JPS6296358A - Ceramic green sheet - Google Patents

Ceramic green sheet

Info

Publication number
JPS6296358A
JPS6296358A JP60235197A JP23519785A JPS6296358A JP S6296358 A JPS6296358 A JP S6296358A JP 60235197 A JP60235197 A JP 60235197A JP 23519785 A JP23519785 A JP 23519785A JP S6296358 A JPS6296358 A JP S6296358A
Authority
JP
Japan
Prior art keywords
green sheet
ceramic green
organic matter
amount
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60235197A
Other languages
Japanese (ja)
Inventor
和久 市本
碩哉 村上
岩村 亮二
高崎 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60235197A priority Critical patent/JPS6296358A/en
Publication of JPS6296358A publication Critical patent/JPS6296358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミック多層配線基板の素材となるセラミッ
クグリーンシートの組成物に係り。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a composition for a ceramic green sheet that is a material for a ceramic multilayer wiring board.

特に寸法的に安定し多層化に好適なセラミックグリーン
シートの組成物に関する。
In particular, the present invention relates to a ceramic green sheet composition that is dimensionally stable and suitable for multilayer formation.

〔発明の背景〕[Background of the invention]

従来、多層セラミック配線基板の製法として。 Traditionally, as a manufacturing method for multilayer ceramic wiring boards.

セラミックグリーンシート上にモリブデンやタングステ
ン等を主成分とした導体ペーストを用い配線パターンを
印刷形成し、このシートを複数枚積層して焼結する。い
わゆるラミネート法が知られている。
A wiring pattern is printed on a ceramic green sheet using a conductive paste mainly composed of molybdenum, tungsten, etc., and a plurality of these sheets are laminated and sintered. A so-called lamination method is known.

しかしながら、配線パターンをグリーンシート上に印刷
形成する工程において、グリーンシートが寸法変化を起
こし配線パターンに位置ずれを生じるため、積層時に上
下のバイアホールの接続が不十分になるという問題があ
った。
However, in the process of printing the wiring pattern on the green sheet, the green sheet undergoes dimensional changes and the wiring pattern becomes misaligned, resulting in a problem that the connection between the upper and lower via holes becomes insufficient during lamination.

この問題の解決方法には1例えば特開昭53−7336
5号公報に示されるようにグリーンシートを仮焼結して
セラミックビスケットシートを形成することKより寸法
を安定化させる方法や。
There are 1 ways to solve this problem, for example, Japanese Patent Application Laid-Open No. 53-7336.
As shown in Japanese Patent No. 5, a method of pre-sintering a green sheet to form a ceramic biscuit sheet makes the dimensions more stable.

特公昭58−48497号公報に示されるように一定時
間グリーンシートを特定の溶剤に接触させた後、乾燥さ
せて安定化させる方法が知られている。
As shown in Japanese Patent Publication No. 58-48497, a method is known in which a green sheet is brought into contact with a specific solvent for a certain period of time and then dried and stabilized.

しかしながら、これらの方法は多層セラミック配線基板
の製造において製造工程が増加し。
However, these methods increase the number of manufacturing steps in manufacturing the multilayer ceramic wiring board.

製造原価が高くなる。従って、少ない製造工程でグリー
ンシートを寸法的に安定化させる方法の発明が望まれて
いた。
Manufacturing costs will increase. Therefore, it has been desired to invent a method for dimensionally stabilizing green sheets with fewer manufacturing steps.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、セラミック多層配線基板の製造ビおい
て、従来の製造工程のままでも配線パターンの印刷形成
時にほとんど寸法変化しないセラミックグリーンシート
を提供することにある。
An object of the present invention is to provide a ceramic green sheet that undergoes almost no dimensional change during printing and formation of wiring patterns even if conventional manufacturing processes are used in the production of ceramic multilayer wiring boards.

〔発明の概要〕[Summary of the invention]

グリーンシートに配線パターンを印刷形成するとグリー
ンシートは寸法変化するが、これは次のような変形メカ
ニズムで起こることを発見した。
When a wiring pattern is printed on a green sheet, the dimensions of the green sheet change, and we discovered that this occurs through the following deformation mechanism.

グリーンシート内には多くの気孔が存在し。There are many pores inside the green sheet.

気孔の壁はセラミック粒子、焼結助剤等の無機物とそれ
らを結合する有機物からなっており。
The walls of the pores are composed of inorganic substances such as ceramic particles and sintering aids, and organic substances that bind them together.

グリーンシート表面に配線パターンが印刷形成されろと
導体ペースト中に含まれていた溶剤がグリーンシート中
に浸透し気孔の壁をぬらす。
When a wiring pattern is printed on the surface of a green sheet, the solvent contained in the conductive paste penetrates into the green sheet and wets the walls of the pores.

