JPS6293382A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS6293382A
JPS6293382A JP23570385A JP23570385A JPS6293382A JP S6293382 A JPS6293382 A JP S6293382A JP 23570385 A JP23570385 A JP 23570385A JP 23570385 A JP23570385 A JP 23570385A JP S6293382 A JPS6293382 A JP S6293382A
Authority
JP
Japan
Prior art keywords
film forming
thin film
spectra
film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23570385A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kobayashi
和弘 小林
Masahiro Hayama
羽山 昌宏
Hidejiro Miki
三木 秀二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23570385A priority Critical patent/JPS6293382A/en
Publication of JPS6293382A publication Critical patent/JPS6293382A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the setting of the speed of forming a film and the control of film quality by providing an emission spectrum detector which detects the spectra generated when gas is decomposed and a control device which controls film forming conditions according to the emission intensity of the detected spectra. CONSTITUTION:The film forming gas is introduced through a gas introducing port 2 into a chamber 1. the inside of the chamber is evacuated by a vacuum pump 3 to 0.4-2Torr. The plasma of the film forming gas is generated in the chamber 1 when electric power is applied from a high-frequency power source 5 to an electrode 4. The plasma, when observed through an inspection window 6, is observed as the emission spectra. the plasma spectra are collected by a light collector 7 and are conducted by an optical fiber 8 to a spectroscope 9 by which the spectra are spectrally divided. Such spectra are detected by a photodiode array 10. The spectra are converted to an electric signal by a controller 11. The signal is displayed on a monitor 12 and is so controlled by the control device 13 that the emission intensity thereof is always maintained constant.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、薄膜形成装置に関し、特に化学気相成長法
で薄膜形成時に発生する特有の光を用いて、薄膜形成の
制御をおこなう薄膜形成装置に関するものである。例え
ば、グロー放電を用いてガスを分解することKより薄膜
を形成するプラズマ化学気相成長(以下プラズマCVD
と略す)法による薄膜形成装置とが光を用いてガスを分
解することにより薄側を形成する光CVD装置などに関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film forming apparatus, and in particular to a thin film forming apparatus that controls thin film formation using the unique light generated during thin film formation by chemical vapor deposition. It is related to the device. For example, plasma chemical vapor deposition (hereinafter referred to as plasma CVD), which forms thinner films by decomposing a gas using a glow discharge, is used.
A thin film forming apparatus using a method (hereinafter referred to as "CVD") is related to an optical CVD apparatus that forms a thin film by decomposing a gas using light.

〔従来の技術〕[Conventional technology]

従来の蒸着法などにおいて、薄膜の成膜速度を水晶振動
子を用いて制御する薄膜形成装置を第4図に示す。図に
おいて、(1)は成膜を行うチャンバー%(3) F′
iチャンバー(1)内を真空に排気する真空排気系、(
14)は成膜をするための基板、(15)は蒸着材料を
加熱するためのるつぼ、(16)はるつぼ(15)に電
力を供給する電源、(17)け膜厚を測定する水晶振動
子、(18) Fi水晶賑動子(17)のコントローラ
、  (19)//i膜厚を制御するための制御装置f
&である。
FIG. 4 shows a thin film forming apparatus that uses a crystal oscillator to control the thin film forming rate in a conventional vapor deposition method. In the figure, (1) is the chamber in which the film is formed (%) (3) F'
A vacuum evacuation system that evacuates the inside of the i-chamber (1), (
14) is a substrate for film formation, (15) is a crucible for heating the evaporation material, (16) is a power source that supplies power to the crucible (15), and (17) is a crystal vibration for measuring film thickness. (18) Controller of Fi crystal active element (17) (19) //i Control device f for controlling film thickness
& is.

図中、矢印A I−1チヤンバー(1)内の員空排気時
の排気方向を示し、矢印B l−J:蒸着材料の蒸着方
向を示す。
In the figure, arrow A I-1 indicates the direction of exhaust air when emptying the chamber (1), and arrow B l-J indicates the direction of vapor deposition of the vapor deposition material.

