JPS629821A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS629821A
JPS629821A JP14622985A JP14622985A JPS629821A JP S629821 A JPS629821 A JP S629821A JP 14622985 A JP14622985 A JP 14622985A JP 14622985 A JP14622985 A JP 14622985A JP S629821 A JPS629821 A JP S629821A
Authority
JP
Japan
Prior art keywords
machining
speed
electrode
motor
cutting feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14622985A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP14622985A priority Critical patent/JPS629821A/en
Publication of JPS629821A publication Critical patent/JPS629821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable stable machining and to improve the machining speed by setting the relative feeding speed between an electrode and a work in perpendicular direction against the cutting feed direction higher than specific level thereby facilitating removal of machining chips and foam while improving the fluid removing effect. CONSTITUTION:Cutting feed under discharge machining is applied in X and Y axes through motors 10, 11 as well as in Z-axis through a motor 12 to perform machining while controlling the rotary speed through driving of motor 13 to specific level. When bringing the relative feeding speed between the electrode and the work in perpendicular direction with the cutting feed direction or the feeding speed of motor 13 higher than the optimal level 2m/min, machining chips and foam produced in the machining gap can be removed well and discharged quickly through agitating function caused by high relative speed resulting in safe machining with high machining speed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガイドによってワイヤ(帯状を含む)電極を所
要の加工形状にガイドし移動走行させた前記ワイヤ電極
によって形成される電極を被加工体に対向させた加工間
隙にパルス放電を繰返して加工する放電加工に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides a method for guiding a wire (including band-shaped) electrode into a desired processing shape by a guide and moving the electrode formed by the wire electrode onto a workpiece. This invention relates to electrical discharge machining in which machining is performed by repeatedly applying pulsed discharge to opposing machining gaps.

〔従来技術〕[Prior art]

本発明者は、ガイドによりワイヤ電極を所要の加工形状
にガイドし移動走行させることによって前記ワイヤ電極
によって形成される電極を用い、これを被加工体に対向
した間隙に放電を行なって加工する放電加工装置を提案
した。この電極によれば、加工面を形成するワイヤ電極
が常に移動走行して更新されるから実質的に電極消耗が
ない、消耗変形しないで放電加工することができる特徴
がある。
The present inventor has proposed an electrical discharge process in which a wire electrode is guided into a required machining shape by a guide and moved, and an electrode is formed by the wire electrode. A processing device was proposed. According to this electrode, the wire electrode that forms the machining surface is constantly moved and renewed, so that electric discharge machining can be performed with virtually no electrode wear and no deformation due to wear and tear.

前記ワイヤ電極によって形成される電極による加工性に
ついて種々実験したところによると、電極と被加工体と
の間に与える切込み送りとほぼ直交する方向に相対的送
りを与えて加工するが、その送り速度の制御によって加
工速度が変り、2m/1n程度の速度に於て加工速度の
急激な増加が期待できることがわかった。
According to various experiments on the machinability of the electrode formed by the wire electrode, it has been found that machining is performed by applying a relative feed in a direction almost perpendicular to the cutting feed applied between the electrode and the workpiece, but the feed rate is It was found that the machining speed changes depending on the control, and a rapid increase in the machining speed can be expected at a speed of about 2 m/1 n.

〔問題点解決手段〕[Means for solving problems]

そこで本発明は、電極と被加工体との間に与える切込み
送りとほぼ直交する方向に速度を少なくとも2 m/m
in以上の相対送りを与えて加工することを特徴とする
Therefore, in the present invention, the speed is set at least 2 m/m in a direction substantially perpendicular to the cutting feed given between the electrode and the workpiece.
It is characterized by processing by applying a relative feed of in. or more.

(実施例) 以下図面の一実施例により本発明を説明する。(Example) The present invention will be explained below with reference to an embodiment of the drawings.

1は電極の加工面を形成するためのガイドで、所要形状
のガイド面を形成し、そのガイド面に沿ってワイヤ電極
2をガイドし走行移動させる。3がワイヤを供給するリ
ール、4が引取リール、5が供給リール3側に設けたブ
レーキ、6が引取り一ル4側の、引取ローうで、両者に
よりガイド1を移動するワイヤ2が所定のテンションと
速度をもって移動する。1はガイド1、ワイヤ2、リー
ル3.4等により構成される電極を支持するスピンドル
、8は被加工体、9は加工テーブル、10,11.12
は送りを与える駆動モータ、13はスピンドルを回転す
るモータ、14がNG制御装置、15が加工用電源であ
る。
Reference numeral 1 denotes a guide for forming a processed surface of the electrode, which forms a guide surface of a desired shape, and guides and moves the wire electrode 2 along the guide surface. 3 is a reel for supplying the wire, 4 is a take-up reel, 5 is a brake provided on the supply reel 3 side, 6 is a take-up row on the take-off reel 4 side, and the wire 2 moving on the guide 1 is fixed by both of them. Move with tension and speed. 1 is a spindle that supports an electrode composed of a guide 1, a wire 2, a reel 3.4, etc.; 8 is a workpiece; 9 is a processing table; 10, 11.12
13 is a drive motor that provides feed, 13 is a motor that rotates a spindle, 14 is an NG control device, and 15 is a processing power source.

