JPS63101B2 - - Google Patents

Info

Publication number
JPS63101B2
JPS63101B2 JP58223260A JP22326083A JPS63101B2 JP S63101 B2 JPS63101 B2 JP S63101B2 JP 58223260 A JP58223260 A JP 58223260A JP 22326083 A JP22326083 A JP 22326083A JP S63101 B2 JPS63101 B2 JP S63101B2
Authority
JP
Japan
Prior art keywords
louver
particulate matter
reaction tank
partition plate
moving bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58223260A
Other languages
Japanese (ja)
Other versions
JPS60118232A (en
Inventor
Kuninori Furuyama
Yoshiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Miike Engineering Corp
Mitsui Mining Co Ltd
Original Assignee
Mitsui Miike Engineering Corp
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Miike Engineering Corp, Mitsui Mining Co Ltd filed Critical Mitsui Miike Engineering Corp
Priority to JP58223260A priority Critical patent/JPS60118232A/en
Publication of JPS60118232A publication Critical patent/JPS60118232A/en
Publication of JPS63101B2 publication Critical patent/JPS63101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow

Description

【発明の詳細な説明】 本発明は、ルーバーによつて充填保持された炭
素質吸着剤のような粒子状物質を上から下に移動
させながら、ルーバーを通つてくるSOx,NOx
含有排ガスのようなガスと接触させ、除塵とか脱
硫、脱硝のような吸着、各種反応等を行わせるた
めの移動層反応槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention moves particulate matter such as carbonaceous adsorbent filled and held by the louvers from top to bottom, and removes SOx and NOx passing through the louvers.
This relates to a moving bed reaction tank for carrying out dust removal, adsorption such as desulfurization and denitrification, various reactions, etc. by contacting gas such as contained exhaust gas.

従来のこの種の装置では、第1図に示すように
垂直方向に一列に配された一対のルーバー1及び
1′により充填保持された粒子状物質2が、上か
ら下に移動して移動層を形成し、ガス3は反応槽
4に導入され、移動層の側方からルーバー1を通
つて移動層を貫流し、この間に除塵、反応等を行
い、反対側のルーバー1′から排出される。
In a conventional device of this kind, as shown in FIG. 1, particulate matter 2 filled and held by a pair of louvers 1 and 1' arranged vertically in a row moves from top to bottom to form a moving layer. The gas 3 is introduced into the reaction tank 4, flows through the moving bed from the side of the moving bed through the louver 1, performs dust removal, reaction, etc. during this time, and is discharged from the louver 1' on the opposite side. .

しかし、従来のこのような反応槽においては、
以下のような問題点があつた。
However, in a conventional reaction tank like this,
The following problems arose.

第1に、第2図に示すようにルーバー1の上に
粒子状物質2の非移動部分2−aが形成される。
このため、ダストの高いガスを導入する場合に
は、非移動層2−aのガス入口側にダストの層が
成長し、圧損の上昇をきたす。また、非移動部分
2−aは化学反応的に飽和に達してしまい、反応
生成物の浸出によるルーバーの腐食を起すことも
あり、かつ全体の反応容量の減少をきたす。
First, as shown in FIG. 2, a non-moving part 2-a of particulate matter 2 is formed on the louver 1.
Therefore, when introducing a gas containing a large amount of dust, a layer of dust grows on the gas inlet side of the non-moving layer 2-a, causing an increase in pressure drop. In addition, the non-moving portion 2-a may reach chemical reaction saturation, which may cause corrosion of the louvers due to leaching of reaction products, resulting in a decrease in the overall reaction capacity.