さらに、気孔中の溶剤は、一部がを機物に授透し、一部
が無機物に吸着し、やがて蒸発する。
Further, a part of the solvent in the pores permeates into organic matter, a part of which is adsorbed by inorganic matter, and eventually evaporates.

そのうちの有機物に浸透した溶剤が有機物を膨潤させる
ことによりグリーンシートを変形させる。
The solvent that has penetrated into the organic matter swells the organic matter, thereby deforming the green sheet.

以上のメカニズムから、配線印刷によるグ11−ンシ一
トの寸法変化を低減するには、気孔の壁のうち変形に無
関係な無機物の部分を大きくしさらに有機物の膨潤性を
小さくすれば良い。そこでその具体的な方法として1本
発明は無機物の表面積に対する有機物の!(相対有機物
量)及び有機結合剤ポリビニルブチラール(PvB)の
重合度の最適な範囲を求めたものである。
From the above mechanism, in order to reduce the dimensional change of the particle sheet due to wiring printing, it is sufficient to enlarge the portion of the inorganic material unrelated to deformation in the pore walls and further reduce the swelling property of the organic material. Therefore, as a specific method of this invention, the present invention is based on the surface area of organic matter relative to the surface area of inorganic matter! (Relative amount of organic matter) and the optimum range of the degree of polymerization of the organic binder polyvinyl butyral (PvB).

PVBの重合度を大きくすると溶剤に対する膨潤性が低
下するため、配線印刷によるグIJ −ンシートの寸法
変化量が小さくなるが、PVB重合度が1500より大
きい場合、焼結時KPVBが基板から逃げに<<、基板
内部にボイドが発生しやすいため、PvB重合度は15
00以下が好ましい。PVB重合度が800未満の場合
では。
If the degree of polymerization of PVB is increased, the swelling property against solvents will decrease, and the amount of dimensional change in the green IJ-bond sheet due to wiring printing will be reduced. However, if the degree of polymerization of PVB is greater than 1500, KPVB will not escape from the substrate during sintering. <<, PvB polymerization degree is 15 because voids are likely to occur inside the substrate.
00 or less is preferable. When the PVB polymerization degree is less than 800.

グリーンシートの変形抵抗が非常に小さくなり小さな外
力でも塑性変形して寸法的に不安定になるため、PVB
重合度の好ましい範囲は800〜1500である。更に
好ましくは、PVB重合度1000〜1300である。
PVB
The preferred range of polymerization degree is 800 to 1,500. More preferably, the PVB polymerization degree is 1000 to 1300.

一方、相対有機物量は少ないほど配線印刷によるグリー
ンシートの寸法変化量は小さくなるが、その好ましい範
囲は0.83〜1.98重t%mgである。即ち、相対
有機物量が1.98重世情m7を越えると配線印刷によ
るグリーンシートの寸法変化量が大きく本発明の効果が
なくなり、相対有機物量が083未満の場合は、グリー
ンシートから無機物粒子が脱落しやすく、グリーンシー
トが脆化するため・・ンドリングが困難になるからであ
る。
On the other hand, the smaller the relative amount of organic matter, the smaller the amount of dimensional change in the green sheet due to wiring printing, but the preferable range is 0.83 to 1.98 wt% mg. That is, when the relative amount of organic matter exceeds 1.98 m7, the amount of dimensional change in the green sheet due to wiring printing is large and the effect of the present invention is lost, and when the relative amount of organic matter is less than 0.83, inorganic particles fall off from the green sheet. This is because the green sheet becomes brittle and difficult to handle.

また、相対有機物量とはグリーンシート中に含まれる有
機物(PVB、可塑剤2分散剤など)量の1敞百分率を
無機物(セラミック粒子や焼結助剤なと)の比表面積で
割った値であるが。
In addition, the relative amount of organic matter is the value obtained by dividing the percentage of the amount of organic matter (PVB, plasticizer, dispersant, etc.) contained in the green sheet by the specific surface area of the inorganic matter (ceramic particles, sintering aids, etc.). Yes, but.