以上に於て、ガイド1を移動するワイヤ電極2を被加工
体8に対向して加工する。ガイド面は所望する電極加工
面を形成し、このガイド1にワイヤ電極2がリール3か
ら供給され、ガイドを通つて他方のリール4に巻取られ
る。途中ブレーキ5と引取ローラ6により所定の張力と
速度をもってワイヤ電極2はガイド1を移動する。電極
と被加工体8間には加工用電源15からパルスが加えら
れ、図示しないノズルから若しくはガイド1に噴流孔を
形成して加工液を供給し、液中パルス放電を繰返して放
電加工を行なう。対向するZ軸方向の切込み送りはモー
タ12を駆動して行ない、このZ軸の送りに対応してモ
ータ13による回転を行ないながら放電加工する。ガイ
ド1を移動するワイヤ電極2は線状に移動するが、モー
タによる回転によって所定形状の面を被加工体8に加工
形成することができる。加工中の切込み送りはモータ1
2駆動によるz軸方向のみに限らず、モータ 10,1
1によりX@、Y軸方向にも与えられ、この送りに関連
してモータ13駆動による回転速度を所要の速度に制御
して加工を行なうようにする。例えばモータ12のZ軸
切込み送りを速めればモータ13による回転速度を遅く
しな【プれぽならず、反対にZ輸送りを遅くすれば回転
速度を高くすることができる。
In the above process, the wire electrode 2 moving through the guide 1 faces the workpiece 8 for processing. The guide surface forms a desired electrode processing surface, and a wire electrode 2 is supplied to this guide 1 from a reel 3 and wound onto the other reel 4 through the guide. The wire electrode 2 is moved along the guide 1 with a predetermined tension and speed by a brake 5 and a take-up roller 6 on the way. Pulses are applied between the electrode and the workpiece 8 from a machining power source 15, machining fluid is supplied from a nozzle (not shown) or by forming a jet hole in the guide 1, and submerged pulse discharge is repeated to perform electrical discharge machining. . The cutting feed in the opposing Z-axis direction is performed by driving the motor 12, and electrical discharge machining is performed while being rotated by the motor 13 corresponding to this Z-axis feed. The wire electrode 2 moving through the guide 1 moves linearly, and can form a surface of a predetermined shape on the workpiece 8 by rotation by a motor. Motor 1 feeds the cut during machining.
2 drive not only in the z-axis direction but also motor 10,1
1 in the X@ and Y-axis directions, and in relation to this feed, the rotational speed driven by the motor 13 is controlled to a required speed for machining. For example, if the Z-axis cutting feed of the motor 12 is increased, the rotational speed by the motor 13 will not be slowed down; on the other hand, if the Z-axis transport is slowed down, the rotational speed can be increased.

これはZ軸方向に所定深さまで加工して後にX軸方向及
びY軸方向に切込み送り(寄せ送り)を与えて加■する
場合でも同様であり、切込みを深く(送り速1復を速く
)すれば、加工のための回転速度を低下させなければな
らず、切込みを浅く(送り速度を遅く)すれば回転速度
を高めることができる。
This is the same even when machining to a predetermined depth in the Z-axis direction and then applying cutting feed (approaching feed) in the X-axis and Y-axis directions. If so, the rotational speed for machining must be lowered, and the rotational speed can be increased by making the depth of cut shallower (lowering the feed rate).