次に動作について説明する。チャンバー(1)内を真空
に排気系(3)Kより矢印A方向に排気後、蒸着材料が
入っているるつぼ(15)を電源(16)から電力を供
給して加熱し、材料を矢印B方向に蒸着させ、基板(1
4)上に膜を成膜する。この時、膜の一部が水晶振動子
(17) Kも成膜される様にしておく。
Next, the operation will be explained. After evacuating the chamber (1) to a vacuum in the direction of arrow A from the exhaust system (3) K, the crucible (15) containing the vapor deposition material is heated by supplying power from the power source (16), and the material is heated in the direction of arrow B. The substrate (1
4) Form a film on top. At this time, a part of the film is made so that the crystal resonator (17) K is also formed.

すると、水晶振切子(17)の片面に物質が成膜される
ことに対応し、水晶の固有振wJ数が変化する。
Then, the natural frequency wJ number of the crystal changes in response to the substance being deposited on one side of the crystal pendulum (17).

この現象により、成膜された膜の膜厚及び成膜速度をモ
ニターすることができる。水晶振動子(17)及びコン
トローラー(18)でモニターした膜厚及び成膜速度に
従って、るつぼ(15)を加熱する電源(16)の電力
を制御装! (19)を用いて変化させたり、0N10
FF′させたりすることにより、成膜条件をコントロー
ルできる。このように再現性のよい膜の成j模を可能に
している。
This phenomenon allows the thickness and deposition rate of the deposited film to be monitored. A control device that controls the power of the power source (16) that heats the crucible (15) according to the film thickness and film formation rate monitored by the crystal oscillator (17) and controller (18)! (19) or 0N10
Film forming conditions can be controlled by FF'. In this way, it is possible to simulate film formation with good reproducibility.

〔発明が解決しようとする問題点1 従来の水晶振動子を用いた薄膜形成装置における成膜速
度の制御は、以上のように構成されている。この制御を
プラズマCVDなどの化学気相成長法による薄膜形成装
置に用いると、プラズマを発生させる高周波などにより
ノイズが入りやすく、又、水晶振動子によりプラズマの
状態が変るという問題点があった。
[Problem to be Solved by the Invention 1] Control of the film forming rate in a conventional thin film forming apparatus using a crystal oscillator is configured as described above. When this control is used in a thin film forming apparatus using a chemical vapor deposition method such as plasma CVD, there are problems in that noise is likely to enter due to the high frequency waves used to generate plasma, and the state of the plasma changes due to the crystal oscillator.

この発明は上記のような問題点を解消するためになされ
たもので、化学気相成長法により薄膜を形成するものに
おいて、高周波などのノイズに影響されることなく膜の
成膜速度を設定できるとともに、膜質の制御もできる薄
膜形成装置を得ることを目的としている。
This invention was made to solve the above-mentioned problems, and it is possible to set the film deposition rate without being affected by noise such as high frequencies when forming thin films by chemical vapor deposition. The present invention also aims to provide a thin film forming apparatus that can also control film quality.

〔問題点を解決するための手段J この発明に係る薄膜形成装置は、ガスの分解時に発生す
る発光スペクトルを検出する発光スペクトル検出装置、
及び検出した発光スペクトルの発光強度に応じて成膜条
件を制御する制御装置を備えたものである。
[Means for Solving the Problems J] The thin film forming apparatus according to the present invention includes an emission spectrum detection apparatus that detects an emission spectrum generated when gas is decomposed;
and a control device that controls film-forming conditions according to the emission intensity of the detected emission spectrum.

[作用] この発明における制御装置は、例えばプラズマCVD装
−などにおいて、ガスの分解時に発生する発光スペクト
ルを常にモニターし、所望の発光強度が得られるように
プラズマCVD装置のRE”パワーとか成膜圧力といっ
た成膜条件にフィードバックをかける。発光強度と成膜
速度とは特定の関係があるため、発光強度を制御すれは
成膜速度を精度よく制御でき、成膜速度、膜質の再現性
が得られる。
[Function] The control device of the present invention constantly monitors the emission spectrum generated during decomposition of gas in, for example, a plasma CVD device, and adjusts the RE” power of the plasma CVD device or film formation so that the desired emission intensity is obtained. Feedback is applied to the film formation conditions such as pressure.There is a specific relationship between the emission intensity and the film formation rate, so controlling the emission intensity allows the film formation rate to be controlled with high precision, resulting in reproducibility of the film formation rate and film quality. It will be done.

