JPS629189B2 - - Google Patents

Info

Publication number
JPS629189B2
JPS629189B2 JP57000997A JP99782A JPS629189B2 JP S629189 B2 JPS629189 B2 JP S629189B2 JP 57000997 A JP57000997 A JP 57000997A JP 99782 A JP99782 A JP 99782A JP S629189 B2 JPS629189 B2 JP S629189B2
Authority
JP
Japan
Prior art keywords
vapor deposition
photochemical reaction
deposition
tank
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57000997A
Other languages
Japanese (ja)
Other versions
JPS58119334A (en
Inventor
Satoru Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP99782A priority Critical patent/JPS58119334A/en
Publication of JPS58119334A publication Critical patent/JPS58119334A/en
Publication of JPS629189B2 publication Critical patent/JPS629189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Description

【発明の詳細な説明】 本発明は、例えばアモルフアスシリコン等より
成る薄膜の形成に用いられる光化学反応蒸着方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photochemical reaction deposition method used for forming thin films made of, for example, amorphous silicon.

近年、太陽電池の光電変換層或いは電子写真感
光体の感光層等の半導体層として、結晶成長工程
が不要であること等の利点から結晶シリコンに代
えてアモルフアスシリコン(以下単に「a―シリ
コン」と記す。)を用いることが検討されてい
る。
In recent years, amorphous silicon (hereinafter simply referred to as "a-silicon") has been used as semiconductor layers such as the photoelectric conversion layer of solar cells or the photosensitive layer of electrophotographic photoreceptors in place of crystalline silicon due to its advantages such as no crystal growth process. ) is being considered.

従来このようなa―シリコンより成る薄膜を製
造する方法としては、グロー放電法、スパツタ
法、光化学反応蒸着法等が知られている。グロー
放電法とは真空槽内に配置した基体を例えばヒー
ター等の加熱源により加熱すると共に高真空下に
おいて例えばシランガス等のシリコン化合物ガス
を含む蒸着用ガスをグロー放電により化学的に分
解して活性のシリコン原子及び水素原子或いは部
分分解物を生成せしめ、これらを前記基体上に付
着堆積せしめてa―シリコンより成る薄膜を形成
する方法であり、スパツタ法とは真空槽内に配置
した基体を例えばヒーター等の加熱源により加熱
すると共に高真空下において当該真空槽内に配置
したシリコンに例えばアルゴン原子、水素原子等
を衝突せしめてこれより飛散するシリコン原子を
前記基体上に付着堆積せしめてa―シリコンより
成る薄膜を形成する方法であり、光化学反応蒸着
法とは光化学反応蒸着槽内に配置した基体を例え
ばヒーター等の加熱源により加熱すると共に高真
空下において当該光化学反応蒸着槽内に波長2537
Åの紫外線により励起される水銀蒸気を含むシリ
コン化合物ガス等より成る反応蒸着ガスを供給
し、これに波長2537Åの紫外線を照射して水銀蒸
気を励起し、この励起された水銀蒸気によりシリ
コン化合物ガスを分解して活性のシリコン原子及
び水素原子等を生成せしめ、これらを前記基体上
に付着堆積せしめてa―シリコンより成る薄膜を
形成する方法である(特開昭54―163792号公報等
参照)。
Conventionally, known methods for manufacturing such a thin film made of a-silicon include a glow discharge method, a sputtering method, and a photochemical reaction vapor deposition method. In the glow discharge method, a substrate placed in a vacuum chamber is heated with a heating source such as a heater, and a vapor deposition gas containing a silicon compound gas such as silane gas is chemically decomposed and activated by glow discharge under a high vacuum. The sputtering method is a method of forming a thin film of a-silicon by generating silicon atoms and hydrogen atoms or partial decomposition products on the substrate, and sputtering is a method of forming a thin film of a-silicon by depositing them on the substrate. The silicon placed in the vacuum chamber is heated by a heating source such as a heater, and the silicon placed in the vacuum chamber is bombarded with, for example, argon atoms, hydrogen atoms, etc., and the silicon atoms scattered from this are deposited on the substrate. The photochemical reaction deposition method is a method of forming a thin film made of silicon.The photochemical reaction deposition method is a method in which a substrate placed in a photochemical reaction deposition tank is heated with a heat source such as a heater, and a wavelength of 2537 is applied to the substrate under high vacuum.
A reactive vapor deposition gas consisting of a silicon compound gas containing mercury vapor excited by ultraviolet rays of 2537 Å is supplied, and the mercury vapor is excited by irradiating it with ultraviolet rays of 2537 Å wavelength, and the excited mercury vapor forms a silicon compound gas. This is a method in which a thin film made of a-silicon is formed by decomposing active silicon atoms, hydrogen atoms, etc., and depositing these on the substrate (see Japanese Patent Application Laid-Open No. 163792/1984). .