有機物量としては539〜753重財%の範囲、無機物
の比表面積は38〜65改りの範囲カー特に好ましい8
有機物量が5.39重量%以上のとき、優れた強変のグ
リーンシートが得られ、 7.53重量%以下のとき、
焼結時にPVBが基板から逃げやすいので、内部にボイ
ドを生じない高強度の基板を得られる。また、無機物の
比表面積が38ぜ/q以上の微細な無機物粒径のグリー
ンシートは、無機物の充填率が高くなるので焼結収縮率
のバラツキが減少し、無機物の比表面積が665イカ以
下であれば、グ11−ンシ一トの成形が容易である。
The amount of organic matter is in the range of 539% to 753%, and the specific surface area of inorganic matter is in the range of 38% to 65%. Particularly preferred is 8.
When the amount of organic matter is 5.39% by weight or more, a green sheet with excellent strong hardness can be obtained, and when it is 7.53% by weight or less,
Since PVB easily escapes from the substrate during sintering, a high-strength substrate without internal voids can be obtained. In addition, green sheets with fine inorganic particles with a specific surface area of 38 z/q or more have a high inorganic filling rate, which reduces variation in sintering shrinkage rate, and when the specific surface area of the inorganic material is 665 z/q or less, If there is, it will be easy to form the gun sheet.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例な挙げ具体的(て説明する。セラ
ミック粉末としてアルミナ(Ae203)ヲ朗イ、焼結
助剤としてタルク(1VIy:+Sj+O+o(OH)
2)とクレイ(A12si205((井I)4)をの組
成で使用した。
The present invention will be specifically explained below by giving examples.Alumina (Ae203) is used as the ceramic powder, and talc (1VIy: +Sj+O+o(OH)) is used as the sintering aid.
2) and clay (A12si205 ((I) 4) were used in the following compositions.

有機物は結合剤としてl) V Flを、可塑剤として
ブチルフタリルブチルグリコレート(以後。
The organic matter is l) V Fl as a binder and butylphthalyl butyl glycolate (hereinafter referred to as "V Fl") as a plasticizer.

BPBGと記す。)を となるようiで調合して混合し、さらに溶剤としてアゼ
オドローブを40〜150重番部加え、十分に混合して
スリ′ブを作る。
It is written as BPBG. ) and mix them, add 40 to 150 parts of Azeodrobe as a solvent, and mix thoroughly to make a sleeve.

このスリップを用いドクターブレード法で厚さ025闘
のグリーンシートv形成した。尚、溶剤としてスリップ
に混入したアゼオドローブは。
Using this slip, a green sheet with a thickness of 0.25 cm was formed by a doctor blade method. In addition, Azeodrobe was mixed into the slip as a solvent.

グリーンシート形成時に蒸発し、その後はグリーンシー
ト内に残留しない。
It evaporates during the formation of the green sheet and does not remain within the green sheet thereafter.

これらのグリーンシートに、スルーホールの打抜きをφ
0.15 mmのポンチと穴直径φO,]8ixのダイ
を用いてピッチ0.5玉で100寵冨X]001mの領
域を打抜いた。
Punch through holes into these green sheets.
Using a 0.15 mm punch and a die with a hole diameter of φO,]8ix, an area of 100 mm x]001 m was punched out with a pitch of 0.5 balls.

7欠:て、これらのスルーホールをタングステン導体ペ
ーストで穴填めしてバイアホールトシ。
7 Missing: Fill these through holes with tungsten conductor paste and make via holes.

サラIc同様のタングステン導体ベーストな便用12て
スクリーン印刷する二とにより、グリーンシート上の1
010Ox toomxの領域に配線パターンを形成し
た。
The same tungsten conductor-based 12 is screen printed on a green sheet, similar to Sara IC.
A wiring pattern was formed in the area of 010Ox toomx.

図に配線パターンの印刷形成によって生じたグリーンシ
ートの寸法変化量を示す。
The figure shows the amount of dimensional change in the green sheet caused by printing the wiring pattern.

ここで、グリーンシートの寸法変化量が0.212%の
場合、グリーンシートはtoomiで212μm寸法変
化する。lOO朋XIQQIIIK領域の対角線では3
00μm寸法変化し、中心で位置合わせすることにより
、四隅のバイアホールの位置ずれは150μmになる。
Here, when the amount of dimensional change of the green sheet is 0.212%, the green sheet changes in size by 212 μm. 3 on the diagonal of the lOOho XIQQIIIK region
By changing the dimension by 00 μm and aligning at the center, the positional deviation of the via holes at the four corners becomes 150 μm.

この位置ずれ量はバイアホールの直径に相当するため、
積層焼結後に導通不良が発生することがある。
This amount of positional deviation corresponds to the diameter of the via hole, so
Poor conductivity may occur after lamination and sintering.

しかし、PVB重合度がFtOO−1500の範囲で相
対有機物量が0.83〜1.98重量%m 2gの場合
(図中のハツチングした領域A)は、グリーンシートの
最大寸法変化量が0212%より小さいので導通不良が
発生しない。
However, when the degree of PVB polymerization is in the range of FtOO-1500 and the relative amount of organic matter is 0.83 to 1.98 wt% m2g (hatched area A in the figure), the maximum dimensional change of the green sheet is 0.212%. Since it is smaller, conduction failure does not occur.