第2には、第3図に示すように反応槽における
粒子状物質2の排出口は、通常ルーバー1及び
1′の間隔よりも狭く絞られており、このままで
は移動層内の粒子状物質の速度分布は第3図に示
す5−1〜5−4のようになつてしまう。このた
め第4図に示すような種々の整流体6を設け移動
層内の流速分布をできるだけ均等にしようとする
方法が取られてきた。しかし粒子状物質のもとも
との不均質性及び粒度、含塵量含水分量等の性状
の経時変化のため、その流動状態はコントロール
し難く、整流体6は設けたがあとは成行きまかせ
という要素が強かつた。
Second, as shown in Fig. 3, the outlet for particulate matter 2 in the reaction tank is usually narrower than the distance between the louvers 1 and 1', and if this continues, the particulate matter in the moving bed will The velocity distribution becomes as shown in 5-1 to 5-4 shown in FIG. For this reason, a method has been adopted in which various types of flow regulators 6 are provided as shown in FIG. 4 in order to make the flow velocity distribution in the moving bed as uniform as possible. However, due to the inherent heterogeneity of particulate matter and changes in properties such as particle size, dust content, and moisture content over time, it is difficult to control the flow state of the particulate matter. It was strong.

一方、除塵、反応等の面からみれば、移動層内
の粒子状物質2には一般にガス入口側程高い負荷
がかかり、ガス・入口側ルーバー近傍の粒子状物
質は最高の負荷にさらされる。このため反応生成
物が付着性の強い場合などは、粒子状物質の移動
速度が遅いと塊が生じ、それが成長してガスに対
する圧損の上昇をきたす場合がある。従つて、こ
の部分の粒子状物質を比較的速い速度で移動、入
れ替えてやるのが得策であるが、従来の方法では
前述のように成行きまかせであり、まして、この
部分の移動速度を自在にコントロールすることは
できなかつた。
On the other hand, from the standpoint of dust removal, reaction, etc., the particulate matter 2 in the moving bed is generally subjected to a higher load on the gas inlet side, and the particulate matter near the gas/inlet side louver is exposed to the highest load. For this reason, when the reaction product is highly adhesive, if the moving speed of the particulate matter is slow, lumps may form and grow, causing an increase in the pressure drop against the gas. Therefore, it would be a good idea to move and replace the particulate matter in this area at a relatively high speed, but the conventional method leaves things to their own devices as described above, and it is even more difficult to control the movement speed in this area. I couldn't control it.

本発明の目的は上述した従来法の諸欠点を解消
した移動層反応槽を提供することである。
An object of the present invention is to provide a moving bed reactor which eliminates the drawbacks of the conventional methods mentioned above.

上記の目的を達成する本発明の要旨とするとこ
ろは、粒子状物質をルーバー構造によつて充填保
持し、該粒子状物質を上から下に移動させながら
ルーバーを通つてくるガスと接触させる移動層反
応槽において、粒子状物質を充填保持するために
垂直方向に一列に並んだメインルーバーの内側に
断面が逆V字型のサブルーバーを各メインルーバ
ーと平行に一列に設け、該V字型の一辺はメイン
ルーバーの各段の高さ方向の中間の位置に端を発
し、メインルーバーの内側に向つてメインルーバ
ーとは逆勾配で配し、V字型の頂点からの他の一
辺は垂直下方に向い、全ての段が同一垂直面内に
あるように配し、かつこの垂直下方向辺の下端
を、その下の段のV字型の頂点とが接しないよう
にしたことを特徴とする移動層反応槽を提供する
ことである。
The gist of the present invention to achieve the above object is to fill and hold particulate matter with a louver structure, and move the particulate matter from top to bottom while contacting gas passing through the louver. In the layered reaction tank, sub-louvers with an inverted V-shaped cross section are provided in a line parallel to each main louver inside the main louvers arranged vertically in order to fill and hold particulate matter, One side starts at the middle position in the height direction of each stage of the main louver, and is arranged at an opposite slope to the main louver toward the inside of the main louver, and the other side from the apex of the V-shape is vertical. It is characterized by being arranged so that all the tiers face downward and are in the same vertical plane, and the lower end of this vertical lower side does not touch the V-shaped apex of the tier below. An object of the present invention is to provide a moving bed reactor that can perform

