JPS6293866A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS6293866A
JPS6293866A JP60231673A JP23167385A JPS6293866A JP S6293866 A JPS6293866 A JP S6293866A JP 60231673 A JP60231673 A JP 60231673A JP 23167385 A JP23167385 A JP 23167385A JP S6293866 A JPS6293866 A JP S6293866A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
indium
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231673A
Other languages
Japanese (ja)
Inventor
Norio Nakatani
中谷 紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60231673A priority Critical patent/JPS6293866A/en
Publication of JPS6293866A publication Critical patent/JPS6293866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To secure such a lithium secondary battery that improves in negative electrode life and is excellent in charging and discharging characteristics, by using indium or an indium alloy, which is easily alloyed with lithium as a negative electrode active material and excellent in durability, for a negative electrode substrate material. CONSTITUTION:In case of a nonaqueous electrolyte secondary battery in which a transition metallic oxide, a transition metallic chalcogen compound, and an intercalation compound of graphite or the like are set down to a positive electrode active material, while lithium is to a negative electrode active material, and uses a nonaqueous solution, having lithic salt dissolved, as an electrolyte. As a negative electrode substrate material, indium or an indium alloy metals of zinc, tin, thallium, cadminum, copper, aluminum, lead, magnesium, bismuth, nickel, calcium, sidium, etc., to the indium is used. With this constitution, such a nonaqueous electrolyte secondary battery that is excellent in charging and discharging characteristics is securable.

Description

【発明の詳細な説明】 け)産業上の利用分野 本発明は負極活物質としてリチウムを用いる非水電解液
二次電池に係り、特に負極基板材料の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION K) Industrial Application Field The present invention relates to a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material, and particularly relates to improvement of negative electrode substrate material.

(ロ)従来の技術 リチウム二次!池は高エネルギー密度電池として注目さ
れている。
(b) Conventional technology lithium secondary! Ike is attracting attention as a high energy density battery.

ところで、この種電池の負極として負極活物質であるリ
チウム全成型してそのま1使用すると光電時においてリ
チウムは非常に缶石性の悪い樹枝状結晶となって負極上
に析出する。そのため析出リチウムは負極から容易に脱
落し光放題の繰返しで放電容量が著しく減少する。
By the way, if lithium, which is a negative electrode active material, is used as a negative electrode of this type of battery after being completely molded, the lithium becomes dendrite crystals with very poor limestone properties and deposits on the negative electrode during photovoltaic operation. Therefore, the precipitated lithium easily falls off from the negative electrode, and the discharge capacity decreases significantly due to repeated exposure to light.

この屏決法として負極基板材料にアルミニウム、マグネ
シウムなどの金M−使用しリチウム全これら金属上に合
金として′1析させる事で充電時におけるリチウムの樹
枝状結晶の生成全防止し負極寿命を向上させる工夫がな
されている。
As a final solution, by using gold M such as aluminum or magnesium for the negative electrode substrate material and precipitating all of the lithium as an alloy on these metals, the formation of lithium dendrites during charging is completely prevented and the life of the negative electrode is improved. Efforts have been made to make this possible.

しかしながら、負極基板材料にアルミニウムやマグネシ
ウム金柑いた場合KUリチウムと合金化しt部分が脱落
したり、負極基板材料自身が溶解したりする之めに十分
な特性が得られていない。
However, when aluminum or magnesium kumquat is used as the negative electrode substrate material, sufficient characteristics are not obtained because it becomes alloyed with KU lithium and the t part falls off, or the negative electrode substrate material itself dissolves.

(ハ)発明が解決しようとする問題点 本発明は充放電サイクル特性に浸れt非水電解液二次電
池を得ることを目的とする。
(c) Problems to be Solved by the Invention The object of the present invention is to obtain a non-aqueous electrolyte secondary battery with excellent charge-discharge cycle characteristics.