〔実施例] 以下、この発Fillの一実施例について例えばプラズ
マCVD装置の例を図で説1!J[する。第1図におい
て、(i)Viプラズマを発生し、成膜と行なうプラズ
マCVD装置のチャンバー、(2)は成膜ガスを矢印C
方向からチャンバー(1)内に入れる成膜ガス取入れ口
、(3)Viチャンバー(1)内を真空にするとともに
、成膜時に成膜ガスを矢印A方向に排気する真空排気糸
で例えば真空ポンプ、(4)はプラズマを発生するため
の電極、(5)は高周波電源、(6) Fiチャンバー
(1)内を観察できるガラスののぞき窓である。
[Example] Hereinafter, an example of an example of a plasma CVD apparatus will be explained using diagrams regarding an example of this process. J[Do. In Fig. 1, (i) a chamber of a plasma CVD apparatus that generates Vi plasma and performs film formation;
(3) A vacuum exhaust line that evacuates the inside of the Vi chamber (1) and evacuates the film forming gas in the direction of arrow A during film formation, such as a vacuum pump. , (4) is an electrode for generating plasma, (5) is a high frequency power source, and (6) is a glass peephole through which the inside of the Fi chamber (1) can be observed.

(7)ハチャンパー(1)内のプラズマ光を集める集光
器、(8)は光7アイバー、(9) Vi分光器、(1
0)は7オトダイオードアレイ、 (11)は7オトダ
イオードアレイ(10)を制御するコントローラー、(
12) t/iモニタースコープ、 (13)は例えば
高周波電源等に接続され、成膜条件、この場合は高周波
電源をコントローラー(10)からフィードバックする
ための制御装置である。
(7) A condenser that collects plasma light in the Hachamper (1), (8) is a light 7 eye bar, (9) a Vi spectrometer, (1)
0) is a 7-otodiode array, (11) is a controller that controls the 7-otodiode array (10), (
12) t/i monitor scope (13) is a control device that is connected to, for example, a high frequency power source and feeds back the film forming conditions, in this case the high frequency power source, from the controller (10).

(14)は薄膜を成膜する基板である。集光器(7)、
光ファイバー(8)%分光器(9)、フォトダイオード
アレイ(10)、コントローラー(11)、及びモニタ
ースコープ(12)で発光スペクトル検出装置を構成し
ている。
(14) is a substrate on which a thin film is formed. concentrator (7),
An optical fiber (8)% spectrometer (9), a photodiode array (10), a controller (11), and a monitor scope (12) constitute an emission spectrum detection device.

例えばアモルファスSi (以ドa Sl)などの薄膜
をプラズマCVD装W!を用いて成膜する場合、成h(
ガスである5il(4ガスを成膜ガス収り人hD (2
)より、矢印C方向で示すようにチャンバー(1)内に
導入し、真空ポンプ(3)で矢印A方向VC排気する。
For example, thin films such as amorphous Si (hereinafter referred to as a Sl) can be formed using plasma CVD. When forming a film using h(
The film-forming gas contains 5il (4 gases).
), it is introduced into the chamber (1) as shown in the direction of arrow C, and VC is evacuated in the direction of arrow A using a vacuum pump (3).

成膜ガスのチャンバー(1)内圧力全0.4〜2Tor
r程度の圧力に設定し、高同波電源(5)より電力を電
極(4)に加えると、チャンバー(1)内では成膜ガス
である51H4のプラズマが発生”−rる。プラズマは
、のぞき窓(6)より観察すると第2図に示す様なスペ
クトルを持つ光として観測される。第2図けPドープn
型a−8i成膜中におけるプラズマ発光スペクトルノー
例を示すもので、横1lIIIlは波長(nm)、縦軸
はプラズマ発光強度(任意単位)を示す。図中、414
nmの発光は%SiH4か分解した81Hより生じる発
光であり486nmの発光はHρ、 656nmの発光
はHαより生じる発光である。a−81の成膜のための
反応を考えるモデルとして式1が提案されている。
Total pressure inside the film forming gas chamber (1): 0.4 to 2 Torr
When the pressure is set to approximately r and power is applied to the electrode (4) from the high frequency power source (5), plasma of 51H4, which is the film forming gas, is generated in the chamber (1). When observed from (6), it is observed as light with a spectrum as shown in Figure 2. In Figure 2, P-doped n
This figure shows an example of the plasma emission spectrum during type a-8i film formation, where the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the plasma emission intensity (arbitrary unit). In the figure, 414
The light emission at nm is the light emission generated by 81H decomposed from %SiH4, the light emission at 486 nm is the light emission from Hρ, and the light emission at 656 nm is the light emission generated from Hα. Equation 1 has been proposed as a model for considering reactions for film formation of a-81.

