JPS629921A - Filler-filled resin injection-molded material whose surface is smooth - Google Patents

Filler-filled resin injection-molded material whose surface is smooth

Info

Publication number
JPS629921A
JPS629921A JP14836485A JP14836485A JPS629921A JP S629921 A JPS629921 A JP S629921A JP 14836485 A JP14836485 A JP 14836485A JP 14836485 A JP14836485 A JP 14836485A JP S629921 A JPS629921 A JP S629921A
Authority
JP
Japan
Prior art keywords
filler
flatness
thermoplastic resin
mold
evenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14836485A
Other languages
Japanese (ja)
Other versions
JPH0345687B2 (en
Inventor
Akihiro Wada
明紘 和田
Yukinao Kawazoe
河添 行直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14836485A priority Critical patent/JPS629921A/en
Publication of JPS629921A publication Critical patent/JPS629921A/en
Publication of JPH0345687B2 publication Critical patent/JPH0345687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a filler-filled thermoplastic resin injection-molded material which is superior in flatness and evenness, by specifying the flatness and evenness. CONSTITUTION:As for a filler-filled thermoplastic resin injection-molded material, flatness and evenness are less than 29mum and 0.2mum respectively per span of 38mm. When the flatness and evenness exceed 29mum and 0.2mum respectively high-accuracy magnetic recording becomes difficult as a variation in distance between a magnetic head and magnetic layer becomes large when the above material is made to rotate and drive as a hard magnetic recording medium. As for the thermoplastic resin, resin which is noncrystalline and low-hygroscopicity and having a high heat deformation temperature and low linear expansion coefficient is desirable. As for the heat deformation temperature, a measured value of more than 100 deg.C when bending stress is 18.6kg/cm<2> at ASTM D 648 is desirable. As for embodiments of the resin, polyester imide and polyether sulfone are cited. As for the fillers, they are organic.inorganic or metallic powdery materials such as glass beads, powdered carbon and iron powder: fibers such as a glass fiber and carbon fiber: and a platelike materials such as mica and aluminum foils, and one kind or more of them are used.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、平面性と平滑性に優れたフィラー入り熱可塑
性樹脂射出成形体に関し、更に詳しくはコンピューター
の外部記憶装置におけるプログラムやデータの記録・保
存に使用される硬質の磁気、光・磁気記録媒体用の基板
の用途に特に適した熱可塑性樹脂を用いた射出成形体に
関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a filler-containing thermoplastic resin injection molded article with excellent flatness and smoothness, and more specifically, to recording of programs and data in an external storage device of a computer. - It relates to an injection molded article using a thermoplastic resin that is particularly suitable for use as a substrate for hard magnetic, optical, and magnetic recording media used for storage.

「従来の技術」 磁気記録媒体として、円盤状アルミニウム系基板の両面
に下地層を介して磁性層を設けたものがいわゆるハード
・ディスク (リジッド・ディスク、硬質磁気記録媒体
)としてよく知られている。
``Prior art'' As a magnetic recording medium, one in which magnetic layers are provided on both sides of a disc-shaped aluminum substrate via an underlayer is well known as a so-called hard disk (rigid disk, hard magnetic recording medium). .

このようなハード・ディスクは3000〜3eQOrp
mといった高速で回転し、稼動時はフライングへ・ンド
がハード・ディスクの表面を空気力学的に浮いてハード
・ディスクに接触しないがスタート時とストップ時にフ
ライングヘッドがディスクに接触する形式(コンタクト
・スタート・ストップ方式)の他、ヘッドとディスクに
常時非接触である形式や、ヘッドとディスクが常時接触
したままの形式がある。これらのいずれの形式であって
も、磁気記録を正確に行なわせるためにはヘットとディ
スクとの距離あるいはヘッドとディスクとの接触状態を
一足にする必要がある。そのためにはディスクの表面に
平滑性がなくとはならす、また、ディスクにソリや波打
ったすせず平面性が良好である必要があった。更に、コ
ンタクト・スタート・ストップ方式では稼動開始時(ス
タート時)と稼動終了時(ストップ時)には、フライン
グヘッドとディスクが接触するため、殊にスI・ツブ時
の接触によるヘッドの衝撃、摩擦などにより、磁性層が
基板より摩耗あるいは剥離して磁気特性や機械的強度の
低下や可使用時間の短縮が往々にして起こり、そのため
に基板と磁性層との密着強度が必要であった。
Such hard disks are 3000~3eQOrp
It rotates at high speeds such as m, and during operation, the flying head aerodynamically floats on the surface of the hard disk and does not come into contact with the hard disk, but when starting and stopping, the flying head contacts the disk (contact type). In addition to the start/stop method), there are other types in which the head and disk are not in contact at all times, and types in which the head and disk are in constant contact. In any of these formats, in order to perform magnetic recording accurately, it is necessary to maintain the distance between the head and the disk or the state of contact between the head and the disk. To achieve this, the surface of the disk had to be smooth, and the disk had to have good flatness without warping or waving. Furthermore, in the contact start/stop method, the flying head and the disk come into contact at the start and end of operation (stop), so there is a risk of shock to the head due to contact, especially at the time of turning or turning. Due to friction, etc., the magnetic layer often wears or peels off from the substrate, resulting in a decrease in magnetic properties and mechanical strength, and a shortened usable life. Therefore, strong adhesion between the substrate and the magnetic layer is required.

そこで、前述の円盤状アルミニウム系基板より得られる
ハード・ディスクについてみると、まずこのようなアル
ミニウム系基板を製造するには、アルミニウム板からの
打抜き、荒削り、焼戻し、ダイヤモンド切削による鏡面
研磨、洗n1検査等の非常に繁雑な工程を経なければな
らず、いきおい高価なものとならざるを得なかった。
Therefore, looking at the hard disks obtained from the aforementioned disc-shaped aluminum substrates, first of all, in order to manufacture such aluminum substrates, there are steps such as punching from an aluminum plate, rough cutting, tempering, mirror polishing by diamond cutting, and n1 cleaning. It had to go through very complicated processes such as inspections, and it had to be very expensive.

