなわち透磁率が大
きく、適当な比抵抗の値をもち、発熱量の大きい感温磁
性材料として、ptが23.5〜38.5原子χで、残
部が実質的にFeよりなり、発熱量の大きい感温磁性材
料およびPtが23.5〜38.5原子2で、Siが0
.1〜15.5原子駕で、残部が実質的にFeよりなり
、発熱量の大きい感温磁性材料をえたものである。
The Fe--Pt and Fe--Pt--Si alloys of the present invention are temperature-sensitive magnetic materials that meet the above-mentioned conditions. In other words, as a temperature-sensitive magnetic material with high magnetic permeability, appropriate resistivity value, and large calorific value, pt is 23.5 to 38.5 atoms χ, the remainder is substantially composed of Fe, and the calorific value is low. Large temperature-sensitive magnetic material and Pt 23.5-38.5 atoms 2 and Si 0
.. This is a temperature-sensitive magnetic material that has 1 to 15.5 atoms, the remainder being substantially Fe, and has a large calorific value.

(実施例) 以下に、本発明を実施例により具体的に説明する。(Example) The present invention will be specifically explained below using examples.

純度99.9%以上のFe、 Pt1Siを使用し、ア
ルゴンガス雰囲気中で溶解し、1100℃で均一化焼鈍
して得られたインゴットより、直径1m−1長ざ101
の円柱棒を切り出して、針を作製した。これらの針を8
00℃から1100℃の範囲の温度より炉中にて、ある
いは水中に冷却して、比透磁率(μ)と比抵抗(ρ)の
測定を行った。そして、高周波磁場17ガウス、周波数
167kllzで、直径1501のコイルを使用して、
上界温度を開穿し、単位体積当りの発熱量Q(ワット/
CC)を算出した。
Using Fe and PtSi with a purity of 99.9% or more, an ingot with a diameter of 1 m and a length of 101
A needle was made by cutting out a cylindrical rod. 8 these needles
The relative magnetic permeability (μ) and specific resistance (ρ) were measured by cooling in a furnace or in water from a temperature in the range of 00°C to 1100°C. Then, using a coil with a diameter of 1501 mm and a high frequency magnetic field of 17 gauss and a frequency of 167 kllz,
Open the upper limit temperature and calculate the calorific value Q per unit volume (Watts/
CC) was calculated.

第1表にFe−Pt合金の実施例を示す。比較のため、
Fe6oPt4oおよび従来のNi−Pd合金の例を示
す。
Table 1 shows examples of Fe-Pt alloys. For comparison,
Examples of Fe6oPt4o and conventional Ni-Pd alloys are shown.

表かられかるように、本発明例の感温磁性材料は第  
1  表 従来のNi−Pd合金よりも発熱量が大きい。23.5
から26.5原子Xの合金は炉冷によるのが好ましく、
26.5から38.5原子鬼の合金は水冷によるのが好
ましい。ptが39原子駕を越えると発熱量は減少し好
ましくない。
As can be seen from the table, the temperature-sensitive magnetic material of the present invention example
1 Table: Larger calorific value than conventional Ni-Pd alloys. 23.5
It is preferable that alloys with 26.5 atoms
Alloys of 26.5 to 38.5 atoms are preferably water cooled. If pt exceeds 39 atoms, the calorific value decreases, which is not preferable.

第2表にFe−Pt−Si合金の実施例を示す。Siが
15.5原子X以下の合金は発熱量が大きく感温磁性材
料として好ましい。この合金は発熱量の大きいFe−P
t合金を基として発明きれた合金であり、Siの添加に
よって、透磁率は変化が少なく、比抵抗が増加し、発熱
量が大きくなっている。従って、第2表に示す実施例以
外のptの組成を持つ合金も、SIを添加することによ
って、比抵抗が増加して発熱量は大きくなる。なおFe
−Pt−5t合金は主として水冷することが好ましい。
Table 2 shows examples of Fe-Pt-Si alloys. An alloy containing 15.5 atoms of Si or less (X) has a large calorific value and is preferable as a temperature-sensitive magnetic material. This alloy is Fe-P, which has a large calorific value.
This is an alloy that was invented based on the t-alloy, and by adding Si, the magnetic permeability does not change much, the specific resistance increases, and the amount of heat generated increases. Therefore, when SI is added to alloys having PT compositions other than the examples shown in Table 2, the specific resistance increases and the calorific value increases. Furthermore, Fe
-Pt-5t alloy is preferably mainly water-cooled.