このうち光化学反応蒸着法が装置の構成が比較
的簡単であること等の理由からa―シリコン等よ
り成る薄膜の形成に有利であるとされている。
Among these methods, the photochemical reaction vapor deposition method is said to be advantageous for forming thin films made of a-silicon or the like because the device configuration is relatively simple.

しかしながら、上述のグロー放電法或いはスパ
ツタ法においては勿論のこと、例えば特開昭54―
163792号公報に記載された光化学反応蒸着法にお
いても、蒸着基体を100〜300℃の高い温度に加熱
することが必要であり、このように蒸着基体を高
温に加熱すると光化学反応蒸着槽内の温度が上昇
し、その結果当該光化学反応蒸着槽内の例えば内
壁等に付着していた不純物が当該光化学反応蒸着
槽内を飛散するようになり、これが基体上に形成
される薄膜中に混入することとなり、この結果形
成される薄膜は良好な特性を有しないものとな
る。
However, in addition to the above-mentioned glow discharge method or sputtering method, for example,
Even in the photochemical reaction vapor deposition method described in Publication No. 163792, it is necessary to heat the vapor deposition substrate to a high temperature of 100 to 300°C, and when the vapor deposition substrate is heated to a high temperature in this way, the temperature in the photochemical reaction vapor deposition tank increases. increases, and as a result, impurities that have adhered to, for example, the inner walls of the photochemical reaction vapor deposition tank begin to scatter within the photochemical reaction vapor deposition tank, and this becomes mixed into the thin film formed on the substrate. , the resulting thin film does not have good properties.

本発明は以上の如き事情に基いて成されたもの
であつて、実用上充分な膜成長速度でしかも特性
の良好なa―シリコン等よりなる薄膜を確実に形
成することができる光化学反応蒸着方法を提供す
ることを目的とし、その特徴とするところは、光
化学反応蒸着槽と、この光化学反応蒸着槽内に水
銀蒸気を含有する反応蒸着ガスを供給する反応蒸
着ガス供給機構と、前記光化学反応蒸着槽に設け
た紫外線透過窓と、この紫外線透過窓を介して前
記光化学反応蒸着槽内に配置された蒸着基体に波
長2537Åの紫外線を照射する紫外線放射ランプと
を具えて成る光化学反応蒸着装置を用い、前記蒸
着基体上における波長2537Åの紫外線の強度を
5mW/cm2以上とし、かつ前記光化学反応蒸着槽
内の温度を常温に維持した状態で蒸着を行う点に
ある。
The present invention has been made based on the above circumstances, and is a photochemical reaction vapor deposition method that can reliably form a thin film made of a-silicon or the like with a practically sufficient film growth rate and good characteristics. The purpose of the invention is to provide a photochemical reaction deposition tank, a reaction deposition gas supply mechanism for supplying a reaction deposition gas containing mercury vapor into the photochemical reaction deposition tank, and the photochemical reaction deposition tank. A photochemical reaction deposition apparatus is used, which includes an ultraviolet transmitting window provided in a tank, and an ultraviolet radiation lamp that irradiates ultraviolet rays with a wavelength of 2537 Å to a deposition substrate placed in the photochemical reaction deposition tank through the ultraviolet transmitting window. , the intensity of ultraviolet light with a wavelength of 2537 Å on the vapor deposition substrate is
The point is that the vapor deposition is carried out at 5 mW/cm 2 or more, and the temperature in the photochemical reaction vapor deposition tank is maintained at room temperature.

