JPS6291753A - Solar pond - Google Patents

Solar pond

Info

Publication number
JPS6291753A
JPS6291753A JP60228783A JP22878385A JPS6291753A JP S6291753 A JPS6291753 A JP S6291753A JP 60228783 A JP60228783 A JP 60228783A JP 22878385 A JP22878385 A JP 22878385A JP S6291753 A JPS6291753 A JP S6291753A
Authority
JP
Japan
Prior art keywords
heat
pond
layer
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228783A
Other languages
Japanese (ja)
Inventor
Eiji Sekiya
関矢 英士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60228783A priority Critical patent/JPS6291753A/en
Publication of JPS6291753A publication Critical patent/JPS6291753A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To release the heat of a heat accumulating layer to an upper convection layer and prevent a solar pond from loosing the function thereof by inserting a heat pipe into a part of the solar pond, in which an abnormal overheat is caused. CONSTITUTION:A heat pipe 8 is constituted so that the length thereof is a degree that the heat dissipating section 10 thereof is in an upper convection layer 2 and a part thereof is projected on the level of water when the heat absorbing section 9 is submerged into a heat accumulating layer 1 while the density thereof is a value that the heat pipe 8 is floated vertically in a pond under such condition. In order to permit such density and posture, a weight 11 is attached to the lower end of the heat pipe 8 while a hook 12 is provided at the upper end thereof to facilitate to insert it into the pond or retrieve it from the pond. When a possibility to generate an abnormally overheated section in the solar pond 20 is caused, the necessary pieces of the heat pipes 8 are hang down into the area of water to float them in the water. According to this method, the heat of the overheated heat accumulating layer 1 is taken into the heat pipe 8 through the heat absorbing section 9 of the heat pipe 8 and is moved to the upper part of the pipe 8 quickly whereby the heat is dissipated from the heat dissipating section 10 of the pipe into an upper convection layer 2.

Description

【発明の詳細な説明】 〔発明の技術的分野〕 本発明はソーラポンドの水温の異常過熱を防止できるソ
ーラポンド(太陽池)に関するものである0 〔発明の技術的背景とその問題点〕 太陽エネルギーの利用形態の一つにソーラポンドがある
。これは浅い池に太陽の光を照射して池の中の水を暖め
ようとするもので、その中でも高温が得られる手法とし
て有塩ソーラポンドが注目されるようになって来た。第
3図に有塩ソーラポンド20(以下単にソーラポンドと
略す)の基本的な構造を示す。第3図(alは断面図で
あシ、全体は浅い池となっていて、七の深さは数m1水
面の面積はシステムの規模にもよるが致方m3以上に及
ぶものもちる。第3図Q)+はソーラポンドの深ざ(d
)方向に対する水の温度(Tlおよび密度tpt ’c
示すグラフである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a solar pond (solar pond) that can prevent abnormal overheating of water temperature in a solar pond.0 [Technical background of the invention and its problems] One of the ways it can be used is solar ponds. This is an attempt to heat the water in a shallow pond by shining sunlight on it, and salted solar ponds have been attracting attention as a method of achieving high temperatures. FIG. 3 shows the basic structure of the salted solar pond 20 (hereinafter simply referred to as solar pond). Figure 3 (Al is a cross-sectional view. The whole is a shallow pond, with a depth of several m3 and a water surface area of up to more than m3 depending on the scale of the system. Figure 3 Q) + is the depth of the solar pond (d
) direction of water temperature (Tl and density tpt 'c
This is a graph showing.

池の中の水は3つの層から成っている。最下層は、水に
溶解して淡水よりも密度の大きな水溶液となるような物
質、たとえば食塩や塩化マグネシウムの濃い水溶液から
成る蓄熱層1であυ、表層は淡水から成る上部対流層2
、中間層は七の間にろって両者の間で適切な濃度勾配を
有する水溶液から成る非対流層3である。
The water in the pond consists of three layers. The bottom layer is a heat storage layer 1 made of a concentrated aqueous solution of a substance that dissolves in water to form an aqueous solution with a higher density than fresh water, such as salt or magnesium chloride, and the surface layer is an upper convective layer 2 made of fresh water.
The intermediate layer is a non-convection layer 3 consisting of an aqueous solution having an appropriate concentration gradient between the two.