また、アルミニウム系基板を用いているために重くなり
ディスクを回転させるのにそれだけ強力なモーターを使
用しなければならなくなり装置あ小型化、コストの低減
という点で問題があった。
In addition, the use of an aluminum-based substrate increases the weight and requires the use of a powerful motor to rotate the disk, which poses problems in terms of miniaturization and cost reduction of the device.

また、垂部の大きい分だけスタート、ストップ時の衝撃
も大きくなり、磁性層の剥陣を招き易かった。
In addition, the larger the hanging portion, the greater the impact upon starting and stopping, which tends to cause delamination of the magnetic layer.

更に、アルミニウムまたはその合金の基板にメッキやス
パッタリングで磁性層も設けたディスクでは、アルミニ
ウム又はその合金よりなる基板と、磁性層の界面あるい
は基板と磁性層の下に設けられた下地層との界面での腐
食が起こり性能低下につながり問題であった。
Furthermore, in a disk in which a magnetic layer is also provided by plating or sputtering on a substrate made of aluminum or its alloy, the interface between the substrate made of aluminum or its alloy and the magnetic layer, or the interface between the substrate and the underlayer provided under the magnetic layer. This was a problem as corrosion occurred, leading to a decline in performance.

上記のようにアルミニウム系の基板を用いるが故に生ず
る問題点、すなわち、繁雑な製造上程、重さ、界面での
腐食を解決する試みとして、ポリエーテルイミドを射出
成形することによりディスク基板を得る試みがなされて
いる。
In an attempt to solve the problems that arise due to the use of aluminum-based substrates, such as the complicated manufacturing process, weight, and corrosion at interfaces, an attempt was made to obtain a disk substrate by injection molding polyetherimide. is being done.

U発明が解決しようとする問題点j ところが、上記ポリエーテルイミド等の基板の表面平滑
性は良Ifであるが、平面性に多少問題があり、しかも
、ポリエーテルイミドの熱膨張係数が50〜Cox i
o弓/ 0Cとアルミニウムの20〜23X10−67
’Oよりもかなり大きく、そのため200℃を超えない
温度でスパッタリングにより金属磁性膜をポリエーテル
イミド基板」二に形成せしめた場合に磁性膜に亀裂が生
じ、スパッタリングが適用し難いという問題があった。
Problems to be Solved by the Invention j However, although the surface smoothness of the substrate made of polyetherimide or the like is good, there are some problems with the flatness, and furthermore, the coefficient of thermal expansion of polyetherimide is 50~50. Cox i
o bow/0C and aluminum 20~23X10-67
200° C. Therefore, when a metal magnetic film is formed on a polyetherimide substrate by sputtering at a temperature not exceeding 200°C, cracks occur in the magnetic film, making it difficult to apply sputtering. .

記録密度の大きい磁気ディスクとするためには、スパッ
タリング、イオンブレーティング、真空蒸着などにより
金属磁性簿膜の層を形成させることが有利であるが、こ
のようにスパッタリングのような薄膜形成技術が適用し
難いこととなると記録密度の増大は期待し得ない。
In order to create a magnetic disk with a high recording density, it is advantageous to form a layer of metal magnetic film by sputtering, ion blasting, vacuum deposition, etc., but in this way thin film formation techniques such as sputtering are applied. If it is difficult to do so, no increase in recording density can be expected.

[問題点を解決するための手段及び作用]本発明は上記
の点に鑑みなされたもので、本発明によれば、平面性が
スパン38mmあたり29gn+以下、平滑性が0.2
 gm以下であることを特徴とするフィラー入り熱可塑
性樹脂成形体が提供される。
[Means and effects for solving the problems] The present invention has been made in view of the above points, and according to the present invention, the flatness is 29 gn+ per span 38 mm or less, and the smoothness is 0.2
There is provided a filled thermoplastic resin molded article characterized in that the filler is less than or equal to gm.

本発明における平面性は板状成形体においては基準寸法
(スパン) 38mmあたりの最大高さくソリやフィラ
)を3次元寸?jE llI]足器を用いて測定したも
ので評価した。
In the present invention, flatness refers to the three-dimensional dimension (maximum height, warp, filler) of standard dimension (span) of 38 mm for a plate-shaped molded product. jEllI] Evaluation was made by measuring using a foot implement.

ドーナツ状円板にあっては該円板の円周ゴーのうねり(
最大高さ)や中心より半径方向のうねり(最大高さ)を
測定し評価する。測定器としては■小板研究所製円周う
ねり測定器、PU−DPIO型等を使用しても良い。円
周−にのうねり〔最大高さ〕測定時にあっては基準寸法
(スパン)は特別に円周」二の距離ではなく中心と測定
点の距離をいうものとする。
In the case of a donut-shaped disc, the undulation of the circumference of the disc (
Measure and evaluate the undulations in the radial direction from the center (maximum height). As a measuring device, a circumferential undulation measuring device manufactured by Koita Research Institute, PU-DPIO type, etc. may be used. When measuring the undulation (maximum height) around the circumference, the standard dimension (span) is not the distance between the circumference but the distance between the center and the measurement point.

そして、例えば、半径rmmのドーナツ状円板の場合は
、上記のようにして得られた最大高さXmax (mm
)を以下の式により半径38m+nのドーナツ状円板の
大きさに換算して、スパン38mmあたりのソリ量を平
面性を示す数値とするのである。
For example, in the case of a donut-shaped disk with a radius of rmm, the maximum height obtained as described above is Xmax (mm
) is converted into the size of a donut-shaped disk with a radius of 38 m+n using the following formula, and the amount of warpage per span of 38 mm is used as a numerical value indicating flatness.