S i H+ H−81+ H2・・・1式lが成立す
るとすれば、a−8iの成膜速度は、81Hの量で律速
されることが考−えられる。SiHの量は、第2図で示
した81Hの発光スペクトル(414n+n)の強さに
比例するので、成膜速度はSiHの発光スペクトルの強
度に比例することになる。
S i H+ H-81+ H2...1 If the formula 1 holds true, it is conceivable that the film formation rate of a-8i is determined by the amount of 81H. Since the amount of SiH is proportional to the intensity of the 81H emission spectrum (414n+n) shown in FIG. 2, the film formation rate is proportional to the intensity of the SiH emission spectrum.

第3図は高周波電力を変化させた時のa−8i成膜速度
と81H(414nm)発光強度の関係を示すものであ
る。図における横軸はSiH発光強度(count)で
、縦軸は成膜速度(oA/ min )であり、スリッ
ト501tm1露光時間1秒、0.6 Torr 、 
SiH460SCCM%I(22405ccv%Ts2
75℃におけるものである。図に示されるように、成膜
速度とSiHの発光強度はよい相関を示している。つま
り、81Hの発光強度をモニターすることにより、成膜
速度をモニターすることができる。
FIG. 3 shows the relationship between the a-8i film formation rate and the 81H (414 nm) emission intensity when changing the high frequency power. In the figure, the horizontal axis is the SiH emission intensity (count), and the vertical axis is the film formation rate (oA/min).
SiH460SCCM%I (22405ccv%Ts2
This is at 75°C. As shown in the figure, there is a good correlation between the film formation rate and the SiH emission intensity. That is, by monitoring the emission intensity of 81H, the film formation rate can be monitored.

そこで、チャンバー(1)で発生したプラズマスペクト
ルをのぞき窓(6)を通じて集光器(7)で集め、光7
アイバー(8)で分光器(9)に導く。ここで、分光さ
れた光をたとえばフォトダイオードアレイ(10)で検
出し、コントローラー(11)を用い電気信号に変換し
、モニター(12)で表示すると、第2図に示した様な
スペクトルが見られる。
Therefore, the plasma spectrum generated in the chamber (1) is collected by the condenser (7) through the viewing window (6), and the light 7
The eyebar (8) leads to the spectrometer (9). Here, when the separated light is detected with, for example, a photodiode array (10), converted into an electrical signal using a controller (11), and displayed on a monitor (12), a spectrum like the one shown in Figure 2 can be seen. It will be done.

成膜速度と5iI(発光強度の間には@3図に示した様
な相関があるので、プラズマ中の発光強度を常にモニタ
ーして、高周波電源電力等のプラズマCVDの成膜条件
を制御装fit!if、 (13)を用いて、発光強度
が例えば常に一定となる様に制御すると、一定の成膜速
度を得ることができる。
There is a correlation between the deposition rate and 5iI (emission intensity as shown in Figure 3), so the emission intensity in the plasma is constantly monitored and the plasma CVD deposition conditions such as high-frequency power supply are controlled by the control system. If the emission intensity is controlled to be constant, for example, using fit!if, (13), a constant film formation rate can be obtained.