しかして前記切込み送りに対応して直交方向に与える電
極と被加工体間の相対送り速度(第1図実施例でモータ
13による回転速度)の最適値を実験した結果は第2図
に示す通りである。これは線径0.3mmφのBsワイ
ヤをガイドに3 numinの速度で引取り移動させな
がら、855C材の加工を行なったときのグラフ図であ
る。加工条件はIp= 700A、 τon= 1.2
.czs 、加工液には比抵抗5×104Ωcmの水を
用いた。このグラフ図からもわかるように電極と被加工
体間に与える相対送り速度が約1〜3 m/min程度
の範囲に於て加工速度に急激な変化がみられ、約2n+
/min程度以上の速度に制御することによって加工速
度の向上に顕著な効果がみられる。尚、実線は板状被加
工体を加工する場合に片側から加工液を供給し、点線は
両側から供給した場合である。
Therefore, the results of an experiment to determine the optimum value of the relative feed speed between the electrode and the workpiece (rotational speed by the motor 13 in the embodiment of FIG. 1) applied in the orthogonal direction in accordance with the cutting feed are as shown in FIG. It is. This is a graph diagram when processing 855C material while moving a Bs wire with a wire diameter of 0.3 mmφ as a guide at a speed of 3 numin. Processing conditions are Ip=700A, τon=1.2
.. czs, and water with a specific resistance of 5×10 4 Ωcm was used as the machining fluid. As can be seen from this graph, there is a rapid change in the machining speed when the relative feed speed applied between the electrode and the workpiece is approximately 1 to 3 m/min, and approximately 2n+
By controlling the speed to about /min or more, a remarkable effect can be seen in improving the processing speed. The solid line indicates the case where the processing liquid is supplied from one side when processing a plate-shaped workpiece, and the dotted line indicates the case where the processing liquid is supplied from both sides.

この加工効果の向上は相対送り速度を最適な21/mi
n以上とすることによって加工間隙に発生する加工チッ
プ、気泡の排除等が良好になることが1つの原因と思え
る。相対送り速度を高めるためには、それに応じて切込
み送りを少なく(浅く)しなければならず、切込みが浅
いことにより加工チップ等が逃げ易くなり、そこに相対
移動速度が高いことによる撹乱作用等が加わって急速排
除ができ、又、アーク・短絡等の発生が少なく、発生し
ても短時間に排除でき、安定加工により加工速度が増大
するものと思える。
This improvement in machining effect is achieved by increasing the relative feed rate to an optimal value of 21/mi.
One of the reasons seems to be that by setting it to n or more, processing chips, bubbles, etc. that occur in the processing gap are better removed. In order to increase the relative feed speed, the depth of cut must be reduced (shallowed) accordingly, and the shallow depth of cut makes it easier for machining chips to escape, and the high relative movement speed causes disturbance effects, etc. With the addition of the

尚、切込みと直角に与える電極、被加工体間の相対送り
は、電極側の回転に限らず、被加工体を回転してもよく
、又、回転以外の平面移動、例えば第1図に於て、例、
)ぽZ軸に切込み送りしてモータ 10,11によりX
−Y平面送りをしてもよい。
Note that the relative feed between the electrode and the workpiece perpendicular to the cutting depth is not limited to rotation of the electrode side, but may also rotate the workpiece. For example,
) Feed the cut to the Z-axis and move the X by motors 10 and 11.
-Y plane feeding may be used.

又、ワイヤ電極2を間隔を保つガイド間に掛渡して移動
走行させ、そのガイド間のワイヤ電極を被加工体に対向
し、対向方向に切込み、それと直交方向に相対送りを与
える場合でも、その相対送り速度21n/l1lin以
上とすることによって加工速度を高めることができる。
In addition, even when the wire electrode 2 is moved and moved by passing it between guides that maintain an interval, the wire electrode between the guides is opposed to the workpiece, cutting is performed in the opposite direction, and relative feeding is applied in the direction orthogonal to the workpiece. The processing speed can be increased by setting the relative feed rate to 21n/l1lin or more.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、ガイドによりワイヤ電極を所要
の形状にガイドし移動走行させた前記ワイヤ電極によっ
て形成される電極を被加工体に対向させた間隙にパルス
放電を繰返して加工するものであるから、実質上電極無
消耗で放電加工することができ、高精度の加工を能率良
く行なうことができる。そして本発明は、前記電極と被
加工体との間に与える切込み送りとほぼ直交する方向に
与える相対送りを速度を少なくとも2 m/min以上
をもって送るようにしたことにより、この2III/w
in以上の速度で送れるように対応して切込みを少なく
したから、加工チップ、発生する気泡が逃げ易くなり加
工液と共に流動排除効果が高まり、安定加工することが
でき、且つ相対移動速度が高いことによってアーク・短
絡の解除、tIl電点の移動が高められ、その結果加工
速度を著しく高めることができる。
As described above, in the present invention, a wire electrode is guided into a desired shape by a guide, and a pulsed discharge is repeatedly applied to the gap between the electrode formed by the moving and traveling wire electrode and facing the workpiece. Because of this, electrical discharge machining can be performed with virtually no electrode consumption, and highly accurate machining can be performed efficiently. The present invention provides a relative feed that is applied in a direction substantially orthogonal to the cutting feed that is applied between the electrode and the workpiece at a speed of at least 2 m/min.
Since the depth of cut has been reduced in order to be able to feed at a speed of more than 1.5 in., the machining chips and generated air bubbles can easily escape, increasing the flow removal effect along with the machining fluid, allowing stable machining, and high relative movement speed. This increases the release of arcs and short circuits and the movement of the tIl electric point, and as a result, the machining speed can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置の構成図、第2図は実
験グラフ図である。 1・・・・・・・・・ガイド 2・・・・・・・・・ワイヤ電極 3.4・・・・・・・・・リール 5・・・・・・・・・ブレーキ 6・・・・・・・・・引取ローラ 8・・・・・・・・・被加工体 10.11,12.13・・・・・・・・・モータ14
・・・・・・・・・NC装置 15・・・・・・・・・加工用電源 時  許  出  願  人 株式会社井上ジャパックス研究所 代表者  井  上     潔    、」し製麦)
−一
FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is an experimental graph diagram. 1......Guide 2...Wire electrode 3.4...Reel 5...Brake 6... ...... Take-up roller 8 ... Workpiece 10.11, 12.13 ... Motor 14
・・・・・・・・・NC device 15 ・・・・・・・・・When powering for processing
−1