以下に本発明を詳述する。本発明の目的は、第
1にルーバー上の粒子状物質の滞留をなくし、良
好な移動状態をもたらすことにより、ガス入口側
ルーバー部へのダスト蓄積、圧損の過上昇を防
ぎ、第2にルーバー近傍の粒子状物質の移動速度
と、他の部分の粒子状物質の移動速度の比を反応
槽全体の粒子状物質の流量を変えることなしに自
由に変えることにより、高い負荷を負う入口側の
粒子状物質の移動速度を速くしたり、圧損の様子
を見ながらコントロールすることができる反応槽
を提供することにある。
The present invention will be explained in detail below. The purpose of the present invention is, firstly, to eliminate the accumulation of particulate matter on the louvers and provide a good moving condition, thereby preventing dust accumulation on the gas inlet side louvers and excessive rise in pressure drop; By freely changing the ratio of the moving speed of particulate matter in the vicinity and the moving speed of particulate matter in other parts without changing the flow rate of particulate matter throughout the reaction tank, the inlet side, which bears a high load, can be The purpose of the present invention is to provide a reaction tank in which the movement speed of particulate matter can be increased and the pressure drop can be controlled while observing the situation.

先ず、前記第1の目的に関し説明する。第2図
にて既に説明した如く、粒子状物質の非移動部分
2−aが形成されるが、これは2−a部分に内側
から働く側圧と、2−a部分の自重による側圧が
釣り合うために起る。従つて内側から働く側圧を
なんらかの方法で支え、2−a部分に直接作用し
ないようにしてやれば、2−a部分の粒子状物質
は下方に排出され、かわりに上方から新な粒子状
物質が供給されることになり連続した入れ替えが
行われる。その方法として第5図に示すような方
法が考案されている。1のメインルーバーの中間
にメインルーバーと同方向の傾斜でサブルーバー
7を設ける。メインルーバー上の2−bに内側か
ら作用する側圧をサブルーバーが支えるため、2
−bからの排出がスムーズに行われ、かわりに2
−c部の粒子状物質が2−bの位置に入り、メイ
ンルーバー部の粒子状物質の入れ替えがスムーズ
に行われる。しかし、この方法ではサブルーバー
上に非移動部分2−dが形成されることになり、
程度の差こそあれ、同様の問題が生ずる。
First, the first objective will be explained. As already explained in FIG. 2, a non-moving part 2-a of particulate matter is formed, but this is because the lateral pressure acting on the part 2-a from the inside and the lateral pressure due to the weight of the part 2-a are balanced. It happens in Therefore, if the lateral pressure acting from the inside is supported in some way so that it does not act directly on the 2-a part, the particulate matter in the 2-a part will be discharged downward, and new particulate matter will be supplied from above in its place. This results in continuous replacement. As a method for this purpose, a method as shown in FIG. 5 has been devised. A sub-louver 7 is provided in the middle of one main louver with an inclination in the same direction as the main louver. Since the sub louver supports the side pressure that acts on 2-b on the main louver from the inside, the 2-b
−b is discharged smoothly, and instead 2
The particulate matter in the part -c enters the position 2-b, and the particulate matter in the main louver part is smoothly replaced. However, in this method, a non-moving portion 2-d is formed on the sublouver,
Similar problems arise, albeit to a different degree.

本発明では、第6図の如く、8と9から成る逆
V字型のサブルーバーを設けることにより、サブ
ルーバーより外側の粒子状物質はジグザグにスム
ーズに流れ、内側の粒子状物質は9に沿つて垂直
下方にスムーズに流れ、滞留する部分は全くなく
なる。かつ隣り合う9の隙間からの粒子状物質の
出入りはほとんどなく、両者独立した流れとな
り、最下段から排出口に向つて流出する粒子状物
質は、最上段から入り込んだ粒子状物質とほぼ同
じものであるという状態が実現される。
In the present invention, as shown in Fig. 6, by providing an inverted V-shaped sub-louver consisting of 8 and 9, particulate matter outside the sub-louver flows smoothly in a zigzag pattern, and particulate matter inside flows through 9. It flows smoothly vertically downward, with no stagnation at all. In addition, almost no particulate matter enters or exits from the gap between adjacent 9s, and both flow independently, and the particulate matter flowing out from the bottom stage toward the discharge port is almost the same as the particulate matter that entered from the top stage. The state is realized.