このような構成の池に太陽エネルギーが入射すると、池
内の水の温度は上昇し、水の密度は温度の上昇とともに
小ざくなるが、濃度に基づく密度の増加が温度の上昇に
よる密度の低下よシも大きければ、蓄熱層1の濃い水は
暖まっても上部対流層2まで上って来ることができない
ので、池全体としての対流による熱の移動は妨げられ、
池内は上部対流層2で断熱された形となるため、日射条
件や熱の利用形態にもよるが、蓄熱層1は60〜90°
Cもしくはそれ以上の温度の熟エネルギーを蓄積した状
態となる。そこで、蓄熱層1の温水を塩水ポンプ4で熱
交換器5に循環させ、淡水や低沸点媒体である2次流体
6に熱交換させることにより、各種の熱利用をすること
ができる。
When solar energy enters a pond with this configuration, the temperature of the water in the pond rises, and the density of the water decreases as the temperature rises, but the increase in density due to concentration is greater than the decrease in density due to rise in temperature. If the water is also large, the dense water in the heat storage layer 1 will not be able to rise to the upper convective layer 2 even if it warms up, so the transfer of heat by convection throughout the pond will be hindered.
Since the inside of the pond is insulated by the upper convection layer 2, the heat storage layer 1 is at an angle of 60 to 90 degrees, depending on the solar radiation conditions and the form of heat utilization.
It becomes a state in which ripening energy at a temperature of C or higher is accumulated. Therefore, by circulating the hot water in the heat storage layer 1 to the heat exchanger 5 using the salt water pump 4 and exchanging heat with fresh water or a secondary fluid 6 that is a low boiling point medium, various types of heat can be utilized.

このようにソーラポンド20は簡単な装置で各種の熱利
用が可能な温度が得られるが、池の中の水の密度の勾配
を維持することが極めて重要でらや、もし密度の勾配が
破壊されると、池全体に対流が生じ、ソーラポンドとし
ての機能は衰失ける。密度の勾配の破壊は波浪などによ
って生じるが、池内の温度の異常上昇も一因となる。
In this way, the solar pond 20 is a simple device that can provide temperatures that allow various types of heat utilization, but it is extremely important to maintain the density gradient of water in the pond, and if the density gradient is destroyed, As a result, convection occurs throughout the pond, and its function as a solar pond declines. Destruction of the density gradient is caused by waves and other factors, but an abnormal rise in temperature within the pond is also a contributing factor.

池の隅々どで蓄熱層1のどこかに水が局部的に停留した
りすると、その部分の水は蓄熱される一方となるので、
いずれ過熱状態となシ、沸騰にまで至ることになる。沸
騰が始まると発生した気泡は池の表面に向かって上昇し
て来るから、各層間にはじよう乱が起こり、濃度勾配、
すなわち密度の勾配は乱れて、ソーラポンドは機能を失
う。このような現象は実際に事例として報告されている
If water stays locally somewhere in the heat storage layer 1 in every corner of the pond, the water in that area will only accumulate heat.
Eventually, it will overheat and reach boiling point. When boiling begins, the bubbles that are generated rise toward the surface of the pond, causing turbulence between each layer, creating a concentration gradient,
In other words, the density gradient is disrupted and the solar pond loses its function. Such a phenomenon has been reported as an actual case.

そして、このような事態になると、池の水金体が均一な
濃度となってしまうので、ソーラポンドは再度#度勾配
を作υ直さなければならないが、それには薄まってしま
った大量の水溶液の処置も大変でわるうえ、蓄熱層1に
蓄えられていた高温の熱エネルギーも薄められて失われ
るので、たとえ再度濃度勾配を作り直したとしても、蓄
熱層1が′所定の温度にまで上昇するには、1年わるい
はそれ以上の時間を必要とする。
If this happens, the concentration of water in the pond will be uniform, and the solar pond will have to re-create the #degree gradient, but this will require the disposal of a large amount of diluted aqueous solution. In addition, the high-temperature thermal energy stored in the heat storage layer 1 is diluted and lost, so even if the concentration gradient is recreated, it will be difficult for the heat storage layer 1 to rise to the specified temperature. , it takes a year or more.