Claims (1)

【特許請求の範囲】[Claims] ガイドによりワイヤ電極を所要の形状にガイドし移動走
行させた前記ワイヤ電極によって形成される電極を被加
工体に対向させた加工間隙にパルス放電を繰返して加工
する放電加工方法に於て、前記電極と被加工体との間に
与える切込み送りとほぼ直交する方向に速度を少なくと
も2m/min以上の相対送りを与えて加工することを
特徴とする放電加工方法。
In an electrical discharge machining method, a wire electrode is guided into a desired shape by a guide, and an electrode formed by the moving wire electrode is machined by repeatedly applying pulse discharge to a machining gap in which the electrode formed by the wire electrode is opposed to a workpiece. An electric discharge machining method, characterized in that machining is performed by applying a relative feed of at least 2 m/min or more in a direction substantially perpendicular to the cutting feed applied between the workpiece and the cutting feed.
JP14622985A 1985-07-03 1985-07-03 Electric discharge machine Pending JPS629821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14622985A JPS629821A (en) 1985-07-03 1985-07-03 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622985A JPS629821A (en) 1985-07-03 1985-07-03 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS629821A true JPS629821A (en) 1987-01-17

Family

ID=15403026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622985A Pending JPS629821A (en) 1985-07-03 1985-07-03 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS629821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737381B2 (en) * 2002-12-30 2010-06-15 Industrial Technology Research Institute Electric discharge apparatus for controlling the length of a carbon nanotube
US20130175242A1 (en) * 2012-01-09 2013-07-11 Apple Inc. Magnetic shape optimization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737381B2 (en) * 2002-12-30 2010-06-15 Industrial Technology Research Institute Electric discharge apparatus for controlling the length of a carbon nanotube
US20130175242A1 (en) * 2012-01-09 2013-07-11 Apple Inc. Magnetic shape optimization
US9312066B2 (en) * 2012-01-09 2016-04-12 Apple Inc. Magnetic shape optimization

Similar Documents

Publication Publication Date Title
JP2734145B2 (en) Wire electric discharge machine
JPWO2002040208A1 (en) Wire electric discharge machining method and apparatus
JPS629821A (en) Electric discharge machine
JPS5828432A (en) Electrical discharge machining device for wire cut
JPH0126807B2 (en)
JPS58217232A (en) Wire-cut electric discharge machine
JP2559219B2 (en) Perforation electric discharge machine
JPH0616971B2 (en) Drilling electric discharge machine
JPS6357121A (en) Electric discharge cutter
JPH1177510A (en) Fixed abrasive grain wire saw and cutting method for its workpiece
JPS62107921A (en) Wire-cut electric discharge machining method
JP2732293B2 (en) Small hole electrical discharge machining method
JPS60249533A (en) Electrode apparatus for electric discharge machining
JPS56119325A (en) Wire cutting electric discharge machining apparatus
JPS63120030A (en) Wire-cut electric discharge machining
JPS6339734A (en) Wire electric spark machining device
JPS6359810B2 (en)
JPS624516A (en) Electric discharge machine
JPS61257714A (en) Electric discharge machining lathe
JPS61288924A (en) Electric discharge machine
JPH0970823A (en) Method for controlling feed of work of wire saw and its apparatus
JPH06723A (en) Fine hole electric discharge machining device
JPS5930626A (en) Wire cut type electric discharge machining device
JPH0777696B2 (en) Wire cut electrical discharge machine
JPS5929370B2 (en) Current-carrying wire cutting device