なお上記実施例では、プラズマ発光の検出装面としては
、分光器(9)と7オトダイオードアレイ(10)を組
み合わせたものについて述べたが、分光器と光電子増倍
管を組み合わせ念ものであってもよく、ガス分解時に発
生する発光スペクトルを検出できるものならどのような
構成のものでもよい。
In the above embodiment, a combination of a spectrometer (9) and a 7-otodiode array (10) was described as a detection device for plasma emission, but it is also possible to combine a spectrometer and a photomultiplier tube. Any structure may be used as long as it can detect the emission spectrum generated during gas decomposition.

また上記実施例では、SIH(414nm)の発光強度
をモニターして、高同波電力等のプラズマCVDの成膜
条件にフィードバックすることについて述べたが、Hc
M、I(βの発光強度、あるいは5iI(の発光強度と
Hα、Hβの発光強度との積、比などを用いて制御をお
こなってもよい。また、発光強度と常に一定となるよう
に制御するのでなく、徐々に増加させたりするなど、所
望の発光強7fK制御してもよい。また−上記実施例で
は、アモルファスシリコン成膜の場合について述べたが
、Sl、aN4,5iOz、81ON%SiCなどの各
物質をプラズマCVD法で成膜する場合も同等の効果を
奏する。
Furthermore, in the above embodiment, it was described that the emission intensity of SIH (414 nm) was monitored and fed back to the plasma CVD film forming conditions such as high frequency power.
Control may be performed using the product or ratio of the luminescence intensity of M, I (β) or the luminescence intensity of 5iI (and the luminescence intensity of Hα, Hβ.Also, control may be performed so that the luminescence intensity is always constant with the luminescence intensity. Instead, it is also possible to control the desired emission intensity of 7fK by gradually increasing it.Also, in the above embodiment, the case of amorphous silicon film formation was described, but the The same effect can be obtained when each substance such as the following is formed into a film by the plasma CVD method.

、上記実施例では、化学気相成長法としてプラズマcv
Diの場合について述べたが光を用いて成膜ガスを分解
する光CVD法においても同等の効果を奏する。この場
合には、成膜条件として光源の増減や、フィルター°を
かけるなどして光強度を制御するように構成すれば成膜
速度を制御できる。
, In the above embodiment, plasma CV is used as the chemical vapor deposition method.
Although the case of Di has been described, the same effect can be achieved in a photo-CVD method in which the film-forming gas is decomposed using light. In this case, the film-forming speed can be controlled by controlling the light intensity by increasing or decreasing the number of light sources or applying a filter as the film-forming conditions.

さらに、成膜条件として真空ポンプ(3)等を制御して
、成膜圧力を制御するように構成してもよい。
Furthermore, the vacuum pump (3) or the like may be controlled as a film forming condition to control the film forming pressure.

[発明の効果] 以上のように、この発F3AKよれば、化学気相成長法
により薄膜を形成するものにおいて、ガスの分解時に発
生する発光スペクトルを検出する発光スペクトル検出装
置、及び検出した発光スペクトルの発光強度に応じて成
膜条件を制御する制御装置を備えることにより、膜の成
膜速度を設定でき、膜質の制御ができる薄膜形成装置が
得られる効果がある。
[Effects of the Invention] As described above, according to this F3AK, in a device that forms a thin film by chemical vapor deposition, there is provided an emission spectrum detection device for detecting an emission spectrum generated during decomposition of a gas, and an emission spectrum detection device for detecting an emission spectrum generated during gas decomposition. By providing a control device that controls film-forming conditions according to the light emission intensity of the film, it is possible to obtain a thin film-forming apparatus that can set the film-forming rate and control the film quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による薄膜形成装置を示す
f#構成図第2図はアモルファスS1成膜中のチャンバ
ー内のプラズマ発光スペクトルの一例を波長(nm)に
対する発光スペクトル(任意単位)で示すグラフ、第3
図はプラズマ発光スペクトル中の81H(414nm)
発光強度(count)とアモルファスS1成膜速度(
A/m、in)との相関を示す特性図、第4図は水晶振
k)J子を用いた従来の薄膜形成装置を示す構成図であ
る。 図において、(1)はチギンバー、(2)ll−tガス
jl入口、(3)は真空排気系、(4)は電極、(5)
は高周波電源、(6)はのぞき窓、(力if集光器、(
8)は光ファイバー、(9) #−1分光器、(10)
は7オトダイオードアレイ、(11)はフォトダイオー
ドアレイコントローラー、(12) ldモニタースコ
ープ、(13)は制御装置、(14)は基板である。集
光器(7)、光ファイバー(8)、分光器(9)、7オ
トダイオードアレイ(10)、7オトダイオードアレイ
コントローラー(11)、及びモニタースコープ(12
)で発光スペクトル検出装置を構成する。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is an f# configuration diagram showing a thin film forming apparatus according to an embodiment of the present invention. FIG. 2 is an example of the plasma emission spectrum in the chamber during the formation of an amorphous S1 film.Emission spectrum (arbitrary units) versus wavelength (nm) Graph shown in 3rd
The figure shows 81H (414nm) in the plasma emission spectrum.
Emission intensity (count) and amorphous S1 film formation rate (
A/m, in), and FIG. 4 is a configuration diagram showing a conventional thin film forming apparatus using a quartz crystal vibrator. In the figure, (1) is a chigin bar, (2) ll-t gas jl inlet, (3) is a vacuum exhaust system, (4) is an electrode, (5)
is a high frequency power supply, (6) is a peephole, (power if concentrator, (
8) Optical fiber, (9) #-1 spectrometer, (10)
(11) is a photodiode array controller, (12) is an LD monitor scope, (13) is a control device, and (14) is a board. Concentrator (7), optical fiber (8), spectrometer (9), 7 otodiode array (10), 7 otodiode array controller (11), and monitor scope (12)
) constitutes an emission spectrum detection device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (6)