に)問題点全解決するための手段 本発明は遷移金属酸化物、遷移金属カルコゲン化合物、
グラファイトなどのインターカレーション化合物を正極
活物質とし、リチウム全負愼活物質とし、リチウム塩を
溶解さ一+!:た非水溶液を4解液とし九非水電解液二
仄fli池において、負極基板材料としてインジウム或
いはインジウムに亜鉛、スズ、タリウム、カドミウム、
銅、アルミニウム、鉛、マグネシウム、ビスマス、ニッ
ケル、カルシウム、ナトリウムなどの金属k @ 7J
Oシたインジウム合金金用いることを特倣とする。
2) Means for solving all problems The present invention provides transition metal oxides, transition metal chalcogen compounds,
An intercalation compound such as graphite is used as the positive electrode active material, lithium is used as the negative active material, and lithium salt is dissolved. :The non-aqueous solution was dissolved into 4 non-aqueous electrolytes, and the negative electrode substrate material was indium or indium with zinc, tin, thallium, cadmium,
Metals such as copper, aluminum, lead, magnesium, bismuth, nickel, calcium, and sodium @7J
The special model is to use an indium alloy gold with O oxide.

(ホ)作 用 第1図はプロピレンカーボネートに過塩水酸リチウムを
1モル/l溶解した浴液中にお(するインジウムのサイ
クルボルタモダ2ムであり、10肩V / s e c
の条件でインジウム1位を卑な方間にシフ)さ?ると0
.60V(vS  Li+/Li)以下でリチウム合金
化反応が生じ、逆方向に電位をシフトさせるとリチウム
溶解反応が生じているのがわかる。これを反応式で表わ
すと久のようになる。
(E) Action Figure 1 shows the cycle voltage of indium (indium) dissolved in a bath solution containing 1 mol/l of lithium persalt hydroxide in propylene carbonate, and 10 shoulder V/sec.
Under these conditions, the number one place in indium is transferred to a lowly person)? and 0
.. It can be seen that a lithium alloying reaction occurs below 60 V (vS Li+/Li), and a lithium dissolution reaction occurs when the potential is shifted in the opposite direction. This can be expressed as a reaction equation as follows.

尚、インジウム金属4はそれ自身では金属光沢を有して
いるがリチウムとの合金化で灰色(て変色した。又%第
1図に示すリチウム合孟化反応は非店に速やかで且可逆
性に優れたものである。反応の可逆性については男1図
に示す脣注か100サイクル以上でもほとんど変化しな
かったことからも認められる。
Incidentally, indium metal 4 itself has a metallic luster, but when alloyed with lithium, it turned gray (discolored).Also, the lithium alloying reaction shown in Figure 1 is extremely rapid and reversible. The reversibility of the reaction is also confirmed by the fact that there was almost no change even after 100 cycles or more as shown in Figure 1.

更に、リチウム充電時のインジウム電位(工n−LL金
立1位)は0.55〜0.65 V (VS r、i+
/L i )であフtが、インジウムに亜鉛、アルミニ
ウム、カドミウム、マグネシウム、カルシウムなどを添
の口するとa10〜0.30V程度卑な方間に下げられ
る◇ (へ)実施例 以下不発用の実施例につき詳述する。
Furthermore, the indium potential during lithium charging (Eng.
/L i) When zinc, aluminum, cadmium, magnesium, calcium, etc. are added to indium, the aft value can be lowered to about 10 to 0.30V. Examples will be described in detail.

実施例1 グラファイト(Glの成型体金正愼に、インジウム(I
n)金楓板を負極基板に用い、4解aとしてプロピレン
カーボネートに過−集取リチウム(LiC,go4)2
1モル/l溶解したろものを用いて本発明亀71I2(
A1)を作成した0この電池の反応は次の通りである。
Example 1 Indium (I) was added to a molded body of graphite (Gl)
n) Using a gold maple plate as the negative electrode substrate, over-collected lithium (LiC, go4) 2 was added to propylene carbonate as solution 4 a.
The present invention Kame 71I2 (
A1) The reaction of this battery is as follows.