次に前記第2の目的に関し説明する。前述のよ
うなルーバー部粒子状物質の良好な移動が行われ
るためには、当然最下段から抜かれる粒子状物質
の流量が確保されていなければならない。しかし
一般に反応槽の排出口は第1図の如く、ルーバー
最下段から下り勾配の斜面の先端に設けられてい
るため、どのような整流体を用いたとしても、槽
内の粒子状物質2が排出口に向う角度としては、
この斜面の角度が最も緩く、斜面近傍の粒子状物
質の移動速度が最も遅くなる。まして、この部分
の移動速度を自在にコントロールすることなどは
できなかつた。
Next, the second objective will be explained. In order for the louver particulate matter to move smoothly as described above, the flow rate of the particulate matter extracted from the lowest stage must be ensured. However, as shown in Figure 1, the outlet of the reaction tank is generally located at the tip of the slope that slopes downward from the bottom of the louver, so no matter what kind of flow regulation is used, the particulate matter 2 in the tank is As for the angle toward the outlet,
The angle of this slope is the gentlest, and the movement speed of particulate matter near the slope is the slowest. Moreover, it was not possible to freely control the movement speed of this part.

本発明はルーバー最下段から抜かれる粒子状物
質の流量を確保し、かつこれを自在にコントロー
ルするために、第7図及び第7図のX−X断面図
である第8図の如く、サブルーバー最下段の垂直
板9の下端から、反応槽のケーシング4に沿つ
て、仕切板10を設け、仕切板10の上、下にあ
る粒子状物質が混ざらないような構造とし、この
仕切板10を排出ノズルの中まで連続させる。仕
切板の末端に、末端の辺と平行な軸を有する回転
仕切板11を設け、仕切板10の下端と回転仕切
板11の上端の隙間を粒子状物質が貫通しない程
度とする。この回転仕切板の角度は外部から変更
できるような構造とする。
In order to ensure the flow rate of particulate matter drawn out from the lowest stage of the louver and to freely control it, the present invention has a sub-assembly as shown in FIG. 7 and FIG. A partition plate 10 is provided from the lower end of the vertical plate 9 at the lowest stage of the louver along the casing 4 of the reaction tank, and the structure is such that particulate matter above and below the partition plate 10 does not mix. continue into the discharge nozzle. A rotary partition plate 11 having an axis parallel to the side of the end is provided at the end of the partition plate, and the gap between the lower end of the partition plate 10 and the upper end of the rotary partition plate 11 is set to such an extent that particulate matter does not penetrate. The angle of this rotating partition plate can be changed from the outside.

以上のような構造により、ルーバー下端から排
出される粒子状物質は仕切板10の上側にある粒
子状物質からの干渉を受けずに、ケーシング4と
の間を通り、排出ノズルに達する。排出ノズル部
に設けられた回転仕切板11は、その角度を変え
ることにより、その出口部の左右の断面積が変え
られる。全体の抜出量が一定であつても、回転仕
切板11の角度次段で、左右の流量比を0から無
限大まで連続して変えることができる。これによ
り、全体の抜出量を増加させることなしに、槽内
の粒子状物質の移動速度分布を効果的なものにす
ることができる。
With the above structure, the particulate matter discharged from the lower end of the louver passes between the casing 4 and the discharge nozzle without being interfered with by the particulate matter above the partition plate 10. By changing the angle of the rotary partition plate 11 provided in the discharge nozzle part, the cross-sectional area of the left and right sides of the outlet part can be changed. Even if the overall extraction amount is constant, the ratio of left and right flow rates can be changed continuously from 0 to infinity by changing the angle of the rotary partition plate 11 at the next stage. Thereby, the movement speed distribution of particulate matter within the tank can be made effective without increasing the overall amount of extraction.

以下に実施例を説明する。 Examples will be described below.