【特許請求の範囲】[Claims] (1)化学気相成長法により薄膜を形成するものにおい
て、ガスの分解時に発生する発光スペクトルを検出する
発光スペクトル検出装置、及び検出した発光スペクトル
の発光強度に応じて成膜条件を制御する制御装置を備え
たことを特徴とする薄膜形成装置。
(1) For those that form thin films by chemical vapor deposition, an emission spectrum detection device that detects the emission spectrum generated during gas decomposition, and a control that controls film formation conditions according to the emission intensity of the detected emission spectrum. 1. A thin film forming apparatus comprising:
(2)化学気相成長法により薄膜を形成するものは、グ
ロー放電法を用いたプラズマCVD装置であることを特
徴とする特許請求の範囲第1項記載の薄膜形成装置。
(2) The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus using a chemical vapor deposition method is a plasma CVD apparatus using a glow discharge method.
(3)制御装置は、グロー放電電力を制御することを特
徴とする特許請求の範囲第2項記載の薄膜形成装置。
(3) The thin film forming apparatus according to claim 2, wherein the control device controls glow discharge power.
(4)化学気相成長法により薄膜を形成するものは、光
CVD装置であることを特徴とする特許請求の範囲第1
項記載の薄膜形成装置。
(4) Claim 1, characterized in that the device for forming thin films by chemical vapor deposition is a photo-CVD device.
Thin film forming apparatus as described in .
(5)制御装置は、光源の光強度を制御することを特徴
とする特許請求の範囲第4項記載の薄膜形成装置。
(5) The thin film forming apparatus according to claim 4, wherein the control device controls the light intensity of the light source.
(6)制御装置は、成膜圧力を制御することを特徴とす
る特許請求の範囲第2項または第4項記載の薄膜形成装
置。
(6) The thin film forming apparatus according to claim 2 or 4, wherein the control device controls the film forming pressure.
JP23570385A 1985-10-21 1985-10-21 Thin film forming device Pending JPS6293382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23570385A JPS6293382A (en) 1985-10-21 1985-10-21 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23570385A JPS6293382A (en) 1985-10-21 1985-10-21 Thin film forming device

Publications (1)