平面性−XIIaX×− 1′、径38+nmのドーナツ状円板の場合は当然のこ
とながら」−記のようにして測定して得られた最大高さ
がそのまま、スパン38mmあたりの平面性を示す数値
となる。
Flatness - XIIa It becomes a numerical value.

そして、本発明における平滑性とはJIS B 080
1に従い、東京精害昧社製サーフコム550Aを使用し
、触側先端2.5用mR5触劃の測定力0.5gf以下
で測定して得られた最大高さくRmax)をいう。
The smoothness in the present invention is defined by JIS B 080
1, the maximum height (Rmax) obtained by measuring with a measuring force of 0.5 gf or less using a surfcom 550A manufactured by Tokyo Seijimai Co., Ltd. with a 2.5 mR5 touch at the tip of the touch side.

硬質磁気記録媒体用基板として用いた場合、平面性と平
滑性が良好な程磁気ヘッドと硬質磁気記録媒体の磁性層
との距離が一定に保たれ、磁気記録が高精度に行なわれ
る。
When used as a substrate for a hard magnetic recording medium, the better the planarity and smoothness, the more the distance between the magnetic head and the magnetic layer of the hard magnetic recording medium can be kept constant, and the more accurately magnetic recording can be performed.

本発明に係るフィラー入り熱可塑性樹脂射出成形体は1
1面性がスパン38mmあたり2917.m以下、好ま
しくは18JLm以下、更に好ましくは6pL+n以下
であり、平滑性が0.2 gm以下である。上記平面性
が25pLmを越えると射出成形体を基板としこれに磁
性層を設けて硬質磁気記録媒体として用い回転駆動させ
た場合に上下方向の板面の揺れに基づく磁気ヘッド−磁
性層間の距離の変動が大きくなる高精度の磁気記録が困
難になる。また、上記平滑性が0.2 gmを越えると
上記と同様の硬質磁気記録媒体として回転駆動させた場
合に板状体表面凹凸に基づく磁気ヘッド−磁性層間の距
離の変動が大きくなり高精度の磁気記録が困難になる。
The filler-containing thermoplastic resin injection molded article according to the present invention is 1
Unilaterality is 2917 per span 38mm. m or less, preferably 18 JLm or less, more preferably 6 pL+n or less, and the smoothness is 0.2 gm or less. When the above flatness exceeds 25 pLm, the distance between the magnetic head and the magnetic layer due to the vibration of the plate surface in the vertical direction when the injection molded body is used as a substrate and a magnetic layer is provided thereon as a hard magnetic recording medium and is driven to rotate. High-precision magnetic recording becomes difficult due to large fluctuations. Furthermore, if the smoothness exceeds 0.2 gm, when the same hard magnetic recording medium as above is driven in rotation, the distance between the magnetic head and the magnetic layer due to the unevenness of the plate surface will increase, making it difficult to achieve high precision. Magnetic recording becomes difficult.

本発明の射出成形体に使用される熱可塑性樹脂としては
、非品性の樹脂が、金型寸法の成形品再現性が良い、低
成形収縮率であるといった点で好ましい。また、寸法安
定性という観点から、低吸湿性で、加熱変形温度が高く
、線膨張係数が小さい樹脂が好ましい。具体的には、吸
湿性についてはASTM D 570に於て、23℃1
24時間の吸水星が0.7%以下が好ましく、0.35
%以下がより好ましい。加熱変形温度については、AS
TM 064Bに於て曲げ応力が18.8kg/cm2
の時の測定値が100℃以」二が好ましく、140℃以
」−がより好ましく、170℃以上がより好ましい。線
膨張係数としてはASTM 069Bに従い測定した値
が50XIO−6/°0以下が好ましく、15X10−
6/’C!〜30X10−6/’C!以下がより好まし
い。
As the thermoplastic resin used in the injection molded article of the present invention, a non-grade resin is preferable because it has good reproducibility of the molded product in mold dimensions and has a low molding shrinkage rate. In addition, from the viewpoint of dimensional stability, resins with low hygroscopicity, high heating deformation temperature, and small coefficient of linear expansion are preferable. Specifically, hygroscopicity is determined by ASTM D 570 at 23°C.
24-hour water absorption is preferably 0.7% or less, and 0.35
% or less is more preferable. Regarding heating deformation temperature, please refer to AS
Bending stress of TM 064B is 18.8kg/cm2
The measured value is preferably 100°C or higher, more preferably 140°C or higher, and even more preferably 170°C or higher. The linear expansion coefficient is preferably 50XIO-6/°0 or less as measured in accordance with ASTM 069B, and 15X10-6/°0 or less.
6/'C! ~30X10-6/'C! The following are more preferred.

本発明において好ましい熱可塑性樹脂の11体例として
は、ポリエーテルイミド、ポリエーテルスルホン、ポリ
フェニレンエーテル、ポリカーボネート、アクリロニi
・リルースチレン共重合体、ABS sI脂等が挙げら
れる。
Examples of 11 preferred thermoplastic resins in the present invention include polyetherimide, polyether sulfone, polyphenylene ether, polycarbonate, and acrylonitrile.
- Examples include lyrustyrene copolymer, ABS sI fat, etc.

ポリエーテルイミドの一例としては、式で示される構造
単位を有するものが挙げられる。
An example of polyetherimide is one having a structural unit represented by the formula.

また、ポリエーテルスルホンの一例としては、式%式%
) で示される構造単位を有するものが挙げられる。
In addition, as an example of polyether sulfone, the formula % formula %
) Those having the structural unit shown below are mentioned.

また、ボリフェニ1/ンエーテルの一例としては、式(
III) で示される構造単位を示すものが挙げられる。
In addition, as an example of borophenyl ether, the formula (
III) Examples include those having the structural unit shown below.