以下図面によつて本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

本発明の一実施例においては、第1図に示すよ
うに、光化学反応蒸着槽1に排気路2を介して真
空ポンプ(図示せず)を接続し、当該光化学反応
蒸着槽1内に蒸着基体3を配置し、例えばその出
口41が前記蒸着基体3と対向するよう当該出口
41を前記光化学反応蒸着槽1に接続して設けた
反応蒸着ガス供給管4と、その出口51が前記蒸
着基体3と対向するよう当該出口51を前記光化
学反応蒸着槽1に接続して設けた水銀蒸気供給管
5とにより反応蒸着ガス供給機構6を構成し、前
記光化学反応蒸着槽1には例えば石英ガラス等よ
り成る紫外線透過窓7を形成し、この紫外線透過
窓7を介して前記蒸着基体3上を照射するよう例
えば水銀灯等の波長2537Åの紫外線を放射する紫
外線放射ランプ8を当該光化学反応蒸着槽1外に
配設して成る光化学反応蒸着装置を用い、この紫
外線放射ランプ8による前記蒸着基体3上におけ
る波長2537Åの紫外線の強度が5mW/cm2以上と
なるよう当該紫外線放射ランプ8の種類、本数
(図においては2本)或いは配設位置等を選定
し、そして光化学反応蒸着槽1内の温度を常温に
維持した状態で蒸着を行う。
In one embodiment of the present invention, as shown in FIG. For example, a reactive vapor deposition gas supply pipe 4 is provided by connecting the outlet 41 to the photochemical reaction vapor deposition tank 1 so that the outlet 41 faces the vapor deposition substrate 3; and a mercury vapor supply pipe 5 provided with the outlet 51 connected to the photochemical reaction vapor deposition tank 1 so as to face the photochemical reaction vapor deposition tank 1. An ultraviolet radiation lamp 8, such as a mercury lamp, which emits ultraviolet light with a wavelength of 2537 Å is placed outside the photochemical reaction vapor deposition tank 1 so as to irradiate the vapor deposition substrate 3 through the ultraviolet light transmission window 7. The type and number of ultraviolet radiation lamps 8 (Fig. (in this case, two) or the installation position, etc. are selected, and the vapor deposition is performed while the temperature in the photochemical reaction vapor deposition tank 1 is maintained at room temperature.

以上のような方法によれば、真空ポンプにより
光化学反応蒸着槽1内を高真空状態とし、反応蒸
着ガスとして反応蒸着ガス供給管4より例えばシ
ランガス、フツ化ケイ素ガス、アンモニアガス及
びヒドラジンガスの混合ガスを前記光化学反応蒸
着槽1内に導入すると共に、水銀蒸気供給管5よ
り水銀蒸気を前記光化学反応蒸着槽1内に導入す
ると当該水銀蒸気と前記反応蒸着ガスとが混合さ
れ、これに紫外線放射ランプ8により波長2537Å
の紫外線が特定以上の強度で照射されるため、水
銀蒸気はこの紫外線を吸収し励起する性質を有す
るものであることから水銀蒸気のみが選択的に励
起され、励起状態の水銀原子が反応蒸着ガス分子
と衝突することにより活性シリコン原子、活性水
素原子、活性フツ素原子、活性窒素原子或いは部
分分解物が生成し、これらの活性原子が蒸着基体
3上に付着堆積してアモルフアス窒化シリコン
(以下単に「a―窒化シリコン」と記す。)より成
る薄膜が形成される。
According to the method described above, the inside of the photochemical reaction deposition tank 1 is brought into a high vacuum state using a vacuum pump, and a mixture of silane gas, silicon fluoride gas, ammonia gas, and hydrazine gas, for example, is mixed as a reaction deposition gas from the reaction deposition gas supply pipe 4. When a gas is introduced into the photochemical reaction deposition tank 1 and mercury vapor is also introduced into the photochemical reaction deposition tank 1 from the mercury vapor supply pipe 5, the mercury vapor and the reaction deposition gas are mixed, and ultraviolet radiation is applied to this. Wavelength 2537Å by lamp 8
Since mercury vapor has the property of absorbing and exciting this ultraviolet ray, only mercury vapor is selectively excited, and the excited mercury atoms are exposed to the reactive vapor deposition gas. By colliding with molecules, active silicon atoms, active hydrogen atoms, active fluorine atoms, active nitrogen atoms, or partial decomposition products are generated, and these active atoms adhere and deposit on the vapor deposition substrate 3 to form amorphous silicon nitride (hereinafter simply referred to as silicon nitride). A thin film consisting of a silicon nitride (referred to as "a-silicon nitride") is formed.

