JPS63101767A - Waveform analyzing method - Google Patents

Waveform analyzing method

Info

Publication number
JPS63101767A
JPS63101767A JP24748786A JP24748786A JPS63101767A JP S63101767 A JPS63101767 A JP S63101767A JP 24748786 A JP24748786 A JP 24748786A JP 24748786 A JP24748786 A JP 24748786A JP S63101767 A JPS63101767 A JP S63101767A
Authority
JP
Japan
Prior art keywords
frequency
analysis
sampling
waveform data
original waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24748786A
Other languages
Japanese (ja)
Inventor
Hiroshi Igawa
博 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24748786A priority Critical patent/JPS63101767A/en
Publication of JPS63101767A publication Critical patent/JPS63101767A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To shorten the processing speed of fast Fourier transformation and to certainly extract a frequency spectrum, by analyzing frequency in such a state that the fundamental frequency of the original waveform data always becomes integer multiples of the min. analytic frequency. CONSTITUTION:The waveform of the electric signal obtained by detecting the vibration or noise of a rotary machine is sampled and the min. analytic frequency is calculated from the sampling frequency and the number of sampling points. Further, fundamental frequency is calculated from the original wave form data obtained by sampling. Then, it is investigated whether the fundamental frequency is integer multiples of the min. analytic frequency and, at the time of integer multiples, the original waveform data is subjected to frequency analysis as it is by fast Fourier transformation and, when the fundamental frequency does not become integer multiples of the min. analytic frequency, a spline function is calculated from the original waveform data and he original waveform data is interpolated so that the min. analytic frequency becomes a submultiple of the fundamental frequency and this interpolation data is subjected to frequency analysis by fast Fourier transformation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、回転機の振動、騒音等の波形を解析するに好
適な波形解析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a waveform analysis method suitable for analyzing waveforms of vibrations, noise, etc. of a rotating machine.

(従来の技術) 一般に、回転機の振動および騒音を検出して得られる電
気信号波形には、基本的に回転数に比例した周波数成分
が含まれており、その成分周波数は数ヘルツ(Hz )
から数キロヘルツ(KHz )の広範囲に分布している
(Prior Art) Generally, the electrical signal waveform obtained by detecting the vibration and noise of a rotating machine contains a frequency component that is basically proportional to the rotation speed, and the component frequency is several hertz (Hz).
It is distributed over a wide range from several kilohertz (KHz).

かかる電気信号波形をサンプリングによって周波数解析
するとき、高周波成分に対してはサンプリング周波数を
高くする必要があり、逆に低周波成分に対してはサンプ
リング周波数を下げるか、サンプリング点数を多くしな
ければならない。
When frequency-analyzing such an electrical signal waveform by sampling, it is necessary to increase the sampling frequency for high-frequency components, and conversely, it is necessary to lower the sampling frequency or increase the number of sampling points for low-frequency components. .

ここで、サンプリング周波数をf 1サンプリング点数
を81解析可能周波数をFとすれば、これらの間には次
式に示す関係が成立する。
Here, if the sampling frequency is f, the number of sampling points is 81, and the analyzable frequency is F, then the relationship shown in the following equation holds between them.

S、      2 この関係式から明らかなように、サンプリングによって
得られた原波形データに基づき高周波成分と低周波成分
の両方を求めるにはサンプリング周波数を上げ、しかも
、サンプリング点数を多くしなければならない。しかし
、従来はこれに代わる適切な方法がなかったので、止む
を得ずサンプリング周波数を上げると共に、必要なだけ
サンプリング点数を増やして回転機の騒音、振動等の波
形解析を行っていた。
S, 2 As is clear from this relational expression, in order to obtain both high-frequency components and low-frequency components based on the original waveform data obtained by sampling, the sampling frequency must be increased and the number of sampling points must be increased. However, in the past, there was no suitable alternative method, so it was unavoidable to increase the sampling frequency and increase the number of sampling points as necessary to perform waveform analysis of noise, vibration, etc. of rotating machines.