本発明におけるフィラーとしては、粉末状、繊維状、板
状等種々の形状のものが適用できる。ここで、粉末状の
フィラーには球状(ビーズ状)のフィラーも含まれる。
The filler in the present invention can be in various shapes such as powder, fiber, and plate. Here, the powdered filler also includes spherical (bead-shaped) filler.

粉末状フィラーとしては平均粒径50pm以下のものが
好ましく、より好ましくは20pm以下、更に好ましく
は0.2 p−m以下である。繊維状フィラーとしては
平均径1〜20gmφ、平均長0.1〜6mmのものが
好ましい。
The powder filler preferably has an average particle size of 50 pm or less, more preferably 20 pm or less, and even more preferably 0.2 pm or less. The fibrous filler preferably has an average diameter of 1 to 20 gmφ and an average length of 0.1 to 6 mm.

フィラーの具体例としては、ガラスピーズ、粉末カーボ
ン、酸化チタン、鉄粉、銅粉等の有機・fi機あるいは
金属等の粉体;ガラス繊維、カーホン繊維、銅線、アラ
ミド繊維等の繊維;マイカ、アルミ′fJ等の板状体等
が挙げられる。これらのフィラーは1種あるいは2種以
上を使用する。
Specific examples of fillers include organic/fiber or metal powders such as glass peas, powdered carbon, titanium oxide, iron powder, and copper powder; fibers such as glass fiber, carphone fiber, copper wire, and aramid fiber; , a plate-shaped body made of aluminum'fJ, etc. These fillers may be used alone or in combination of two or more.

射出成形体中のフィラーの含有量は5〜80重量%とす
るのが好ましい。この範囲内ではフィラー添加による効
果すなわち・、平面性良好、スパッタリング等の高温処
理時の磁性層のワレの防止等の効果が好適に発現される
The filler content in the injection molded article is preferably 5 to 80% by weight. Within this range, the effects of adding the filler, such as good flatness and prevention of cracking of the magnetic layer during high-temperature processing such as sputtering, can be suitably achieved.

本発明の成形体は、塗布、メッキ、スパッタリング、イ
オンプレーテインク、真空蒸着等の方法により、磁性層
を形成させ、更に必要に応じてその」−に保護層を設け
ることにより優れた磁気記録媒体とすることができる。
The molded product of the present invention has excellent magnetic recording properties by forming a magnetic layer by coating, plating, sputtering, ion plate ink, vacuum evaporation, etc., and further providing a protective layer thereon as necessary. It can be a medium.

本発明のフィラー入り熱可塑性樹脂射出成形体は、射出
成形品表面を形成させるべき金型表面を予め熱可塑性樹
脂の加熱変形温度以上に高周波誘導加熱しておき射出成
形する方法により製造することができる。
The filler-containing thermoplastic resin injection molded article of the present invention can be manufactured by a method in which the surface of the mold in which the surface of the injection molded article is to be formed is previously heated by high-frequency induction to a temperature higher than the heating deformation temperature of the thermoplastic resin, and then injection molded. can.

金型の表面を熱可塑性樹脂の加熱変形温度以上に保持し
たまま金型より離型することは不可能であり変形のない
所望の成形品を得るためには金型を冷却し成形品の温度
が熱可塑性樹脂の加熱変形温度より低温に冷却・固化さ
せた状態で金型より離型する必要がある。ところが射出
成形金型は通常の場合、成形品形状より重量的にはもち
ろん容最的にも何倍も大きな鋼鉄製のものであり、加熱
・冷却に多くの熱量と時間を必要とする。そこで、加熱
するにあたり高周波誘導加熱の原理を利用すれば、金型
の表層部を選択的に加熱することができ、しかも金型表
面を急加熱急冷却することも可能となる。この方法によ
れば、金型全体の熱膨張、収縮等の影響がなくなり、外
見」−の斑もなくなる。
It is impossible to release the mold from the mold while keeping the surface of the thermoplastic resin at a temperature higher than the heat deformation temperature of the thermoplastic resin.In order to obtain the desired molded product without deformation, the mold must be cooled and the temperature of the molded product must be lowered. It is necessary to cool and solidify the resin to a temperature lower than the heating deformation temperature of the thermoplastic resin before releasing it from the mold. However, injection molds are usually made of steel and are many times larger in weight and capacity than the shape of the molded product, and require a large amount of heat and time for heating and cooling. Therefore, if the principle of high-frequency induction heating is used for heating, it is possible to selectively heat the surface layer of the mold, and it is also possible to rapidly heat and cool the mold surface. According to this method, the influence of thermal expansion, contraction, etc. on the entire mold is eliminated, and there is no uneven appearance.

ここでいう加熱変形温度とは、JIS K 8871に
規定された方法で測定したものであるが、金型表面温度
を規定する場合は特に曲げ応力が18.8kg/cm2
になるように試験片に荷重を加えた場合の加熱変形温度
をいう。
The heat deformation temperature referred to here is measured by the method specified in JIS K 8871, but when specifying the mold surface temperature, the bending stress is 18.8 kg/cm2.
This is the heating deformation temperature when a load is applied to a test piece so that

ここで、従来の冷却した金型を用いる方法ではなぜ表面
平滑な射出成形品が得られなかったかを説明する。
Here, we will explain why an injection molded product with a smooth surface could not be obtained using the conventional method using a cooled mold.