(放t) Qr@CJO4 比較例としてアルミニウムを負極基板材料として用いた
比較1.也(B)及びリチウムを負極基板材料(この場
合基板自身が活物質として作用する)として用いた比1
2 ’il a (C)を作成した。第2図は電池(A
 i ) (B)(C)の充放電サイクル特性図であっ
て、サイクル条件はIIL池(Al)(B)の場合、充
放IIEtffi1mA、充電終止電圧3.5V、If
f’!終止電圧1.5■とし、電池(C)の場合、充放
電電流は同一、充′亀終止電圧4.OV、放電終止框圧
2.OVとした。尚、測定温度はいずれも22℃であっ
た。そして下式に基づき利用効率を算出した。
(Release time) Qr@CJO4 Comparison 1 using aluminum as the negative electrode substrate material as a comparative example. Ratio 1 using ya (B) and lithium as the negative electrode substrate material (in this case, the substrate itself acts as the active material)
2'il a (C) was created. Figure 2 shows the battery (A
i) Charging/discharging cycle characteristic diagrams of (B) and (C), where the cycle conditions are: In the case of IIL battery (Al) (B), charging/discharging IIEtffi 1 mA, charge end voltage 3.5 V, If
f'! In the case of battery (C), the final voltage is 1.5cm, the charging/discharging current is the same, and the final charging voltage is 4. OV, discharge end pressure 2. It was set as OV. Note that the measurement temperature was 22°C in all cases. Then, the usage efficiency was calculated based on the formula below.

Xサイグル後の利用効率(%) 実施例2 二硫化チタン92部、炭素粉末5部、フッ素樹脂6g金
混合役、カロ圧成型し、ついで200℃で熱処理しtも
の全正極とし比。又、活物質であるリチウムを合金化処
理したインジウム(Ini3Q幅、Li2o%)全負極
とした。
Utilization efficiency after X-cycle (%) Example 2 92 parts of titanium disulfide, 5 parts of carbon powder, 6 g of fluororesin gold mixture, Calorie pressure molding, and then heat treatment at 200°C to make a total positive electrode. In addition, the negative electrode was made entirely of indium (Ini3Q width, Li2o%) alloyed with lithium as an active material.

上記ぜるリチウムの合金化処理としτは久述の如き1)
からIV )のイ璽々の方法で実A可症であるが、本実
施例では111)の方法を利用し友。
As for the alloying treatment of lithium mentioned above, τ is as described above 1)
Although it is possible to treat this problem using various methods from 111) to 111) in this example.

1 )In金属をLi電解液中でカソード分惟さぜる′
電気化学的方法。
1) Cathode separation of In metal in Li electrolyte'
Electrochemical method.

it ) I Tl金属とLi金属と全接触さぞ、Li
電解液中で保存する方法。
it ) I All contact between Tl metal and Li metal, Li
How to store in electrolyte.

m )n−ブチルリチウム?浴解したn−へキサン溶液
中にInn全全浸漬る方法。
m) n-butyllithium? A method of completely immersing the Inn in a bath-dissolved n-hexane solution.

IV ) I n金鴇とLi金属と金石後熱融解混合す
る方法。
IV) A method of thermally melting and mixing In gold, Li metal, and gold stone.

そして電解液としては実施例1と同様のものき用いて本
発明VX池(A2)七作成した。この−池の反応は矢の
通りである。
Seven VX ponds (A2) of the present invention were prepared using the same electrolyte as in Example 1. The reaction of this pond is as shown in the arrow.

(充′4) 比較νりとしてリチウム−アルミニウム合金(L120
%%AJ80%)全負極とした比較蔽こ池0及びリチウ
ム単体を負極とじ几比較電池(E)を作成し之。
(F'4) For comparison, lithium-aluminum alloy (L120
%%AJ80%) A comparison battery (E) was prepared in which a comparative shield cell 0 was used as the entire negative electrode and lithium alone was used as the negative electrode.

第3図は電池(A 2 ) (D)(E)の尤放心サイ
クル0性図と示し、サイクル条件は4亀(A2)(D)
の場合、光放鑞4流1mA、光戒終止電圧工5v、放′
4終止′−圧α5Vとし、嵐旭(Eンの場合。
Figure 3 shows the zero potential cycle diagram for batteries (A 2 ) (D) (E), and the cycle conditions are 4 cycles (A2) (D).
In the case of , 4-current 1 mA for optical discharge, 5 V for optical termination voltage,
4 end'-pressure α5V, Arashi Asahi (in the case of E).

光放電′4流は同一、光亀終止戒圧4.OV、放蒐終止
屯圧0.9 Vとし几。尚、利用効率の算出方法は実施
例1の場合と同様である。
The photodischarge '4 flow is the same, the light turtle termination pressure 4. OV, the final pressure after release is 0.9 V. Note that the method of calculating the usage efficiency is the same as in the first embodiment.