このような事故を防ぐためには、ソーラポンドの熱収支
を適正に制御すれば良いのであるが、まず入熱の方は広
大な池の表面への太陽熱の入射をしゃ断することである
から、設備や操作が大がかりとなり、出熱の方は熱の需
要を増せば良いのでちるが、必要以上の熱を消費しなけ
ればならない場合に備えて、放熱のための設備が必要で
ある。
In order to prevent such accidents, it is best to properly control the heat balance of the solar pond, but first of all, the heat input is to cut off the incidence of solar heat to the surface of the vast pond, so it is necessary to properly control the heat balance of the solar pond. The operation becomes large-scale, and heat output is good because it only increases the demand for heat, but in case it is necessary to consume more heat than necessary, equipment for heat dissipation is necessary.

第一、局部的に異常過熱が生じているような場合には、
その部分に対して集中的に処置をするのが最も能率的で
あるのに、単に熱の消費量を増したのでは熱の浪費とな
るうえ、6tf)急速に水を汲み出すことは、池内の水
にじよう乱を与えるばかりでなく、水の停留部分が取水
ロアから遠かったりすればその停留も仲々解消しない可
能性がろる。
First, if abnormal overheating occurs locally,
It would be most efficient to treat that area intensively, but simply increasing the amount of heat consumed would be a waste of heat. Not only will this cause water turbulence, but if the stagnant part of the water is far from the water intake lower, there is a possibility that the stagnant water will not be cleared easily.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、ヒートパイプを利用する
ことにより、ソーラポンドの蓄熱層の局部的な異常過熱
によるソーラポンドの破壊を簡易かつ確実に防止するこ
とができるソーラポンドを提供するものである。
An object of the present invention is to provide a solar pond that can easily and reliably prevent destruction of the solar pond due to local abnormal overheating of the heat storage layer of the solar pond by using a heat pipe.

〔発明の概要〕[Summary of the invention]

本発明はソーラポンドの異常過熱を起こした部分にヒー
トパイプを挿入することにより、蓄熱層の熱を上部対流
層または表層上へ逃がして、ソーラポンドの機能衰失を
防ぐものである。
The present invention prevents functional decline of the solar pond by inserting a heat pipe into the abnormally overheated portion of the solar pond, thereby releasing heat from the heat storage layer onto the upper convection layer or surface layer.

〔発明の実施例〕[Embodiments of the invention]

WJ1図は本発明をソーラポンドに適用した場合の一実
施例を示す。第3図(a)と同一の部分には同一の符号
を付し、その説明を省略する。本発明ではソーラポンド
20内の局部過熱を起こした箇所にヒートパイプ8を挿
入する。この局部過熱を起した箇所は池内に設けられた
温度センサー、蓄熱層1出口に設けられた温度センサー
などによって検出される。ヒートパイプ8の外観の例は
第2図に示す。ヒートパイプ8の長さは、その吸熱部9
が蓄熱層1内に没したときに、放熱部10が上部対流層
2内および一部分は水面上に突き出す程度とし、密度は
そのような状態で池内に鉛直に浮く値に構成する。この
ような密度と姿勢を可能にするため、ヒートパイプ7の
下端には重シ1)を取シ付け、上端は池内への挿入や回
収を容易にするようフック12を設ける。
Figure WJ1 shows an embodiment in which the present invention is applied to a solar pond. The same parts as in FIG. 3(a) are given the same reference numerals, and their explanations will be omitted. In the present invention, a heat pipe 8 is inserted into a location within the solar pond 20 where local overheating has occurred. The location where this local overheating has occurred is detected by a temperature sensor provided within the pond, a temperature sensor provided at the outlet of the heat storage layer 1, or the like. An example of the appearance of the heat pipe 8 is shown in FIG. The length of the heat pipe 8 is the heat absorption part 9
When the heat dissipation section 10 is immersed in the heat storage layer 1, the heat dissipation section 10 protrudes into the upper convection layer 2 and a portion above the water surface, and the density is configured to such a value that it floats vertically in the pond in such a state. In order to enable such density and posture, a heavy pipe 1) is attached to the lower end of the heat pipe 7, and a hook 12 is provided at the upper end to facilitate insertion into and recovery from the pond.