而して本発明においては、後述する実験例から
も理解されるように、波長2537Åの紫外線の蒸着
基体3上における強度を5mW/cm2以上としたの
で、反応蒸着ガスを充分に活性化することがで
き、しかも光化学反応蒸着槽1内の温度を常温に
維持した状態で蒸着を行うので、当該光化学反応
蒸着槽1の内壁等に付着していた不純物の混入が
防止され、この結果実用上充分な膜成長速度でし
かも特性の良好なa―シリコン或いはa―窒化シ
リコン等より成る薄膜を確実に形成することがで
きる。
In the present invention, as will be understood from the experimental examples described below, the intensity of ultraviolet rays with a wavelength of 2537 Å on the deposition substrate 3 is set to 5 mW/cm 2 or more, so that the reactive deposition gas is sufficiently activated. Moreover, since the vapor deposition is carried out while the temperature inside the photochemical reaction vapor deposition tank 1 is maintained at room temperature, the contamination of impurities that have adhered to the inner walls of the photochemical reaction vapor deposition tank 1 is prevented, and as a result, it is practically A thin film made of a-silicon, a-silicon nitride, or the like can be reliably formed at a sufficient film growth rate and with good characteristics.

以上において、紫外線放射ランプ8としては例
えば低圧水銀灯等を好ましいものとして挙げるこ
とができる。そして水銀蒸気の供給量は、反応蒸
着ガスの供給量を1000ml/分とするとき、120
ml/分〜1000ml/分であればよい。そして蒸着基
体3としては第1図に示したような平板型の他回
転円筒型等の形状のものを用いてもよい。
In the above, as the ultraviolet radiation lamp 8, for example, a low-pressure mercury lamp or the like can be mentioned as a preferable example. The amount of mercury vapor supplied is 120 ml/min when the amount of reactive vapor deposition gas is 1000 ml/min.
It is sufficient if it is ml/min to 1000ml/min. The vapor deposition substrate 3 may have a flat plate shape as shown in FIG. 1, or may have a rotating cylindrical shape or the like.

以下本発明の実験例について説明する。 Experimental examples of the present invention will be explained below.

実験例 反応蒸着ガス供給管4よりシランガス、アンモ
ニアガス、ヒドラジンガスを各流量が300ml/
分、300ml/分、300ml/分の割合で光化学反応蒸
着槽1内に導入すると共に、水銀蒸気供給管5よ
り水銀蒸気を流量250ml/分の割合で光化学反応
蒸着槽1内に導入し、真空ポンプにより当該光化
学反応蒸着槽1内の圧力を10-3〜10-2Torrに保つ
た状態で定格450Wの低圧水銀灯より成る紫外線
放射ランプ8により蒸着基体3上における波長
2537Åの紫外線の強度が5mW/cm2となるよう設
定した紫外線を照射し、光化学反応蒸着槽1内の
温度が25〜35℃の雰囲気下で、蒸着基体3上に厚
さ820Åのa―窒化シリコンより成る薄膜を形成
した。
Experimental example Silane gas, ammonia gas, and hydrazine gas are supplied from reactive vapor deposition gas supply pipe 4 at a flow rate of 300 ml/each.
At the same time, mercury vapor was introduced into the photochemical reaction deposition tank 1 at a flow rate of 250 ml/min from the mercury vapor supply pipe 5, and the vacuum While the pressure in the photochemical reaction deposition tank 1 is maintained at 10 -3 to 10 -2 Torr by a pump, the wavelength on the vapor deposition substrate 3 is measured using an ultraviolet radiation lamp 8 consisting of a low-pressure mercury lamp with a rating of 450 W.
By irradiating ultraviolet rays set to have an intensity of 2537 Å ultraviolet rays at 5 mW/cm 2 and under an atmosphere in which the temperature inside the photochemical reaction deposition tank 1 is 25 to 35°C, a-nitride film with a thickness of 820 Å is deposited on the evaporation substrate 3. A thin film made of silicon was formed.