第21及び第6図より本発明′電池(Al)(A2)は
比較電池CB)(C)CD)(E)に比して光放戒すイ
クルーf!f性が向上しているのがわかる。
From FIGS. 21 and 6, the battery (Al) (A2) of the present invention exhibits a higher luminous intensity f! than the comparative battery CB) (C) CD) (E). It can be seen that the f-characteristics are improved.

(トノ発明の効果 上述した如く、負極活物質としてのリチウムと容易V?
一台金化し、耐久性にも浸れtインジウム又はインジウ
ム合金を負極極板材料に用いることにエリ、負極寿命が
向上し光放電サイクル特注に優れたリチウム二矢辺池?
得ることができるものであり、その工業的価直は極めて
大である。
(Effects of Tono Invention As mentioned above, lithium as a negative electrode active material and easy V?
It is advantageous to use indium or indium alloy for the negative electrode plate material because it is made of a single metal and has excellent durability.A lithium Niyabe pond with improved negative electrode life and excellent customization of photodischarge cycle?
The industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非水′イ屏液中におCするインジウム金属のサ
イクルポルタモグラムを示し、第2図及び第6図は本発
明i’ch /lj!と比較1μ池との光放電サイクル
特性比較図を示す。 (−AI)(A2)・・・本発明1池、(B)(C)C
D)(Eン・・・比較′電池。 出順人三洋ぼ磯株式会社
FIG. 1 shows a cycle portammogram of indium metal in a non-aqueous liquid, and FIGS. 2 and 6 show the i'ch/lj! of the present invention. A comparison diagram of the photodischarge cycle characteristics of the 1μ cell and the comparative 1μ cell is shown. (-AI) (A2)...Invention 1, (B) (C) C
D) (En... Comparison'Battery. Dejunjin Sanyoboiso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)遷移金属酸化物、遷移金属カルコゲン化合物、グ
ラファイトなどのインターカレーシヨン化合物を正極活
物質とし、リチウムを負極活物質とし、リチウム塩を溶
解させた非水溶液を電解液とした非水電解液二次電池に
おいて、負極基板材料としてインジウム或いはインジウ
ム合金を用いたことを特徴とする非水電解液二次電池。
(1) A non-aqueous electrolyte solution in which an intercalation compound such as a transition metal oxide, a transition metal chalcogen compound, or graphite is used as a positive electrode active material, lithium is used as a negative electrode active material, and a non-aqueous solution in which a lithium salt is dissolved is used as an electrolyte. 1. A non-aqueous electrolyte secondary battery characterized in that indium or an indium alloy is used as a negative electrode substrate material.
JP60231673A 1985-10-17 1985-10-17 Nonaqueous electrolyte secondary battery Pending JPS6293866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231673A JPS6293866A (en) 1985-10-17 1985-10-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231673A JPS6293866A (en) 1985-10-17 1985-10-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6293866A true JPS6293866A (en) 1987-04-30

Family

ID=16927189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231673A Pending JPS6293866A (en) 1985-10-17 1985-10-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6293866A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery

Similar Documents

Publication Publication Date Title
US4464447A (en) Rechargeable lithium batteries with non-metal electrodes
Wachtler et al. Tin and tin-based intermetallics as new anode materials for lithium-ion cells
JP5172059B2 (en) Rechargeable electrochemical cell
CA2184789C (en) Rechargeable lithium battery having a specific electrolyte
TW200814399A (en) Secondary batteries comprising eutectic mixture and preparation method thereof
JP2003297360A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method for positive electrode active material
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
US5712057A (en) Poly-sulfide and carbon electrode material and associated process
JPS6293866A (en) Nonaqueous electrolyte secondary battery
JPS63126156A (en) Lithium cell
JPS6313267A (en) Lithium secondary battery
CN111276762A (en) Novel lithium-ferrous chloride battery based on garnet solid electrolyte and preparation method thereof
JPH10302776A (en) Totally solid lithium secondary battery
JP2000090915A (en) Lithium manganate and organic electrolyte secondary battery using the same
JPH04332472A (en) Negative pole for nonaqueous electrolyte secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JP3157251B2 (en) Lithium ion secondary battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
JPS58142771A (en) Negative electrode for lithium battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPH0349166A (en) Lithium secondary battery
JPH0226345B2 (en)
JPH0568070B2 (en)
JPS62219466A (en) Secondary cell
JPS6326951A (en) Lithium secondary battery