第9図は本発明による乾式脱流脱硝装置の一実
施例の説明図である。第9図において、12は平
均粒径8φ程度の活性コークスであり、13のホ
ツパーにて粉面を一定に保つように充填されてお
り、14の反応槽を径て、15の定量フイーダに
て抜き出される。ガス25は反応槽の側面から入
り、ルーバー及び活性コークス層を通つて脱硫、
脱硝、除塵が成され反対側の側面から出る。反応
槽内の活性コークスは入口側のメインルーバー1
7及び出口側ルーバー17′により保持されてい
る。入口側は18,19からなるサブルーバー及
び20の仕切板、21の回転仕切板から成り、更
に活性コークス層の中間に全体の移動速度分布を
コントロールするための仕切板22及び回転仕切
板23、及び整流体24が設けられており、移動
速度のコントロールは16のサイトグラスから活
性コークスの降下速度を測定しながら行う。
FIG. 9 is an explanatory diagram of an embodiment of the dry denitration and denitrification apparatus according to the present invention. In Fig. 9, 12 is activated coke with an average particle size of about 8φ, which is packed in a hopper 13 to keep the powder level constant, passes through a reaction tank 14, and is fed into a metering feeder 15. being extracted. Gas 25 enters from the side of the reactor and passes through the louvers and activated coke layer to desulfurize and
Denitrification and dust removal are completed and exit from the opposite side. The activated coke in the reaction tank is stored in the main louver 1 on the inlet side.
7 and the outlet side louver 17'. The inlet side consists of a sub-louver consisting of 18 and 19, a partition plate 20, and a rotating partition plate 21, and furthermore, a partition plate 22 and a rotating partition plate 23 for controlling the overall movement speed distribution in the middle of the activated coke layer. The moving speed is controlled by measuring the descending speed of activated coke from 16 sight glasses.

第10図は入口側ルーバー部の詳細である。θ1
は60゜、θ2は60゜、Aは400mm、Bは300mm、Cは217
mm、Dは20mm、Eは75mm、第11図は入口側ルー
バー下端から排出口までの詳細である。θ3は60゜、
Gは125mm、Hは108mm、Iは70mm、Jは150mm。
FIG. 10 shows details of the entrance side louver section. θ 1
is 60°, θ 2 is 60°, A is 400mm, B is 300mm, C is 217
mm, D is 20 mm, E is 75 mm, and Figure 11 shows details from the lower end of the inlet side louver to the outlet. θ 3 is 60°,
G is 125mm, H is 108mm, I is 70mm, and J is 150mm.

第12図は仕切板20の下端と回転仕切板21
部の詳細断面図である。回転仕切板21と22の
回転軸、23のナツトは一体化されており一緒に
回転する。ケーシング14の外部とのガス洩れを
防ぐためのカバーとして、24の外筒及び25の
キヤツプがあり、26は回転軸に対するロツクボ
ルトである。Kは155mm、Lは153mm。
Figure 12 shows the lower end of the partition plate 20 and the rotating partition plate 21.
FIG. The rotating shafts of the rotating partition plates 21 and 22 and the nut 23 are integrated and rotate together. As a cover for preventing gas leakage from the outside of the casing 14, there is an outer cylinder 24 and a cap 25, and 26 is a lock bolt for the rotating shaft. K is 155mm, L is 153mm.

第9,10,11図に示すサブルーバーのうち
19の部分を多孔板を用いることにより、ガスの
流通面積を増加及び均質化させると同時にガス圧
損を低下させることができる。
By using perforated plates for 19 of the sublouvers shown in FIGS. 9, 10, and 11, the gas flow area can be increased and homogenized, and at the same time, the gas pressure loss can be reduced.

本実施例を設けた移動層反応槽と設けない移動
層反応槽との運転結果を比較すると、設けないも
のでは、運転開始後200〜300時間で反応槽の圧力
損失が過大となり運転不能に陥いる。開放点検す
ると入口側ルーバー部の非移動粒子状物質の上流
側に厚いダストの層が形成されており、ルーバー
の内面側には反応生成物が塊となつて成長してお
り、そのところどころにガスの流入口が口を開け
ているという状態となる。
Comparing the operating results of the moving bed reactor equipped with this example and the moving bed reactor without it, the pressure loss of the reaction tank became excessive 200 to 300 hours after the start of operation, and it became impossible to operate. There is. Upon inspection, a thick layer of dust was formed on the upstream side of the non-moving particulate matter on the inlet side louver, and reaction products were growing in clumps on the inner surface of the louver, and there were gases everywhere. The inflow port is open.