(発明の効果) 本発明の感温磁性材料は発熱量が従来の感温磁性材料の
2倍から3倍近く大きく、インブラントとして高周波請
導加温による温熱療法に利用でき、その効果は著しい。
(Effect of the invention) The temperature-sensitive magnetic material of the present invention has a calorific value nearly two to three times greater than that of conventional temperature-sensitive magnetic materials, and can be used as an implant for thermotherapy using high-frequency conduction heating, and its effects are remarkable. .

特許出願人   松 井 正 顯 清  水  利  文 小林達也Patent applicant: Tadashi Matsui Written by Kiyomizu Ri Tatsuya Kobayashi

Claims (1)

【特許請求の範囲】 1、Ptが23.5〜38.5原子%で、残部が実質的
にFeよりなり、発熱量の大きい感温磁性材料。 2、Ptが23.5〜38.5原子%で、Siが0.1
〜15.5原子%で、残部が実質的にFeよりなり、発
熱量の大きい感温磁性材料。
[Scope of Claims] 1. A temperature-sensitive magnetic material containing 23.5 to 38.5 atomic % of Pt, with the remainder substantially consisting of Fe, and having a large calorific value. 2. Pt is 23.5 to 38.5 at%, Si is 0.1
A temperature-sensitive magnetic material with a content of ~15.5 atomic %, the remainder being substantially Fe, and having a large calorific value.
JP61247853A 1986-10-19 1986-10-19 Temperature-sensitive magnetic material Granted JPS63103048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247853A JPS63103048A (en) 1986-10-19 1986-10-19 Temperature-sensitive magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247853A JPS63103048A (en) 1986-10-19 1986-10-19 Temperature-sensitive magnetic material

Publications (2)

Publication Number Publication Date
JPS63103048A true JPS63103048A (en) 1988-05-07
JPH0443971B2 JPH0443971B2 (en) 1992-07-20

Family

ID=17169625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247853A Granted JPS63103048A (en) 1986-10-19 1986-10-19 Temperature-sensitive magnetic material

Country Status (1)

Country Link
JP (1) JPS63103048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001939A1 (en) * 1988-08-19 1990-03-08 Meito Sangyo Kabushiki Kaisha Agent for thermotherapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001939A1 (en) * 1988-08-19 1990-03-08 Meito Sangyo Kabushiki Kaisha Agent for thermotherapy

Also Published As

Publication number Publication date
JPH0443971B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
JP2860170B2 (en) Implantable thermoseed
Short et al. Physical hyperthermia and cancer therapy
Overgaard Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo
US4574782A (en) Radio frequency-induced hyperthermia for tumor therapy
KR20000034772A (en) Targeted hysteresis hyperthermia as a method for treating diseased tissue
US3653385A (en) Production of focal brain lesions by inductive heating
JPH06254168A (en) Inside-tissue heating/warming therapy
WO2018150266A1 (en) Magnetic field oscillating at several frequencies for improving efficacy and/or reducing toxicity of magnetic hyperthermia
Lee et al. Crystallization and properties of Fe2O3—CaO—SiO2 glasses
JPS63103048A (en) Temperature-sensitive magnetic material
CN212038613U (en) Magnetic induction thermotherapy temperature control device
US20140081069A1 (en) Deep magnetic field generating apparatus
JP4002957B2 (en) Biological heating needle and therapeutic instrument using the same
JPH0261036A (en) Temperature sensitive amorphous alloy
JP4727363B2 (en) Magnetic heating element and temperature control method thereof
JP2599619B2 (en) Hyperthermia implant material
Sawaya et al. Examination of the exciting condition for the high-temperature magnetic hyperthermia
JPH0257264A (en) Composite magnetic body for hyperthermia
Frazier et al. Induction of hyperthermia using implanted electrodes
JPH0252663A (en) Composite magnetic material for thermotherapy
JPH01244767A (en) Cancer remedying device
JP2829997B2 (en) Preparation of ceramic heating elements for hyperthermia
JPH04116146A (en) Temperature-sensitive amorphous alloy coated with polymer
Geng et al. Orientated thermotherapy of ferromagnetic thermoseed in hepatic tumors
Kobayashi et al. Interstitial hyperthermia of malignant brain tumors by an implant heating system using stereotactic techniques