従来法では、一般的に熱可塑性樹脂成形品の射出成形に
おいては熱可塑性樹脂の可塑性を利用し、換言すればス
クリュー等を用いて熱可塑性樹脂を加熱流動化賦形し、
しかる後金型内で冷却固化することにより成形品を得る
事を基本原理としている。すなわち、固化後成形品を金
型より離型して取り出すためには熱可塑性樹脂の加熱変
形温度より冷却し金型外に取り出す。そのため一般的に
は金型は加熱変形温度より低く保持する。更に生産性を
上げるために結露寸前の温度まで冷媒を利用して金型を
冷却することが行なわれている。
In conventional methods, the plasticity of the thermoplastic resin is generally used in injection molding of thermoplastic resin molded products, in other words, the thermoplastic resin is heated and fluidized using a screw, etc.
The basic principle is to obtain a molded product by cooling and solidifying it in the mold. That is, in order to release and take out the molded article from the mold after solidification, it is cooled below the heating deformation temperature of the thermoplastic resin and taken out from the mold. Therefore, the mold is generally maintained at a temperature lower than the heating deformation temperature. Furthermore, in order to increase productivity, the mold is cooled to a temperature on the verge of condensation using a refrigerant.

金型を冷却し、溶融樹脂の温度等で加熱、蓄熱する場合
でもその原理上金型温度は熱可塑性樹脂の加熱変形温度
を」二まわらないように制御し成形する。換言すると金
型表面と熱可塑性樹脂が接触するとその接触面で熱可塑
性樹脂が急速に冷却され熱可塑性樹脂の流動性が著しく
乏しくなるため金型表面が鏡面状であっても、金型から
の転写性が悪く成形品表面の凹凸が激しい。また充填剤
入りの場合、充填剤と熱可塑性樹脂は総じて相溶性が良
くないため充填剤と熱可塑性樹脂の界面に微少な空隙が
できこれを射出成形した場合シルバーストリークになる
と考えられる。すなわち、成形品表面に充填剤が現出し
凹凸が激しく、シルバーストリーク等が有る、表面の平
滑性の良くない成形品しか得られない。
Even when the mold is cooled and heated and stored at the temperature of the molten resin, in principle the mold temperature is controlled so as not to exceed the heating deformation temperature of the thermoplastic resin. In other words, when the mold surface and thermoplastic resin come into contact, the thermoplastic resin is rapidly cooled at the contact surface, and the fluidity of the thermoplastic resin becomes extremely poor. Transferability is poor and the surface of the molded product is extremely uneven. In addition, in the case of a filler, the filler and thermoplastic resin generally have poor compatibility, so it is thought that minute voids are created at the interface between the filler and the thermoplastic resin, resulting in silver streaks when injection molded. That is, the filler appears on the surface of the molded product, resulting in severe unevenness, silver streaks, etc., and a molded product with poor surface smoothness.

これに対し、金型表面温度を熱可塑性樹脂の加熱変形温
度以上とする方法によれば、可塑性を保持したまま成形
が可能となり、フローマークやシルバーストリーク等を
生じせしめることなく、転写性良好なため金型鏡面を極
めて良好に転写して極めて平滑な表面を有する射出成形
品を得ることができ、しかも高周波誘導加熱方法により
金型表面のみを加熱するため生産性を向」−させること
ができるのである。この方法により得られる成形品表面
を観察すれば1〜1007j、mの熱可塑性樹脂表皮層
を形成している。
On the other hand, using a method in which the mold surface temperature is higher than the heating deformation temperature of the thermoplastic resin, it is possible to mold while maintaining the plasticity, and the transferability is good without causing flow marks or silver streaks. Therefore, it is possible to transfer the mirror surface of the mold extremely well and obtain an injection molded product with an extremely smooth surface.In addition, since only the mold surface is heated using the high-frequency induction heating method, productivity can be improved. It is. Observation of the surface of the molded product obtained by this method reveals that a thermoplastic resin skin layer of 1 to 1007 m is formed.

次にこの方法を図面をまじえて説明する。Next, this method will be explained with reference to the drawings.

ます、第1図に示すように固定側金型と移動側金型の中
間に高周波誘導加熱のインダクターを設置する。移動側
金型と固定側金型との間にインダクターをはさみこみ、
はさみこまれた状態で高周波を発振させたところ第2図
に示すように、金型表面(A点やB点)のみ急激に温度
が」二昇し、金型内部(0点やD点)の温度は高周波誘
導加熱によっては温度上昇がほとんどな゛いことが確認
できる。
First, as shown in Figure 1, a high-frequency induction heating inductor is installed between the stationary mold and the movable mold. An inductor is inserted between the movable mold and the fixed mold,
When high frequency waves were oscillated with the sandwiched state, as shown in Figure 2, the temperature only on the mold surface (points A and B) rose rapidly, and the temperature inside the mold (points 0 and D) rose rapidly. It can be confirmed that there is almost no increase in temperature due to high frequency induction heating.

第2図の例の場合は金型の冷却水による冷却は行なって
おらず、中純に高周波誘導加熱による金型の温度分布の
経時変化の例を示したものである。しかる後に金型を一
度開きインダクターを固定側及び移動側の金型の間より
抜き出し、再度金型を閉じ、通常の射出成形と同じ要領
で充填剤入り熱可塑性樹脂を射出成形したところ、目的
とする表面の平滑性が良好で、かつ平面性に優れた射出
成形品が得られた。
In the case of the example shown in FIG. 2, the mold is not cooled with cooling water, and only shows an example of how the temperature distribution of the mold changes over time due to high-frequency induction heating. After that, the mold was opened, the inductor was extracted from between the fixed and movable molds, the mold was closed again, and the filled thermoplastic resin was injection molded in the same manner as normal injection molding. An injection molded product with good surface smoothness and excellent flatness was obtained.

[実施例1 次に実施例を挙げて本発明をさらに詳細に説明する。以
下の実施例、比較例における試験方法を以下に述べる。
[Example 1] Next, the present invention will be explained in more detail by giving examples. Test methods in the following Examples and Comparative Examples will be described below.