一方、設けたものでは、サブルーバー部の粒子
状物質の流量を全体の10%程度にすると、反応槽
の圧力損失が運転開始後50時間程度の間わずかに
上昇していくが、それ以後上昇はなく安定した連
続運転が可能である。開放点検すると、入口側ル
ーバー部にはダストが蓄積した形跡はなく、ルー
バーの内面側にも反応生成物の塊は認められな
い。
On the other hand, when the flow rate of particulate matter in the sub-louver section is reduced to about 10% of the total flow rate, the pressure loss in the reaction tank increases slightly for about 50 hours after the start of operation, but increases thereafter. Stable continuous operation is possible. Upon opening and inspection, there was no evidence of dust accumulation on the inlet side louver, and no reaction product lumps were found on the inner surface of the louver.

ダストの濃度、反応生成物の単位時間当りの生
成量等からサブルーバー部の粒子状物質流量を適
当に調節することにより、広範囲な条件に適応す
る移動層反応槽となる。
By appropriately adjusting the flow rate of particulate matter in the sub-louver section based on the concentration of dust, the amount of reaction products produced per unit time, etc., a moving bed reaction tank that can be adapted to a wide range of conditions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のルーバーによつて粒子状物質を
保持する移動層反応槽の概略を示す断面図、第2
図はルーバー近傍を示す部分拡大図、第3図およ
び第4図はこの種移動層反応槽における粒子状物
質の流速分布を示す概念図、第5図は従来のサブ
ルーバーの位置、構造を示すルーバー近傍図、第
6図は本発明のサブルーバーの位置、構造を示す
ルーバー近傍図、第7図は本発明のサブルーバー
の一実施態様を示す部分図、第8図は第7図のX
−X線に沿つた断面図、第9図は本発明の移動層
反応槽の一実施態様を示す断面図、第10図、第
11図は本発明のサブルーバーおよび仕切板の具
体例を示す部分設計図、第12図は本発明のサブ
ルーバーに設けられた仕切板と仕切板に設けられ
た回転板の詳細を示す断面図である。
Figure 1 is a cross-sectional view schematically showing a moving bed reaction tank that retains particulate matter using a conventional louver.
The figure is a partially enlarged view showing the vicinity of the louver, Figures 3 and 4 are conceptual diagrams showing the flow velocity distribution of particulate matter in this type of moving bed reaction tank, and Figure 5 shows the position and structure of a conventional sub-louver. 6 is a close-up view of the louver showing the position and structure of the sub-louver of the present invention; FIG. 7 is a partial view showing an embodiment of the sub-louver of the present invention; FIG. 8 is a view of the sub-louver in FIG.
- A sectional view taken along the X-ray; FIG. 9 is a sectional view showing one embodiment of the moving bed reaction tank of the present invention; FIGS. 10 and 11 show specific examples of the sub-louver and partition plate of the present invention. The partial design drawing, FIG. 12, is a sectional view showing details of the partition plate provided in the sub-louver of the present invention and the rotary plate provided in the partition plate.

Claims (1)

【特許請求の範囲】 1 粒子状物質をルーパー構造によつて充填保持
し、該粒子状物質を上から下に移動させながらル
ーバーを通つてくるガスと接触させる移動層反応
槽において、粒子状物質を充填保持するために垂
直方向に一列に並んだメインルーバーの内側に断
面が逆V字型のサブルーバーを各メインルーバー
と平行に一列に設け該V字型の一辺はメインルー
バーの各段の高さ方向の中間の位置に端を発し、
メインルーバーの内側に向つてメインルーバーと
は逆勾配で配し、V字型の頂点からの他の一辺は
垂直下方に向い、全ての段が同一垂直面内にある
ように配し、かつこの垂直下方向辺の下端と、そ
の下の段のV字型の頂点とが接しないようにした
ことを特徴とする移動層反応槽。 2 サブルーバーのうち、最下段のサブルーバー
の垂直下方向辺の下端から、移動層反応槽のケー
シング内壁に沿つて仕切板を設け、該仕切板を移
動層反応槽の粒子状物質排出ノズル内まで連続さ
せた特許請求の範囲1の移動層反応槽。 3 仕切板の排出ノズル内の端部に、該仕切板と
平行な中心軸を有する回転仕切板を設けた特許請
求の範囲2の移動層反応槽。
[Scope of Claims] 1. In a moving bed reaction tank in which particulate matter is filled and held by a looper structure, and the particulate matter is brought into contact with gas passing through the louver while moving from top to bottom. In order to fill and hold the main louvers, sub-louvers with an inverted V-shaped cross section are arranged in a line parallel to each main louver, and one side of the V-shape is located inside the main louvers that are lined up in a row in the vertical direction. The end starts at the middle position in the height direction,
The main louver is arranged inward with a slope opposite to that of the main louver, the other side from the apex of the V-shape faces vertically downward, and all the steps are arranged in the same vertical plane, and this A moving bed reaction tank characterized in that the lower end of the vertical lower side does not touch the V-shaped apex of the stage below it. 2. A partition plate is installed along the inner wall of the casing of the moving bed reaction tank from the lower end of the vertically lower side of the lowest sub-louver among the sub-louvers, and the partition plate is installed inside the particulate matter discharge nozzle of the moving bed reaction tank. The moving bed reaction tank according to claim 1, which is continuously operated up to 3. The moving bed reaction tank according to claim 2, wherein a rotary partition plate having a central axis parallel to the partition plate is provided at the end of the partition plate inside the discharge nozzle.
JP58223260A 1983-11-29 1983-11-29 Moving layer reaction tank Granted JPS60118232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223260A JPS60118232A (en) 1983-11-29 1983-11-29 Moving layer reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223260A JPS60118232A (en) 1983-11-29 1983-11-29 Moving layer reaction tank