Publication Number Publication Date
JPS6293382A true JPS6293382A (en) 1987-04-28

Family

ID=16989973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23570385A Pending JPS6293382A (en) 1985-10-21 1985-10-21 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS6293382A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228482A (en) * 1986-03-08 1987-10-07 Hitachi Ltd Low-temperature plasma treating device
JPS6487777A (en) * 1987-07-15 1989-03-31 Boc Group Inc Method and apparatus for controlling thin film adhesion process by plasma
WO2004031440A1 (en) * 2002-09-30 2004-04-15 Toppan Printing Co., Ltd. Method for forming thin film, apparatus for forming thin film, and method for monitoring thin film forming process
FR2888587A1 (en) * 2005-07-13 2007-01-19 Sidel Sas APPARATUS FOR THE PECVD DEPOSITION OF AN INTERNAL BARRIER LAYER ON A CONTAINER, COMPRISING AN OPTICAL ANALYSIS DEVICE FOR PLASMA
JP2009513827A (en) * 2005-10-27 2009-04-02 シデル パルティシパション Method for monitoring plasma, apparatus for carrying out this method, method for depositing a film on a PET hollow body using this method
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus
JP2010222690A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Method for producing gas barrier film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228482A (en) * 1986-03-08 1987-10-07 Hitachi Ltd Low-temperature plasma treating device
JPS6487777A (en) * 1987-07-15 1989-03-31 Boc Group Inc Method and apparatus for controlling thin film adhesion process by plasma
WO2004031440A1 (en) * 2002-09-30 2004-04-15 Toppan Printing Co., Ltd. Method for forming thin film, apparatus for forming thin film, and method for monitoring thin film forming process
US8062716B2 (en) 2002-09-30 2011-11-22 Toppan Printing Co., Ltd. Method for forming thin film, apparatus for forming thin film, and method for monitoring thin film forming process
FR2888587A1 (en) * 2005-07-13 2007-01-19 Sidel Sas APPARATUS FOR THE PECVD DEPOSITION OF AN INTERNAL BARRIER LAYER ON A CONTAINER, COMPRISING AN OPTICAL ANALYSIS DEVICE FOR PLASMA
WO2007006977A3 (en) * 2005-07-13 2007-03-22 Sidel Participations Apparatus for the pecvd deposition of an inner barrier layer on a container, comprising an optical plasma analysis device
US8826853B2 (en) 2005-07-13 2014-09-09 Sidel Participations Apparatus for PECVD deposition of an internal barrier layer on a receptacle, the apparatus including an optical plasma analysis device
JP2009513827A (en) * 2005-10-27 2009-04-02 シデル パルティシパション Method for monitoring plasma, apparatus for carrying out this method, method for depositing a film on a PET hollow body using this method
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus
JP2010212279A (en) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd Method for manufacturing photoelectric conversion device and film forming device
US8394709B2 (en) 2009-03-06 2013-03-12 Mitsubishi Heavy Industries, Ltd. Process for producing photovoltaic device and deposition apparatus
JP2010222690A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Method for producing gas barrier film

Similar Documents

Publication Publication Date Title
CA1194385A (en) Device fabrication using gas-solid processes
US6534007B1 (en) Method and apparatus for detecting the endpoint of a chamber cleaning
Barranco et al. Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD
JPS6293382A (en) Thin film forming device
US4645684A (en) Method for forming deposited film
JPS6314421A (en) Plasma chemical vapor deposition method
KR100272881B1 (en) Vapor phase growth method and growth apparatus
JP3333657B2 (en) Vapor phase etching apparatus and vapor phase etching method
JPS58190811A (en) Manufacture of photoconductive film of amorphous silicon hydride
JPH08172054A (en) Plasma cvd method, device thereof and manufacture of semiconductor device using said device
JPS62228482A (en) Low-temperature plasma treating device
Hiramatsu et al. Measurement of the density and translational temperature of Si (3p2 1D2) atoms in RF silane plasma using UV laser absorption spectroscopy
JPS63166972A (en) Plasma cvd method
JP2003007624A (en) Processing monitoring method of thin-film manufacturing apparatus and the thin-film manufacturing apparatus equipped with process monitor
JP3795012B2 (en) Thin film manufacturing apparatus and cleaning method therefor
JPH05175165A (en) Plasma device
JPH05121332A (en) Method and apparatus for formation of functional deposition film
JPH05234917A (en) Forming method of semiconductor thin film and its equipment
JPS61257478A (en) Formation of thin film
JPS599911A (en) Method of monitoring film quality
JPH0390576A (en) Formation of metal nitride coating film
JPH08264520A (en) Semiconductor production system
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS639014B2 (en)
JPS646536B2 (en)