この薄膜の膜成長速度は30Å/分であり、そし
てこの薄膜の組成を赤外線吸収スペクトル及び
EPMAにより調べたところ、反応蒸着ガスの構成
原子以外の不純物原子の混入は殆どみられず良好
な特性を有するものであつた。
The film growth rate of this thin film was 30 Å/min, and the composition of this thin film was determined by the infrared absorption spectrum and
When examined by EPMA, it was found that there was almost no contamination of impurity atoms other than the constituent atoms of the reactive vapor deposition gas, and it had good characteristics.

更に上記紫外線の強度が5〜60mW/cm2となる
範囲内の紫外線を照射した以外は上述と同様にし
て薄膜を形成したところ、膜成長速度は50Å/分
であり、不純物原子の混入は殆どみられず良好な
特性を有するものであつた。
Furthermore, when a thin film was formed in the same manner as described above except that the ultraviolet rays were irradiated with an intensity within the range of 5 to 60 mW/cm 2 , the film growth rate was 50 Å/min, and there was almost no incorporation of impurity atoms. It had good characteristics.

以上本発明は、光化学反応蒸着槽と、この光化
学反応蒸着槽内に水銀蒸気を含有する反応蒸着ガ
スを供給する反応蒸着ガス供給機構と、前記光化
学反応蒸着槽に設けた紫外線透過窓と、この紫外
線透過窓を介して前記光化学反応蒸着槽内に配置
された蒸着基体に波長2537Åの紫外線を照射する
紫外線放射ランプとを具えて成る光化学反応蒸着
装置を用い、前記蒸着基体上における波長2537Å
の紫外線の強度を5mW/cm2以上とし、かつ前記
光化学反応蒸着槽内の温度を常温に維持した状態
で蒸着を行うことを特徴とする光化学反応蒸着方
法であるから、実用上充分な膜成長速度でしかも
特性の良好なa―シリコン等よりなる薄膜を確実
に形成することができる光化学反応蒸着方法を提
供することができる。
As described above, the present invention provides a photochemical reaction deposition tank, a reaction deposition gas supply mechanism for supplying a reaction deposition gas containing mercury vapor into the photochemical reaction deposition tank, an ultraviolet transmitting window provided in the photochemical reaction deposition tank, and A photochemical reaction vapor deposition apparatus comprising an ultraviolet radiation lamp that irradiates ultraviolet light with a wavelength of 2537 Å to the vapor deposition substrate disposed in the photochemical reaction vapor deposition tank through an ultraviolet transmission window is used.
This is a photochemical reaction deposition method characterized by the fact that the intensity of the ultraviolet rays is 5 mW/cm 2 or more and the temperature in the photochemical reaction deposition tank is maintained at room temperature, so that sufficient film growth can be achieved for practical purposes. It is possible to provide a photochemical reaction deposition method that can quickly and reliably form a thin film made of a-silicon or the like with good properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図であ
る。 1……光化学反応蒸着槽、2……排気路、3…
…蒸着基体、4……反応蒸着ガス供給管、5……
水銀蒸気供給管、6……反応蒸着ガス供給機構、
7……紫外線透過窓、8……紫外線放射ランプ。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. 1...Photochemical reaction deposition tank, 2...Exhaust path, 3...
... Vapor deposition substrate, 4... Reactive vapor deposition gas supply pipe, 5...
Mercury vapor supply pipe, 6...reaction deposition gas supply mechanism,
7...UV transmitting window, 8...UV radiation lamp.