(発明が解決しようとする問題点) 上述したように、サンプリング周波数を高めるには当然
のことながら高速のサンプリング装置が必要になり、ま
た、サンプリング点数を多くすることはそれに応じてメ
モリの容量を増やさなければならず、これによって周波
数解析装置が高価になることのほか、かかる波形解析に
用いる高速フーリエ変換処理に多大な時間を要してしま
うという問題点があった。
(Problems to be Solved by the Invention) As mentioned above, increasing the sampling frequency naturally requires a high-speed sampling device, and increasing the number of sampling points also requires a corresponding increase in memory capacity. In addition to increasing the cost of the frequency analysis device, there are also problems in that the fast Fourier transform processing used for such waveform analysis requires a large amount of time.

また、高速サンプリングによる多数のデータから得られ
る解析周波数は回転数に比例した周波数だけでなく、実
際には回転数に比例しない周波数をも求めてしまうとい
う問題点もあった。
Furthermore, there is a problem in that the analysis frequency obtained from a large amount of data obtained through high-speed sampling is not only a frequency proportional to the rotational speed, but also a frequency that is actually not proportional to the rotational speed.

本発明は上記の問題点を解決するためになされたもので
、装置コストの低廉化を図り得ると共に、高速フーリエ
変換の処理時間を短縮し得、併せて、回転機の回転数に
比例した周波数成分のみを求めることのできる波形解析
方法の提供を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the cost of the device, shorten the processing time of fast Fourier transform, and at the same time, it is possible to reduce the processing time of fast Fourier transform. The purpose of this invention is to provide a waveform analysis method that can determine only the components.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、サンプリングによって得られた原波形データ
の最小解析周波数および基本周波数を求め、次に、前記
基本周波数が前記最小解析周波数の整数倍か否かを調べ
、次に、前記基本周波数が前記最小解析周波数の整数倍
のとき前記原波形データを高速フーリエ変換にて周波数
解析し、整数倍でないときスプライン関数を用いて前記
最小解析周波数が前記基本周波数の整数分の一になるよ
うに前記原波形データを補間すると共に、補間によって
、得られたデータを前記高速フーリエ変換にて周波数解
析することを特徴としている。
(Means for Solving the Problems) The present invention determines the minimum analysis frequency and fundamental frequency of original waveform data obtained by sampling, and then determines whether the fundamental frequency is an integral multiple of the minimum analysis frequency. Then, when the fundamental frequency is an integer multiple of the minimum analysis frequency, frequency analysis is performed on the original waveform data using fast Fourier transform, and when the fundamental frequency is not an integer multiple, a spline function is used to calculate the minimum analysis frequency of the fundamental frequency. The present invention is characterized in that the original waveform data is interpolated so as to be a fraction of an integer, and the data obtained by interpolation is subjected to frequency analysis using the fast Fourier transform.

(作 用) 振動または騒音に対応する電気信号をサンプリングした
場合、サンプリング周波数とサンプリング点数から最小
解析周波数を求めることができる。
(Function) When an electrical signal corresponding to vibration or noise is sampled, the minimum analysis frequency can be determined from the sampling frequency and the number of sampling points.

また、サンプリングによって得られた原波形データから
、基本周波数を求めることができる。この基本周波数の
求め方については、例えば、特開昭58−129368
号公報に開示されているのでその説明を省略するが、回
転機の振動または振動の解析においては、この基本周波
数が上記最小解析周波数の整数倍であることが望ましい
サンプリングと言える。
Further, the fundamental frequency can be determined from the original waveform data obtained by sampling. For information on how to find this fundamental frequency, see Japanese Patent Application Laid-Open No. 58-129368, for example.
Although the description thereof will be omitted since it is disclosed in the above publication, in the analysis of vibrations or vibrations of a rotating machine, it can be said that it is desirable sampling that this fundamental frequency is an integral multiple of the above-mentioned minimum analysis frequency.

そこで本発明は、最小解析周波数および基本周波数を求
め、基本周波数が最小解析周波数の整数倍か否かを調べ
、整数倍であれば、そのまま原波形データを高速フーリ
エ変換(Fast FourlerTransfor−
以下FFTと言う)にて周波数解析する。
Therefore, the present invention calculates the minimum analytic frequency and fundamental frequency, checks whether the fundamental frequency is an integer multiple of the minimum analytic frequency, and if it is an integer multiple, the original waveform data is directly subjected to Fast Fourier Transform.
Frequency analysis is performed using FFT (hereinafter referred to as FFT).