ソーラポンド内に異常過熱の部分が生じる恐れが出て来
だ場合にはヒートパイプ8を必要な本数だけその水域に
吊り下ろし水中に浮かべる。ヒートパイプ8が水中に浮
かぶと、過熱された蓄熱層1の熱はヒートパイプ4・の
吸熱部9からヒートパイプ8内に取フ込まれ、速やかに
上部に移動して放熱部10から上部対流層2に放熱され
る。このように本発明では、異常過熱を生じた部分に必
要本数のヒートパイプ8を浮かべるだけで、池内の水に
不要な流れを起こしたりすることなく確実に過熱部分の
熱を除去することが可能でアシ、過熱部分の水温が安全
な温度にまで低下したらヒートパイプ8を回収すること
によフ、蓄熱層1内の熱を必要以上に無駄にすることも
ない。てらに付加的な効果として、上部対流層2へ放熱
するということは、上部対流層2の温度が上昇し、その
結果蓄熱層1から非対流層3および上部対流層2へ伝わ
って大気へ逃げる熱を減少させる効果をもたらすので、
蓄熱層1の熱損失が低減される。
If there is a possibility that an abnormally overheated portion will occur in the solar pond, the necessary number of heat pipes 8 are suspended in the water and floated in the water. When the heat pipe 8 floats in water, the heat of the superheated heat storage layer 1 is taken into the heat pipe 8 from the heat absorption part 9 of the heat pipe 4, quickly moves to the upper part, and is transferred from the heat radiation part 10 to the upper convection. Heat is radiated to layer 2. In this way, in the present invention, by simply floating the necessary number of heat pipes 8 in the area where abnormal overheating has occurred, it is possible to reliably remove the heat in the overheated area without causing unnecessary flow in the water in the pond. By recovering the heat pipe 8 once the water temperature in the overheated portion has dropped to a safe temperature, the heat in the heat storage layer 1 will not be wasted more than necessary. As an additional effect, heat dissipation to the upper convective layer 2 means that the temperature of the upper convective layer 2 increases, and as a result, heat is transmitted from the heat storage layer 1 to the non-convective layer 3 and the upper convective layer 2 and escapes to the atmosphere. Because it has the effect of reducing heat,
Heat loss in the heat storage layer 1 is reduced.

ヒートパイプ8は必ずしも単管のものでるる必要はなく
、池内への挿入や回収の際に水を過度にかき乱さぬ範囲
で管群としたものでらっても良い。
The heat pipe 8 does not necessarily have to be a single tube, but may be a group of tubes as long as the water is not excessively disturbed when inserted into the pond or collected.

吸熱部9および放熱部10へはフィン13を取り付ける
が、その形状は第2図のようなものに限らず、軸に平行
なものでも良い。またフック12はヒートパイプの吊り
下ろしや回収に適する形状であればどのようなものでも
良い。
Fins 13 are attached to the heat absorbing section 9 and the heat dissipating section 10, but their shape is not limited to that shown in FIG. 2, and may be parallel to the axis. Further, the hook 12 may have any shape as long as it is suitable for hanging and collecting the heat pipe.

さらに必要に応じてヒート詑」プ8の放熱部10近傍に
水面に浮くように浮子を取付けることも可能である。
Furthermore, if necessary, it is also possible to attach a float near the heat radiating section 10 of the heat pump 8 so as to float on the water surface.

〔発明の効果〕〔Effect of the invention〕

fぐ4 以上のように本発明は、ヒートパイプによシ能率良くソ
ーラポンドの局部的異常過熱の熱を表層部へ逃がすよう
にしたので、ソーラポンドの破壊などのような復旧に時
間のかかる機能衰失を防止するという顕著な効果をもた
らすソーラポンドを提供することができる。
f4 As described above, the present invention uses a heat pipe to efficiently dissipate the heat of localized abnormal overheating of the solar pond to the surface layer, thereby preventing functional failure that takes time to recover, such as destruction of the solar pond. It is possible to provide a solar pond that has a remarkable effect of preventing damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はソーラポンドに本発明を適用した場合の概念図
、第2図は本発明にて使用するヒートパイプの外観の一
例を示す図、第3図(a) 、 (b)は一般的な有塩
ソーラポンドの基本的な構造とその形態を示す図でちる
。 1・・蓄熱層、2・・上部対流層、3・・・非対流層、
5・・・熱交換器、8川ヒートパイプ、9・・・吸熱部
、10・・・放熱部、20・・・ソーラポンド。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 (α2 第3図
Figure 1 is a conceptual diagram when the present invention is applied to a solar pond, Figure 2 is a diagram showing an example of the external appearance of a heat pipe used in the present invention, and Figures 3 (a) and (b) are typical A diagram showing the basic structure and form of a salted solar pond. 1. Heat storage layer, 2. Upper convective layer, 3. Non-convective layer,
5... Heat exchanger, 8 River heat pipe, 9... Heat absorption part, 10... Heat radiation part, 20... Solar pond. Agent Patent Attorney Noriyuki Chika Yudo Hirofumi Mitsumata (α2 Figure 3)