Publications (2)

Publication Number Publication Date
JPS60118232A JPS60118232A (en) 1985-06-25
JPS63101B2 true JPS63101B2 (en) 1988-01-05

Family

ID=16795312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223260A Granted JPS60118232A (en) 1983-11-29 1983-11-29 Moving layer reaction tank

Country Status (1)

Country Link
JP (1) JPS60118232A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828193B2 (en) * 1993-11-18 1998-11-25 住友重機械工業株式会社 Desulfurization / denitration tower
CN105148681B (en) * 2015-09-29 2017-09-22 北京首钢国际工程技术有限公司 A kind of agglomerates of sintered pellets flue gas absorption and blanking device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298674A (en) * 1976-02-13 1977-08-18 Kobe Steel Ltd Denitration apparatus for exhasut gas
JPS5881424A (en) * 1981-11-11 1983-05-16 Hitachi Ltd Structure of louver for supporting particle of packed layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298674A (en) * 1976-02-13 1977-08-18 Kobe Steel Ltd Denitration apparatus for exhasut gas
JPS5881424A (en) * 1981-11-11 1983-05-16 Hitachi Ltd Structure of louver for supporting particle of packed layer

Also Published As

Publication number Publication date
JPS60118232A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
EP0198133B1 (en) A moving bed reactor including a main louvre and a sub-louvre
US3296775A (en) Method and apparatus for treating fluids and non-fluid materials
US4451272A (en) Moving bed filter, especially an adsorption filter
CN101801504B (en) Desulfuration-denitration apparatus for exhaust gas
US3708981A (en) Adsorption method and apparatus for treating polluted gas streams
US2702434A (en) Apparatus for countercurrent contacting of fluidized solids with gaseous materials
JPH046415B2 (en)
US4446112A (en) Apparatus for contacting fluid with particulate solid material
US5624644A (en) Apparatus for acid gas emission control
US4438075A (en) Process and apparatus for the production and maintenance of a fluidized layer in heterogeneous systems
US5932179A (en) Waste gas treatment apparatus
JP3310334B2 (en) Moving bed type reaction tank
JPS63101B2 (en)
JPS6218209B2 (en)
MXPA97003098A (en) Improved control of gas emission ac
JPH0220289B2 (en)
JPS58174220A (en) Moving bed filter for purifying gaseous and/or steam like medium
US4255072A (en) Flow leading floor for whirl chutes
US5766555A (en) Feed inlet floor for mobile bed reactors
JPS6316020A (en) Device for holding and moving layer
JP3373467B2 (en) Exhaust gas treatment equipment
US4256045A (en) Apparatus and method for treating a gas with a liquid
US3920427A (en) Apparatus for the purification of combustion gases
JP3351658B2 (en) Dry desulfurization / denitration equipment
US4299598A (en) Panel gas filter for limestone dust