尚、可塑剤とし2てBPBG以外のものを使用し1分散
剤等を混入した場合、あるいは無機物粒子としてアルミ
ナ、タルク、クレイ以外のものを使用しても、グリーン
シート内の相対有機物量が0.83〜1.98重1%r
rt−2yの範囲で重合度が800〜1000のPVB
を使用するならば1図の関係は成り立ち、グリーンシー
トの寸法変化量を低減できる。
In addition, even if something other than BPBG is used as a plasticizer and a dispersant is mixed in, or even if something other than alumina, talc, or clay is used as an inorganic particle, the relative amount of organic matter in the green sheet will be 0. .83-1.98 weight 1%r
PVB with a degree of polymerization of 800 to 1000 in the rt-2y range
If this is used, the relationship shown in Figure 1 holds true, and the amount of dimensional change in the green sheet can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グリーンノートに配線パターンを印刷
形成することにより生じるグリーンシートの寸法変化を
従来の製造工種のままで抑止することかでき、導通不良
や短絡のない高密度配線が可能になる効果がある。
According to the present invention, dimensional changes in green sheets caused by printing wiring patterns on green notes can be suppressed using conventional manufacturing methods, making it possible to achieve high-density wiring without conduction defects or short circuits. effective.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における配線パターンの印刷形成
によっておこるグリーンシートの最大寸法変化量と相対
有機物量との関係を示す線図である。
The figure is a diagram showing the relationship between the maximum dimensional change of a green sheet caused by printing and forming a wiring pattern and the relative amount of organic matter in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、無機物と有機結合剤ポリビニルブチラールを含む有
機物からなるセラミックグリーンシートの組成において
、前記ポリビニルブチラールの重合度が800〜150
0、セラミックグリーンシート中における有機物量の重
量百分率を無機物の比表面積で割つた値が0.83〜1
.98重量%m^−^2gの範囲にあることを特徴とす
るセラミックグリーンシート。
1. In the composition of the ceramic green sheet consisting of an inorganic substance and an organic substance containing an organic binder polyvinyl butyral, the degree of polymerization of the polyvinyl butyral is 800 to 150.
0, the value obtained by dividing the weight percentage of the amount of organic matter in the ceramic green sheet by the specific surface area of the inorganic matter is 0.83 to 1
.. A ceramic green sheet characterized by having a weight in the range of 98% m^-^2g.
JP60235197A 1985-10-23 1985-10-23 Ceramic green sheet Pending JPS6296358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235197A JPS6296358A (en) 1985-10-23 1985-10-23 Ceramic green sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235197A JPS6296358A (en) 1985-10-23 1985-10-23 Ceramic green sheet

Publications (1)

Publication Number Publication Date
JPS6296358A true JPS6296358A (en) 1987-05-02

Family

ID=16982512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235197A Pending JPS6296358A (en) 1985-10-23 1985-10-23 Ceramic green sheet

Country Status (1)

Country Link
JP (1) JPS6296358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632369B2 (en) * 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632369B2 (en) * 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device

Similar Documents

Publication Publication Date Title
US3852877A (en) Multilayer circuits
JP3015621B2 (en) Conductive paste composition
KR20060061380A (en) Conductive paste and multilayer ceramic substrate
EP0519676B1 (en) Process of producing multiple layer glass-ceramic circuit board
US4576735A (en) Electroconductive molybdenum paste
KR100286091B1 (en) Via paste conductive paste and monolithic ceramic substrate manufacturing method using the same
JPS6296358A (en) Ceramic green sheet
US5660781A (en) Process for preparing glass ceramic green sheets
JP2004106540A (en) Composite and its manufacturing process, and manufacturing process of ceramic substrate
JP2003318060A (en) Manufacturing method of laminated electronic component
JP4388308B2 (en) Resin sheet and method for manufacturing ceramic multilayer wiring board using the same
JPH06143239A (en) Manufacture of ceramic board
JP4688460B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JPH06223621A (en) Conductor paste composition
JP3419151B2 (en) Manufacturing method of glass ceramic green sheet
JP3498197B2 (en) Manufacturing method of ceramic substrate
JPH1179828A (en) Production of alumina ceramic substrate
JPH05167253A (en) Manufacture of multilayer ceramic board
JP2664274B2 (en) Metallized composition for ceramics
JPS6252999A (en) Formation of through conductor path of ceramic circuit boardand manufacture of multilayer circuit board obtained by laminating same
JP2001138317A (en) Ceramic slurry composition, ceramic green sheet, and method for producing laminated ceramic electronic part
JPH06244559A (en) Manufacture of ceramic multilayered board
JP2006104014A (en) Method for producing slurry composition
JP3166953B2 (en) Manufacturing method of ceramic electronic components
JPH10224035A (en) Production of multilayer circuit board