Claims (2)

【特許請求の範囲】[Claims] (1)有塩ソーラポンドの高温部にヒートパイプを挿入
し、高温部の熱を表層部に逃がすことを特徴とするソー
ラポンド。
(1) A solar pond characterized by inserting a heat pipe into the high temperature part of the salted solar pond and dissipating the heat from the high temperature part to the surface layer.
(2)ヒートパイプの長さは、その吸熱部が下層である
蓄熱層に没したときに放熱部が表層である上部対流層内
および一部分は水面上に突き出す程度であつて、密度は
そのような状態で池内に軸を鉛直にして浮かぶような値
であることを特徴とする特許請求の範囲第(1)項に記
載のソーラポンド。
(2) The length of the heat pipe is such that when the heat absorbing part is immersed in the lower layer, the heat storage layer, the heat dissipating part protrudes into the surface layer, the upper convection layer, and partially above the water surface. The solar pond according to claim 1, wherein the solar pond has a value such that it floats in the pond with its axis vertically.
JP60228783A 1985-10-16 1985-10-16 Solar pond Pending JPS6291753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228783A JPS6291753A (en) 1985-10-16 1985-10-16 Solar pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228783A JPS6291753A (en) 1985-10-16 1985-10-16 Solar pond

Publications (1)

Publication Number Publication Date
JPS6291753A true JPS6291753A (en) 1987-04-27

Family

ID=16881773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228783A Pending JPS6291753A (en) 1985-10-16 1985-10-16 Solar pond

Country Status (1)

Country Link
JP (1) JPS6291753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459938A (en) * 2011-02-15 2013-12-18 堤基股份有限公司 Overheat protection mechanism for solar thermal collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459938A (en) * 2011-02-15 2013-12-18 堤基股份有限公司 Overheat protection mechanism for solar thermal collector
CN103459938B (en) * 2011-02-15 2017-02-22 堤基股份有限公司 Overheat protection mechanism for solar thermal collector

Similar Documents

Publication Publication Date Title
US4104883A (en) Mass transport heat exchanger method and apparatus for use in ocean thermal energy exchange power plants
JP4966214B2 (en) Spent fuel heat recovery system
JPS6291753A (en) Solar pond
JPS6333697A (en) Container-heat removing device
US4336792A (en) Solar heating freeze protection system
JPH0718941B2 (en) Containment vessel
JPS61231358A (en) Heat receptor device
EP3384499A1 (en) Passive cooling of fission reactor
CN109539569B (en) Solar pond
Park et al. Preliminary Analysis of Passive Residual Heat Removal System for a Nuclear-powered Ship
JP4115079B2 (en) Water heater
JPH0296689A (en) Containment vessel in nuclear reactor
CN109830315A (en) A kind of expansion nuclear reactor
SU1386044A3 (en) Method of operation of heating system
JPS58190653A (en) Solar heat collector
RU2002320C1 (en) Passive heat transfer system for pressurized-water power reactors
JPS56160585A (en) Heat exchanging method
RU18098U1 (en) HOUSEHOLD EXCHANGER
JPS6013002Y2 (en) Check device for solar thermal system
JPS60251346A (en) System utilizing solar heat by solar pond
RU2045729C1 (en) Heat exchange apparatus
JPS638313Y2 (en)
JPS6373049A (en) Solar pond
JPS57207749A (en) Solar heat collecting apparatus
JPS6014047A (en) Heat collector