平面性      □ モ板状成形体にあっては、スパン38mmの間でフクレ
、ソリ等の変形量を三次元寸法測定器(三豊製作所社製
AE 122 Micro cord )を使用して測
定した値。
Flatness □ For a plate-shaped molded product, the amount of deformation such as blistering and warping is measured over a span of 38 mm using a three-dimensional dimension measuring device (AE 122 Micro cord manufactured by Mitoyo Seisakusho Co., Ltd.).

円板状成形体にあっては、円周うねり測定器(■小板研
究所製円周うねり測定器PU−DPIO型)を使用し、
前記の方法でfllfl定した値(但し、スパン38m
mに換算)。いずれの場合も最大ソリ、うねりをもって
平面性を評価する。
For disc-shaped molded bodies, use a circumferential waviness measuring device (■ Circumferential waviness measuring device PU-DPIO type manufactured by Koita Research Institute),
The value determined by the method described above (however, the span is 38m)
(converted to m). In either case, flatness is evaluated based on maximum warpage and waviness.

平滑性 JIS 80801に従い、東京精密■社製サーフコム
550Aを使用し、触側先端2.5 gmR1触針の測
定力0.1gfで得られた最大高さくRIIax)。
Smoothness According to JIS 80801, using Surfcom 550A manufactured by Tokyo Seimitsu ■, the maximum height obtained with a measuring force of 0.1 gf with a stylus tip of 2.5 gmR1 (RIIax).

吸湿性 ASTM D 570に置ける、23℃124時間の吸
水量(%)。
Hygroscopicity ASTM D 570 water absorption (%) at 23°C for 124 hours.

加熱変形温度 ASTM 064Bに於て、曲げ応力が18.6kg/
cm2の時の測定値。
At heating deformation temperature ASTM 064B, bending stress is 18.6 kg/
Measured value when cm2.

線膨張係数 ASTM 089Bに従い測定した値。Linear expansion coefficient Value measured according to ASTM 089B.

実施例1 平均粒径18p、mのガラスピーズ20重量%を含有す
るポリエーテルイミド樹脂〔前述の式(I)で示される
構造単位を有するGE社製ウつテムを通常のいわゆるデ
ィスク仕様の精密射出成形材で型締力150トンであり
、かつ射出シリンターとスクリューは490℃まで昇温
可能にした成形機を用いて第3図に示す如き外径130
mm 、厚さ1.9mmで中央に直径4’ Om mの
穴を有するドーナツ盤状の硬質磁気記録媒体用基板を成
形した。該金型の成形品を形成すべき金型面の平滑性・
Rmaxは0.02 p、 mであった。ゲートは、デ
ィスクゲートである。
Example 1 A polyetherimide resin containing 20% by weight of glass beads with an average particle diameter of 18p, m [GE manufactured Utsutem having the structural unit represented by the above-mentioned formula (I) was prepared using a conventional so-called disk specification precision resin. Using a molding machine with a mold clamping force of 150 tons and an injection cylinder and screw capable of heating up to 490°C, the outer diameter of the injection molded material was 130 as shown in Figure 3.
A donut-shaped hard magnetic recording medium substrate having a diameter of 4' Omm and a hole of 4' Omm in the center was molded. The smoothness of the mold surface on which the molded product is to be formed.
Rmax was 0.02 p, m. The gate is a disk gate.

インダクターは8mm径の鋼管を12mm間隔の渦巻状
にドーナツ盤形状にそわせ形づくり、それを3crnの
厚さになるようエポキシ樹脂で注型し、平板状に固定固
化して作製した。
The inductor was fabricated by forming an 8 mm diameter steel tube into a donut shape in a spiral shape at 12 mm intervals, casting it with epoxy resin to a thickness of 3 crn, and solidifying it into a flat plate shape.

射出成形条件は、前記ガラスピーズ添加ポリエーテルイ
ミド樹脂の温度が420℃になるようにシリンダ一温度
を設定した。前記ガラスピーズ添加ポリエーテルイミド
樹脂を金型に射出する前に」二連のインダクターを金型
の間にはさみ、7 kHz 、、 50kWの高周波発
振器により、20秒間発振し、しかる後金型を開きイン
ダクターを金型間より抜き出し、再度金型を閉じた。そ
の間金型冷却水は金型内を流れないようにしておく。し
かる後通常の射出成形と同様に金型内にガラスピーズ入
すポリエーテルイミド樹脂を100kg/cm2 の射
出圧で10秒間射出し、次いで冷却水を通し、30秒間
冷却後、成形品を取り出した。全サイクル時間は80秒
であった。ここで得られたドーナツ盤状の成形体の平面
性、平滑性の値を次に示す。
As for the injection molding conditions, the cylinder temperature was set so that the temperature of the glass beads-added polyetherimide resin was 420°C. Before injecting the glass beads-added polyetherimide resin into the mold, two sets of inductors were sandwiched between the molds, and a high frequency oscillator of 7 kHz and 50 kW was used to oscillate for 20 seconds, and then the mold was opened. The inductor was extracted from between the molds, and the molds were closed again. During this time, make sure that the mold cooling water does not flow inside the mold. Thereafter, as in normal injection molding, polyetherimide resin was placed into glass beads in a mold and injected for 10 seconds at an injection pressure of 100 kg/cm2, then cooling water was passed through the mold, and after cooling for 30 seconds, the molded product was taken out. . Total cycle time was 80 seconds. The flatness and smoothness values of the donut disc-shaped molded product obtained here are shown below.

また、他の物性については、金型を所定の試験方法に適
合する形状のものと置き換え、他は上記ドーナツ盤状成
形体の製造時の条件と同様にして試験片を作成して試験
を行なった。
In addition, for other physical properties, the mold was replaced with one with a shape that complied with the prescribed test method, and the other conditions were the same as those used for manufacturing the donut disc-shaped molded product to prepare test pieces and conduct the tests. Ta.