Claims (1)

【特許請求の範囲】 1 光化学反応蒸着槽と、この光化学反応蒸着槽
内に水銀蒸気を含有する反応蒸着ガスを供給する
反応蒸着ガス供給機構と、前記光化学反応蒸着槽
に設けた紫外線透過窓と、この紫外線透過窓を介
して前記光化学反応蒸着槽内に配置された蒸着基
体に波長2537Åの紫外線を照射する紫外線放射ラ
ンプとを具えて成る光化学反応蒸着装置を用い、
前記蒸着基体上における波長2537Åの紫外線の強
度を5mW/cm2以上とし、かつ前記光化学反応蒸
着槽内の温度を常温に維持した状態で蒸着を行う
ことを特徴とする光化学反応蒸着方法。 2 反応蒸着ガスがシランガスを含むことを特徴
とする特許請求の範囲第1項記載の光化学反応蒸
着方法。
[Scope of Claims] 1. A photochemical reaction deposition tank, a reaction deposition gas supply mechanism for supplying a reaction deposition gas containing mercury vapor into the photochemical reaction deposition tank, and an ultraviolet transmitting window provided in the photochemical reaction deposition tank. , using a photochemical reaction vapor deposition apparatus comprising an ultraviolet radiation lamp that irradiates ultraviolet light with a wavelength of 2537 Å to the vapor deposition substrate placed in the photochemical reaction vapor deposition tank through the ultraviolet transmission window,
A photochemical reaction vapor deposition method, characterized in that the intensity of ultraviolet rays with a wavelength of 2537 Å on the vapor deposition substrate is 5 mW/cm 2 or more, and the vapor deposition is performed while the temperature in the photochemical reaction vapor deposition tank is maintained at room temperature. 2. The photochemical reactive vapor deposition method according to claim 1, wherein the reactive vapor deposition gas contains silane gas.
JP99782A 1982-01-08 1982-01-08 Apparatus for vapor deposition by photochemical reaction Granted JPS58119334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP99782A JPS58119334A (en) 1982-01-08 1982-01-08 Apparatus for vapor deposition by photochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP99782A JPS58119334A (en) 1982-01-08 1982-01-08 Apparatus for vapor deposition by photochemical reaction

Publications (2)

Publication Number Publication Date
JPS58119334A JPS58119334A (en) 1983-07-15
JPS629189B2 true JPS629189B2 (en) 1987-02-26

Family

ID=11489228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP99782A Granted JPS58119334A (en) 1982-01-08 1982-01-08 Apparatus for vapor deposition by photochemical reaction

Country Status (1)

Country Link
JP (1) JPS58119334A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043484A (en) * 1983-08-19 1985-03-08 Mitsui Toatsu Chem Inc Formation of amorphous silicon film having wide band gap
JPS6199676A (en) * 1984-10-19 1986-05-17 Semiconductor Energy Lab Co Ltd Manufacture of silicon nitride
JPH06104901B2 (en) * 1986-03-07 1994-12-21 日本電気株式会社 Photo CVD method
JPS6274084A (en) * 1985-09-27 1987-04-04 Sanyo Electric Co Ltd Production of periodic structure film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163792A (en) * 1978-05-24 1979-12-26 Hughes Aircraft Co Manufacture of silicon nitride membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163792A (en) * 1978-05-24 1979-12-26 Hughes Aircraft Co Manufacture of silicon nitride membrane

Also Published As

Publication number Publication date
JPS58119334A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
EP0095275B1 (en) Photo-assisted cvd
US4466992A (en) Healing pinhole defects in amorphous silicon films
JPH0546092B2 (en)
Takahashi et al. Synchrotron radiation excited Si epitaxial growth using disilane gas source molecular beam system
JPH049369B2 (en)
JPS60258915A (en) Method and device for depositing laser chemical phase
JPS629189B2 (en)
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
EP0407088B1 (en) Method of forming an amorphous semiconductor film
JP2608456B2 (en) Thin film forming equipment
JPS6028225A (en) Optical vapor growth method
Nara et al. Synchrotron radiation-assisted silicon film growth by irradiation parallel to the substrate
JPH04105314A (en) Manufacture of amorphous silicon
JPS6118125A (en) Thin film forming apparatus
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS62212297A (en) Production of semiconductor diamond
JPH0294430A (en) Photo-assisted cvd apparatus
JPS6052579A (en) Optical nitride film forming device
JPS6156279A (en) Film forming method
JPS6156278A (en) Film forming method
JPH0257145B2 (en)
JPH02234429A (en) Manufacture of silicon nitride film
JPS60219728A (en) Forming method of deposited film
JPS61146791A (en) Formation of diamond film or diamond-like carbon film
JPS60219729A (en) Forming method of deposited film