−・方、基本周波数が最小解析周波数の整数倍になって
いない場合には、原波形データからスプライン関数を求
め、最小解析周波数が基本周波数の整数分の一倍になる
ように原波形データを補間し、この補間データをFFT
にて周波数解析している。
- On the other hand, if the fundamental frequency is not an integer multiple of the minimum analysis frequency, a spline function is calculated from the original waveform data, and the original waveform data is adjusted so that the minimum analysis frequency is an integer multiple of the fundamental frequency. Interpolate and FFT this interpolated data
Frequency analysis is performed.

(実施例) 以下、本発明の一実施例を第1図に示すフローチャート
に従って説明する。
(Example) An example of the present invention will be described below with reference to the flowchart shown in FIG.

先ず、サンプリング周波数f にて、サンプリング点数
S の原波形データがディジタル信号で得られたとする
と、ステップ101にてこの原波形データをファイルに
コピーし、ステップ102にて次式の演算により原波形
データに含まれる周波数成分の最小解析周波数FOを求
める。
First, assuming that original waveform data with sampling points S is obtained as a digital signal at sampling frequency f, this original waveform data is copied to a file in step 101, and the original waveform data is converted into a file by calculating the following equation in step 102. Find the minimum analysis frequency FO of the frequency components included in .

次に、ステップ103にて回転機の回転数に対応する周
波数以外の成分、すなわち、直流成分および高周波成分
を取除くためにディジタルフィルタ処理を施した後;ス
テップ104にて基本周波数f を算出する。
Next, in step 103, digital filter processing is performed to remove components other than frequencies corresponding to the rotation speed of the rotating machine, that is, DC components and high frequency components; in step 104, a fundamental frequency f is calculated. .

次に、ステップ105では、基本周波数f が上記最小
解析周波数F の整数倍か否かを判定し、若し、基本周
波数f が最小解析周波数F の整OO 数倍であれば、すなわち、Nを整数として次式%式% を満足するとき、ステップ106にて原波形データをF
FTにて周波数解析し、ステップ107にて解析結果を
表示する。
Next, in step 105, it is determined whether the fundamental frequency f is an integral multiple of the minimum analysis frequency F, and if the fundamental frequency f is an integral multiple of the minimum analysis frequency F, that is, N When the following formula % formula % is satisfied as an integer, the original waveform data is converted to F in step 106.
The frequency is analyzed by FT, and the analysis result is displayed in step 107.

一方、基本周波数f が最小解析周波数FOの整数倍で
ないとき、すなわち、次式 %式%(4) の場合には、ステップ108にてサンプリング点数S 
を一定として新たなサンプリング周波数、p f を次式 に従って求め、次いで原波形データからスプライン関数
F を求めて新たなサンプリング周波数p F に対応するデータy (n)を次式に従って算出す
る。
On the other hand, when the fundamental frequency f is not an integer multiple of the minimum analysis frequency FO, that is, when the following formula % formula % (4) is satisfied, in step 108, the number of sampling points S
A new sampling frequency, p f , is determined according to the following formula, with p F constant, and then a spline function F is determined from the original waveform data, and data y (n) corresponding to the new sampling frequency p F is calculated according to the following formula.

y−F(−)(6) p ただし neo〜(S  −1) である。第2図(a)、  (b)はこの関係を示すも
ので、同図(a)に示すようにサンプリング周波数f 
、サンプリング点数S の原波形データp が、スプライン関数による近似という周知の手法によっ
て同図(b)に示すようにサンプリング周波数f 、サ
ンプリング点数S の波形データにs        
           p補間される。
y-F(-)(6) p where neo~(S-1). Figure 2 (a) and (b) show this relationship, and as shown in Figure 2 (a), the sampling frequency f
, the original waveform data p with the number of sampling points S is transformed into the waveform data with the sampling frequency f and the number of sampling points S by the well-known method of approximation using a spline function, as shown in FIG.
p interpolated.

このときの最小解析周波数はf  /S  となり、p 原波形の基本周波数f の整数分の−になっている。The minimum analytic frequency at this time is f/S, and p It is a negative integer of the fundamental frequency f of the original waveform.

次に、ステップ109でこの補間データFFTにて周波
数解析すると、ステップ107の処理に移って解析結果
を表示する。
Next, in step 109, frequency analysis is performed using this interpolated data FFT, and the process moves to step 107 to display the analysis results.

しかして、この実施例によれば、原波形データの基本周
波数が常に最小解析周波数の整数倍になる状態で周波数
解析しているので、回転機の振動、騒音の波形解析に好
適であるほか、周波数成分の分布範囲が広くともサンプ
リング周波数を上げたり、あるいは、サンプリング点数
を大幅に増やしたりする必要がなくなる。この結果、サ
ンプリングの高速化、メモリ容量の増大および処理時間
の長大化を余儀なくされた従来の波形解析方法の欠点が
解消される。
According to this embodiment, frequency analysis is performed with the fundamental frequency of the original waveform data always being an integral multiple of the minimum analysis frequency, so it is suitable for waveform analysis of vibrations and noise of rotating machines. Even if the frequency component distribution range is wide, there is no need to increase the sampling frequency or significantly increase the number of sampling points. As a result, the drawbacks of conventional waveform analysis methods, which require faster sampling, increased memory capacity, and longer processing time, are eliminated.

また、この実施例によれば、基本周波数が最小解析周波
数の整数倍になる状態で周波数解析しているので、原波
形を単にFFT処理しただけでは抽出できないような、
回転数に比例して表われる振動、騒音の周波数スペクト
ラムを確実に抽出することができる。
Furthermore, according to this embodiment, frequency analysis is performed with the fundamental frequency being an integral multiple of the minimum analysis frequency, so that the fundamental frequency is an integer multiple of the minimum analysis frequency.
It is possible to reliably extract the frequency spectrum of vibrations and noise that appear in proportion to the rotation speed.

なお、上記実施例ではスプライン関数を用いてデータ補
間を行ったが、これ以外の補間法を用いても上述したと
略同様な周波数解析を行うことができる。
In the above embodiment, data interpolation was performed using a spline function, but substantially the same frequency analysis as described above can be performed using other interpolation methods.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、本発明によれば、
装置コストの低廉化を図り得ると共に、高速フーリエ変
換の処理を短縮し得、併せて、回転機の回転数に比例し
た周波数成分のみを求めることができるという効果があ
る。
As is clear from the above description, according to the present invention,
It is possible to reduce the cost of the device, shorten the process of fast Fourier transform, and obtain only the frequency component proportional to the rotation speed of the rotating machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローチャート、第2
図(a)、(b)は同実施例の処理手順の詳細を説明す
るための波形図である。 出願人代理人  佐  藤  −雄 第1図 一一一伽を 第2図
FIG. 1 is a flowchart showing one embodiment of the present invention, and FIG.
Figures (a) and (b) are waveform diagrams for explaining details of the processing procedure of the same embodiment. Applicant's agent Mr. Sato - Figure 1, Figure 2.

Claims (1)

【特許請求の範囲】[Claims] サンプリングによって得られた原波形データの最小解析
周波数および基本周波数を求め、次に、前記基本周波数
が前記最小解析周波数の整数倍か否かを調べ、次に、前
記基本周波数が前記最小解析周波数の整数倍のとき前記
原波形データを高速フーリエ変換にて周波数解析し、整
数倍でないときスプライン関数を用いて前記最小解析周
波数が前記基本周波数の整数分の一になるように前記原
波形データを補間すると共に、補間によって、得られた
データを前記高速フーリエ変換にて周波数解析すること
を特徴とする波形解析方法。
Find the minimum analysis frequency and fundamental frequency of the original waveform data obtained by sampling, then check whether the fundamental frequency is an integral multiple of the minimum analysis frequency, and then check whether the fundamental frequency is an integral multiple of the minimum analysis frequency. When the frequency is an integer multiple, the original waveform data is frequency-analyzed by fast Fourier transform, and when it is not an integer multiple, the original waveform data is interpolated using a spline function so that the minimum analysis frequency is an integer fraction of the fundamental frequency. A waveform analysis method characterized in that the data obtained by interpolation is subjected to frequency analysis using the fast Fourier transform.
JP24748786A 1986-10-20 1986-10-20 Waveform analyzing method Pending JPS63101767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24748786A JPS63101767A (en) 1986-10-20 1986-10-20 Waveform analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24748786A JPS63101767A (en) 1986-10-20 1986-10-20 Waveform analyzing method

Publications (1)

Publication Number Publication Date
JPS63101767A true JPS63101767A (en) 1988-05-06

Family

ID=17164196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24748786A Pending JPS63101767A (en) 1986-10-20 1986-10-20 Waveform analyzing method

Country Status (1)

Country Link
JP (1) JPS63101767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416771A (en) * 1990-05-11 1992-01-21 Hioki Ee Corp Method for measuring higher harmonic by memory recorder
WO1995033211A1 (en) * 1994-06-01 1995-12-07 Siemens Aktiengesellschaft Process for determining the harmonic oscillations of the fundamental component of an electric signal
JP2012115020A (en) * 2010-11-24 2012-06-14 Yokogawa Electric Corp Electric angle measuring apparatus
JP2012112761A (en) * 2010-11-24 2012-06-14 Yokogawa Electric Corp Higher harmonic wave component measuring device
CN104655928A (en) * 2013-11-21 2015-05-27 国家电网公司 Method for detecting inter-harmonics of input voltage of electric automobile charger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416771A (en) * 1990-05-11 1992-01-21 Hioki Ee Corp Method for measuring higher harmonic by memory recorder
WO1995033211A1 (en) * 1994-06-01 1995-12-07 Siemens Aktiengesellschaft Process for determining the harmonic oscillations of the fundamental component of an electric signal
US5889398A (en) * 1994-06-01 1999-03-30 Siemens Aktiengesellschaft Process for determining the harmonic oscillations of the fundamental component of an electrical signal
US6329806B1 (en) 1994-06-01 2001-12-11 Siemens Ag Process for determining the harmonic oscillations of the fundamental component of an electrical signal
JP2012115020A (en) * 2010-11-24 2012-06-14 Yokogawa Electric Corp Electric angle measuring apparatus
JP2012112761A (en) * 2010-11-24 2012-06-14 Yokogawa Electric Corp Higher harmonic wave component measuring device
CN104655928A (en) * 2013-11-21 2015-05-27 国家电网公司 Method for detecting inter-harmonics of input voltage of electric automobile charger

Similar Documents

Publication Publication Date Title
Chow et al. Three phase induction machines asymmetrical faults identification using bispectrum
Vold et al. Multi axle order tracking with the Vold-Kalman tracking filter
CA2278701A1 (en) A dynamic, non-uniform clock for resampling and processing machine signals
KR101946668B1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
Kechida et al. Approach signal for rotor fault detection in induction motors
Blough A survey of DSP methods for rotating machinery analysis, what is needed, what is available
EP1772739B1 (en) Method and apparatus for monitoring the condition of a machine
CN111160146B (en) Hydroelectric generating set state monitoring signal digital filtering method, device and system based on time-frequency conversion
CN113361331B (en) Power Frequency Interference Elimination Method, System and Medium Based on Windowed Interpolation FFT
JPS63101767A (en) Waveform analyzing method
CN114061947B (en) Sparse time-frequency analysis-based variable-rotation-speed fault diagnosis method and system for gearbox
JPH03291539A (en) Detecting method for abnormality of roller bearing of electric motor
Qian Gabor expansion for order tracking
JP4310137B2 (en) Body sound detection data processing apparatus, body sound detection data processing method, and body sound detection data processing program
DE69512267T2 (en) METHOD AND DEVICE FOR DIAGNOSIS OF MECHANICAL PROBLEMS, ESPECIALLY IN THE CIGARETTE PRODUCTION
JP2915027B2 (en) Acoustic diagnosis method for rotating machines
Ferrah et al. An investigation into speed measurement of induction motor drives using rotor slot harmonics and spectral estimation techniques
CN113049185A (en) Dynamic balance acquisition system and method for extracting dynamic balance phase by using low-pass zero-phase filter
Costa et al. Rotor failure diagnosis of induction motors by wavelet transform and Fourier transform in function of the load
CN116992254B (en) Reconstruction method, device and equipment for shell vibration signal of variable frequency motor and storage medium
Chow Condition monitoring of electric machines using third-order spectrum analysis
JPH0450731A (en) Rotary machine fault diagnostic system
JPS62291562A (en) Method for processing data of chromatography
KR20060012313A (en) Phase measurement device, method, program, and recording medium
JPH045538A (en) Signal analyzing method using walsh transformation