平面性:5.8終m 平滑性二0.1pm 吸湿性: 0.27% 加熱変形温度:207℃ 線膨張係数: 30X 10−6/’0また、」二記で
得られたドーナツ盤状の硬質磁気記録媒体用基板を12
0℃110分間真空容器中で吸着水分をとり除いた後、
クロムをターゲットとして、1.5分間マグネトロンス
パッタリングヲ行うことにより下地層付基板を得た。
Flatness: 5.8 final m Smoothness 20.1 pm Hygroscopicity: 0.27% Heating deformation temperature: 207°C Linear expansion coefficient: 30 12 hard magnetic recording medium substrates
After removing adsorbed moisture in a vacuum container at 0°C for 110 minutes,
A substrate with an underlayer was obtained by performing magnetron sputtering for 1.5 minutes using chromium as a target.

次に、この下地層の−」−に、マグネトロンスパッタリ
ングにより0.06gm厚のGosoNi2o磁性層を
設けた。このマグネ)・ロンスパッタリングしたハード
ディスクの表面を走査型電子顕微鏡で観察したところ磁
性層が均一に密着しておりキレッ等もなかった。さらに
0.03 g m厚のカーボン保護層を設けた。
Next, a GosoNi2o magnetic layer with a thickness of 0.06 gm was provided on this underlayer by magnetron sputtering. When the surface of the hard disk sputtered with this magnetron was observed using a scanning electron microscope, it was found that the magnetic layer was evenly adhered and there was no sharpness. Furthermore, a carbon protective layer of 0.03 gm thickness was provided.

このようにして得た磁気ディスクを用いて、常法に従い
、コンタクト・スタート・ストップ(CSS)試験を行
った結果を以下に示す。
Using the thus obtained magnetic disk, a contact start/stop (CSS) test was conducted according to a conventional method, and the results are shown below.

CSS回数    出力低下率(%) 10.000        0 20.000        0 30 ’、 000        050.000 
       0 80.000        2 実施例2,3 実施例1におけるポリエーテルイミド樹脂をポリエーテ
ルスルホン樹脂(実施例2)、ポリフェニレンエーテル
樹脂(実施例3)に変えて、実施例と同様にして成形体
を得、試験した。結果を次に示す。なお、マクネトロン
スパッタリングしたハート・ディスク0表面を走査型電
子顕微鏡で観察したところ磁性層が均一に密着しておリ
キレッ等もなかった。
CSS number Output reduction rate (%) 10.000 0 20.000 0 30', 000 050.000
0 80.000 2 Examples 2 and 3 The polyetherimide resin in Example 1 was changed to polyether sulfone resin (Example 2) and polyphenylene ether resin (Example 3), and molded bodies were produced in the same manner as in Example. obtained and tested. The results are shown below. When the surface of the Heart Disk 0 subjected to McNetron sputtering was observed using a scanning electron microscope, it was found that the magnetic layer was uniformly adhered to the surface and there was no rippling.

実施例4,5.6 フィラーの種類及び添加量を下記のようにした以外は実
施例1と同様に成形体を得、試験をした。結果を以下に
示す。
Examples 4, 5.6 A molded article was obtained and tested in the same manner as in Example 1, except that the type and amount of filler added were changed as shown below. The results are shown below.

比較例1 実施例1と同一寸法のアルミニウムーマグネシウム合金
(AA 508B)のドーナツ盤状の基板にクロムをタ
ーゲットとじて1.5分間マグネトロンスパッタリング
を行うことにより下地層付基板を得た。
Comparative Example 1 A substrate with an underlayer was obtained by performing magnetron sputtering for 1.5 minutes using chromium as a target on a donut-shaped substrate of an aluminum-magnesium alloy (AA 508B) having the same dimensions as in Example 1.

次に、この下地層の」−に、マグネトロンスパッタリン
グにより0.OEi g m厚のC078Ni22磁性
層を設け、Sらに0.02 g m厚のカーボン保護層
を設けることにより磁気ディスクを製造した。この磁気
ディスクのC8S試験の結果を以下に示す。
Next, the "-" of this base layer is applied with magnetron sputtering. A magnetic disk was manufactured by providing a C078Ni22 magnetic layer with a thickness of OEi g m and a carbon protective layer with a thickness of 0.02 g m. The results of the C8S test of this magnetic disk are shown below.

C3S回数    出力低下率(%) 1.0.000       ’   020.000
        0 30.000        7 50.000        15 比較例2 実施例1で用いたのと同じポリエーテルイミドを用い、
フィラーを全く添加せず、実施例1と同一成形機、金型
を使用し、樹脂温度400℃1金型温度100℃1冷却
25秒、全成形サイクル45秒、用出圧100kg/c
m2で成形し成形体をfj)だ。物性を以ドに示す。
C3S number Output reduction rate (%) 1.0.000' 020.000
0 30.000 7 50.000 15 Comparative Example 2 Using the same polyetherimide as used in Example 1,
No filler was added, the same molding machine and mold as in Example 1 were used, the resin temperature was 400°C, the mold temperature was 100°C, the cooling was 25 seconds, the total molding cycle was 45 seconds, and the output pressure was 100 kg/c.
m2 and the molded body is fj). The physical properties are shown below.

W面性:32ルm 平滑性:0.1 用m 吸湿性+ 0.2e% 加熱変形温度:200℃ 線膨張係数: 58X 10−6/’0また、該成形体
に実施例1と同条件で磁性層をつけ電f−顕微鏡で′f
!1察した結果磁性層にミクロクラックが発生している
肝を確認した。
W surface properties: 32 lm Smoothness: 0.1 m Hygroscopicity + 0.2 e% Heating deformation temperature: 200°C Linear expansion coefficient: 58 Apply the magnetic layer under the following conditions and use an electric f-microscope to obtain 'f'
! As a result of our first observation, we confirmed that microcracks had occurred in the magnetic layer.

CSS@数    出力低下率(%) 10.000        0 20.000        0 30.000        5 50.000        14 「発明の効果」 本発明に係る熱可塑性樹脂射出成形体は、上面性及び平
滑性に優れるため、殊に磁気記録媒体用の基板の用途に
適し、この射゛出成形体に磁性層を形成せしめた場合に
は、基板の41面性、平滑性に基づき、高精度の磁気記
録が可能となる。
CSS @ number Output reduction rate (%) 10.000 0 20.000 0 30.000 5 50.000 14 "Effect of the invention" The thermoplastic resin injection molded article according to the present invention has excellent top surface properties and smoothness. It is particularly suitable for use as a substrate for magnetic recording media, and when a magnetic layer is formed on this injection molded product, high-precision magnetic recording is possible based on the 41-sided nature and smoothness of the substrate. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフィラー入り熱可塑性樹脂射出成形体
を製造する場合の−・製造方法に使用される装置の一概
念図である。第2図は、第1図に示す装置での金型の温
度の4Jの一例を示すグラフである。第3図は本発明の
成形体の一例としての硬質磁気記録奴体用基板を示す平
面図である。 ■は金型における固定側金型、2は移動側金型、3は高
周波発生装置におけるインタフタ−である。A点、B点
は金型の表面、0点、D点は金型の内部を示す。そして
4は基板、5は穴部である。
FIG. 1 is a conceptual diagram of an apparatus used in the manufacturing method for manufacturing the filled thermoplastic resin injection molded article of the present invention. FIG. 2 is a graph showing an example of the mold temperature of 4J in the apparatus shown in FIG. FIG. 3 is a plan view showing a substrate for a hard magnetic recording body as an example of the molded article of the present invention. 2 is a fixed side mold in the mold, 2 is a movable side mold, and 3 is an interfter in the high frequency generator. Point A and point B indicate the surface of the mold, and point 0 and point D indicate the inside of the mold. 4 is a substrate, and 5 is a hole.

Claims (4)

【特許請求の範囲】[Claims] (1)平面性がスパン38mmあたり29μm以下、平
滑性が0.2μm以下であることを特徴とするフィラー
入り熱可塑性樹脂の射出成形体。
(1) An injection molded article of a thermoplastic resin containing a filler, which has a flatness of 29 μm or less per 38 mm span and a smoothness of 0.2 μm or less.
(2)フィラーが有機・無機あるいは金属の粉体、繊維
又は板状体の1種又は2種以上の組合せよりなる特許請
求の範囲第1項記載の射出成形体。
(2) The injection molded article according to claim 1, wherein the filler is made of one or a combination of two or more of organic, inorganic, or metal powder, fiber, or plate-like material.
(3)フィラーの含有量が5〜80重量%である特許請
求の範囲第1項又は第2項に記載の射出成形体。
(3) The injection molded article according to claim 1 or 2, wherein the filler content is 5 to 80% by weight.
(4)熱可塑性樹脂の加熱変形温度が100℃以上であ
る特許請求の範囲第1項〜第3項のいずれか1項に記載
の射出成形体。
(4) The injection molded article according to any one of claims 1 to 3, wherein the thermoplastic resin has a heating deformation temperature of 100°C or higher.
JP14836485A 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth Granted JPS629921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836485A JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836485A JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Publications (2)

Publication Number Publication Date
JPS629921A true JPS629921A (en) 1987-01-17
JPH0345687B2 JPH0345687B2 (en) 1991-07-11

Family

ID=15451110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836485A Granted JPS629921A (en) 1985-07-08 1985-07-08 Filler-filled resin injection-molded material whose surface is smooth

Country Status (1)

Country Link
JP (1) JPS629921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240085A (en) * 2005-03-03 2006-09-14 Ono Sangyo Kk Plated composite thermoplastic resin molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036840B1 (en) * 2012-12-31 2019-10-25 사빅 글로벌 테크놀러지스 비.브이. Metallization and surface coating solution on glass filler high performance amorphous polymer compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140226A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Injection molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140226A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Injection molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240085A (en) * 2005-03-03 2006-09-14 Ono Sangyo Kk Plated composite thermoplastic resin molding

Also Published As

Publication number Publication date
JPH0345687B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
JP3066254B2 (en) Heat-insulating mold structure for optical disk injection molding
KR100550711B1 (en) Structure and method for molding optical disks
JPH0241090B2 (en)
EP0133684B1 (en) Substrate for a magnetic disc and method manufacturing same
JPS629921A (en) Filler-filled resin injection-molded material whose surface is smooth
JP2000135718A (en) Composite stamper
JPS61192029A (en) Production of magnetic disk
JPH02189718A (en) Production of magnetic recording medium
JP3807607B2 (en) Manufacturing method and manufacturing apparatus for magnetic recording medium substrate
JPH02155629A (en) Mold for molding substrate for optical recording medium
JPS62234232A (en) Magnetic disk substrate and its production
JPS63255816A (en) Production of substrate for magnetic disk
JP2001287006A (en) Injection apparatus and method for producing disk base plate
JPH0626012B2 (en) Magnetic disk substrate
JPH0814890B2 (en) Method for manufacturing magnetic disk substrate
JPS61246920A (en) Magnetic disk
JPH0370849B2 (en)
JPH05342711A (en) Magnetic recording and reproducing apparatus
JP2003340877A (en) Method for manufacturing recording-medium substrate, recording-medium substrate, recording medium and injection molding device
JPH02116040A (en) Forming metallic mold for optical disk substrate
MXPA00010656A (en) Structure and method for molding optical disks
WO1998029226A1 (en) Metallic mold for molding disk substrate, method for manufacturing the same, and metallic mold assembly
JPH0546974A (en) Substrate for magnetic disk
JPH0495256A (en) Vtr-dat head drum and its production
JPH05189757A (en) Substrate of magnetic disk and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees