JPS629168B2 - - Google Patents

Info

Publication number
JPS629168B2
JPS629168B2 JP7446781A JP7446781A JPS629168B2 JP S629168 B2 JPS629168 B2 JP S629168B2 JP 7446781 A JP7446781 A JP 7446781A JP 7446781 A JP7446781 A JP 7446781A JP S629168 B2 JPS629168 B2 JP S629168B2
Authority
JP
Japan
Prior art keywords
strip
shaped material
jet
locus
jet air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7446781A
Other languages
Japanese (ja)
Other versions
JPS579834A (en
Inventor
Kazuo Akama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7446781A priority Critical patent/JPS579834A/en
Publication of JPS579834A publication Critical patent/JPS579834A/en
Publication of JPS629168B2 publication Critical patent/JPS629168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は熱処理炉内に帯状材料を連続的に挿
通進行させ、その通過中にジエツト気流を帯状材
料に吹き付けて熱処理をするようにした熱処理方
法および熱処理装置に関するもので、帯状材料と
熱処理用のジエツト気流との間の熱伝達率が極め
て高い状態で熱処理を行なうことができて、短時
間でかつ短い炉長でしかも省エネルギー状態で帯
状材料の熱処理が行なえ、同時に、帯状材料の傷
つきも防止した状態で上記熱処理が行なえるよう
にした熱処理方法及び熱処理装置を提供しようと
するものである。 以下本願の実施例を示す図面について説明す
る。1は帯状材料で、銅あるいは銅合金その他
種々の材質のものが供される。2は送り装置、
3,4は方向変換ロールである。次に加熱装置5
について説明する。6は炉殻、、7は耐火断熱材
で、これらは炉体を構成している。8,8はプレ
ナムチヤンバーで、内部は熱処理用のガスで満た
されている。9はプレナムチヤンバー8の帯状材
料1と対向する面を構成するノズルプレートで、
夫々チヤンバー8内のガスを帯状材料に向けて吹
き付けるようにした多数のジエツトノズルが配設
具備させてある。またこれらのノズルは第1図に
イで示す部分には数多く、ロで示す部分には数少
なく配設して、帯状材料1の進行方向(図面下方
向)に向かつて帯状材料の表裏交互にジエツト気
流10の吹出面積を大小違えるようにしてある。
またこれはノズルの数に代えて、ノズル自体の吹
出面積を違えてジエツト気流の吹出面積を違える
ようにしてもよい。なお上記プレナムチヤンバー
8は、1例としては第2図に示すような構造でヒ
ータ11により熱せられたガスを、循環フアン1
2により矢印で示すようにチヤンバー8内に圧入
して、ノズルプレート9に具備させたノズルから
吹き出すようにされる。13はシールロールで、
炉内を密閉するよう設けたものである。14は煙
突、15は排気ダンパーを夫々示す。次に冷却装
置16において、17はプレナムチヤンバー、1
8はノズルプレートで、これらは第3図に示すよ
うに加熱装置5におけるものと同様の構成で、ク
ーラ31により冷やされたガスを循環フアン12
により、矢印で示すようにチヤンバー17内に圧
入してノズルプレート18のノズルから吹き出す
ようにされる。次に19はスロートで、冷却装置
16内を密閉するように設けたものである。20
は冷却液槽で、水などの冷却液が満たしてある。
21はデイツプロール、22は乾燥装置、23は
方向変換ロール、24は送り装置である。 上記構成のものにあつて、図示外の周知供給装
置から供給されてきた帯状材料1は、第1図に示
すように送り装置2、方向変換ロール3,4を介
して加熱装置5に送り込まれる。この加熱装置5
に送り込まれた帯状材料1は、ノズルから吹き出
されるジエツト気流10(30m〜40m/sの速
度)により加熱域Aにおいて急速に加熱(例えば
650゜〜750℃)されると共に、そのジエツト気流
の強弱により第1図に示すように一定の箇所で曲
がりながら波状となつて進行する。このようにし
て加熱された帯状材料1は、均熱域Bにおいても
同様に波状にされながら均熱処理される。続いて
この帯状材料1は加熱装置5から冷却装置16へ
と送られる。この冷却装置16内においても加熱
装置5内と同様に、帯状材料1は波状に曲げられ
ながら冷却される(例えば170〜185℃)。次に冷
却された帯状材料1はスロート19を通つて冷却
液槽20内に入り、ここで更に冷却(例えば60〜
65℃)された後乾燥器22により乾燥され、更に
送り装置24によつて次工程(例えば巻取り工
程)へと送られる。なお上記加熱装置5及び冷却
装置16内における帯状材料1の波形(波のピツ
チあるいは高さなど)は帯状材料1の厚み、加熱
温度あるいは冷却温度により決められるものであ
る。 次に上記のようにして熱処理が行なわれる場合
における諸量の1具体例を示せば次の通りであ
る。帯状材料が黄銅(65/35黄銅)の場合 (1) 帯状材料の寸法 :0.3mm(厚)×630mm(幅) (2) 送り速度:60m/min (3) 炉内温度:650〜800℃ (4) 帯状材料へのジエツト気流の噴出圧力及び噴
出流量:加熱帯の長さは16mあり、それを長手
方向(帯状材料の移動方向)に4分割し、1分
割分には熱風循環フアンが2台ずつ帯状材料の
移動方向に並べて設けられて、長さが2mの山
または谷が各循環フアンによつて形成されるよ
うになつている。 1台の熱風循環フアンの容量: (イ) 風量:200〜600m3/min(600m3/min以上で
も良いが効率が低下する) (ロ) 圧力(ノズルからの吹出圧力):50〜500mm
Aq(at20℃空気) (ハ) 帯状材料にジエツト気流が吹き付けられてい
るときにおける帯状材料の高圧側の面と低圧側
の面の夫々の圧力(この圧力は例えば3:1程
度に設定される) 高圧側:15Kg/m2 低圧側:5Kg/m2 以上は上記のような材料の場合の1例を示した
が、これらの値は帯状材料の材質、寸法、要求さ
れる熱処理の度合(熱処理が済んだ材料における
曲げ強度、引張強さなどの物理的性質)に応じて
変更されるものであり、例えば材料の材質が軟質
に(又は薄く)なつた場合には、送り速度を速め
たり、ジエツト気流の吹出圧力を低めたり、その
流量を少なくしたりする等の対応した処置を講ず
ると良い。また炉内温度を高くしたり、炉の長さ
を変えたときにも、ジエツト気流の吹出圧力、流
量を対応変化させると良い。 次に第1表は上記のような諸量の熱処理装置と
従来の装置とを比較するものである。尚本例の場
合における熱伝達係数は、ジエツト気流が前記の
ように帯状材料に吹き当たる場合の係数を算出す
る式として知られているフリードマン・ミユーラ
ーの式から算出したものである。また従来例1
は、帯状材料の移動方向に沿つて配設した複数の
ノズルに夫々案内薄板を備えさせ、また二つのノ
ズルの間に凸状面を有し更にその凸状面とズルと
の間からガスを引き抜くようにした構造のもの
(例えば特公昭43―20439号公報に示されたもの)
について試算した(尚熱伝達係数はこのような構
成の場合の係数を算出する式として知られている
ケラーの式から算出した)結果を示す。更にまた
従来例2は、帯状材料に対し多数のチヤンバーか
らガスを吹き付けると共に、そのガスをそれらの
チヤンバ相互の間から引き抜くようにした構造の
もの(例えば特公昭47―3686号公報に示されたも
の)について、従来例1と同様に算出した結果を
示す。
The present invention relates to a heat treatment method and a heat treatment apparatus in which a strip material is continuously inserted into a heat treatment furnace, and a jet air stream is blown onto the strip material during the heat treatment. The heat treatment can be performed in a state where the heat transfer coefficient between the material and the jet airflow is extremely high, and the material can be heat treated in a short time and with a short furnace length while saving energy. At the same time, it also prevents damage to the material. It is an object of the present invention to provide a heat treatment method and a heat treatment apparatus that allow the above-mentioned heat treatment to be performed in a state where the heat treatment is performed. The drawings showing the embodiments of the present application will be described below. Reference numeral 1 denotes a band-shaped material made of copper, copper alloy, or other various materials. 2 is a feeding device;
3 and 4 are direction changing rolls. Next, heating device 5
I will explain about it. 6 is a furnace shell, and 7 is a refractory heat insulating material, which constitute the furnace body. 8, 8 is a plenum chamber, the inside of which is filled with gas for heat treatment. 9 is a nozzle plate that constitutes the surface of the plenum chamber 8 that faces the strip material 1;
A number of jet nozzles are provided, each of which directs the gas within the chamber 8 towards the strip of material. In addition, these nozzles are arranged in large numbers in the part indicated by A in FIG. The blowout area of the airflow 10 is made to vary in size.
Moreover, instead of changing the number of nozzles, the blowing area of the jet air stream may be changed by changing the blowing area of the nozzle itself. The above-mentioned plenum chamber 8 has a structure as shown in FIG.
2, it is press-fitted into the chamber 8 as shown by the arrow, and is blown out from a nozzle provided on the nozzle plate 9. 13 is a seal roll,
It is designed to seal the inside of the furnace. 14 is a chimney, and 15 is an exhaust damper. Next, in the cooling device 16, 17 is a plenum chamber;
Reference numeral 8 denotes a nozzle plate, which has the same configuration as that in the heating device 5 as shown in FIG.
As a result, the air is press-fitted into the chamber 17 as shown by the arrow, and is blown out from the nozzle of the nozzle plate 18. Next, 19 is a throat, which is provided so as to seal the inside of the cooling device 16. 20
is a coolant tank filled with a coolant such as water.
21 is a date roll, 22 is a drying device, 23 is a direction changing roll, and 24 is a feeding device. In the structure described above, the strip material 1 supplied from a well-known supply device not shown is fed into the heating device 5 via the feeding device 2 and direction changing rolls 3 and 4 as shown in FIG. . This heating device 5
The strip-shaped material 1 fed into the heating area A is rapidly heated (e.g.
650° to 750°C), and depending on the strength of the jet airflow, the jet air travels in a wavy manner, bending at certain points as shown in FIG. The thus heated strip-shaped material 1 is also soaked in the soaking area B while being made into a corrugated shape. This strip material 1 is then sent from the heating device 5 to the cooling device 16 . In this cooling device 16 as well as in the heating device 5, the strip material 1 is cooled while being bent into a wave shape (for example, to 170 to 185° C.). The cooled strip material 1 then passes through the throat 19 into the cooling liquid tank 20 where it is further cooled (e.g.
65°C), is dried in a dryer 22, and further sent to the next process (for example, a winding process) by a feeding device 24. Note that the waveform (wave pitch, height, etc.) of the strip material 1 in the heating device 5 and cooling device 16 is determined by the thickness of the strip material 1 and the heating temperature or cooling temperature. Next, a specific example of various amounts when heat treatment is performed as described above is as follows. When the strip material is brass (65/35 brass) (1) Dimensions of the strip material: 0.3 mm (thickness) x 630 mm (width) (2) Feed speed: 60 m/min (3) Furnace temperature: 650 to 800°C (4) Ejection pressure and ejection flow rate of jet air flow to the strip-shaped material: The length of the heating zone is 16 m, and it is divided into four in the longitudinal direction (the direction of movement of the strip-shaped material), and a hot air circulation fan is installed in each division. Two circulation fans are arranged side by side in the direction of movement of the strip material, so that a crest or trough with a length of 2 m is formed by each circulation fan. Capacity of one hot air circulation fan: (a) Air volume: 200 to 600m 3 /min (more than 600m 3 /min is fine, but efficiency will decrease) (b) Pressure (blowout pressure from nozzle): 50 to 500mm
Aq (at 20℃ air) (c) The respective pressures on the high-pressure side and low-pressure side surfaces of the strip-shaped material when jet airflow is blown onto the strip-shaped material (this pressure is set to about 3:1, for example) ) High pressure side: 15Kg/m 2 Low pressure side: 5Kg/m 2 Above is an example for the above material, but these values vary depending on the material of the strip material, dimensions, and the degree of heat treatment required ( It is changed depending on the physical properties such as bending strength and tensile strength of the heat-treated material. For example, if the material becomes soft (or thin), the feed speed may be increased or It is advisable to take corresponding measures such as lowering the blowing pressure of the jet air flow or reducing its flow rate. Furthermore, when the temperature inside the furnace is increased or the length of the furnace is changed, it is preferable to change the blowing pressure and flow rate of the jet air flow accordingly. Next, Table 1 compares the various heat treatment apparatuses described above with conventional apparatuses. The heat transfer coefficient in this example is calculated from the Friedman-Mueller equation, which is known as an equation for calculating the coefficient when the jet air blows against the strip-shaped material as described above. Also, conventional example 1
In this method, a plurality of nozzles arranged along the direction of movement of the strip material are each provided with a thin guide plate, and a convex surface is provided between the two nozzles, and gas is introduced between the convex surface and the nozzles. Those with a structure that can be pulled out (for example, those shown in Japanese Patent Publication No. 43-20439)
The results are shown below (the heat transfer coefficient was calculated from Keller's equation, which is known as a formula for calculating coefficients in such a configuration). Furthermore, Conventional Example 2 has a structure in which gas is blown onto the strip-shaped material from a number of chambers, and the gas is extracted from between the chambers (for example, the structure shown in Japanese Patent Publication No. 47-3686). 1), the results calculated in the same manner as in Conventional Example 1 are shown.

【表】【table】

【表】 この第1表から明らかな如く、本例のものは従
来例1,2のものに比べNo.1〜No.8で示された全
ての項目について格段の向上が見られる。 次にプレナムチヤンバー8eの異なる例を示す
第4図について説明する。この図はプレナムチヤ
ンバー8eを複数の高圧室8aと抵圧室8bとに
分割して、ノズルから吹き出すガスの圧力を帯状
材料1eの進行方向に向かつてその表裏交互に高
低違えさせて、帯状材料1eを波状に曲げるよう
にした例を示すものである。この場合ジエツト気
流10eの吹出面積はノズルプレート9e全体に
わたつて一定でもあるいは前述のノズルプレート
9のように違えてもよい。なお、機能上前図のも
のと同一又は均等構成と考えられる部分には、前
図と同一の符号にアルフアベツトのeを付して重
複する説明を省略した。(また、次図のものにお
いても同様の考えでアルフアベツトのfを付して
重複する説明を省略する。) 次に第5図は、ノズルプレート9fを波状に曲
げて、これに帯状材料1fを2点鎖線で示すよう
にした場合、帯状材料1fのノズルプレート9f
と近接する部分ハがジエツト気流10fの吹出力
を大きく受けて、実線で示すような状態に曲がる
ようにした例を示すものである。 以上のようにこの発明にあつては、帯状材料1
を移動させながらこれを熱処理用のジエツト気流
を吹き当てて熱処理する場合、帯状材料の表裏の
夫々全面には、その帯状材料の波形の移動軌跡に
おける中心面軌跡(第1図に符号41で示す)に
対して垂直となる方向(矢印42で示す方向)か
ら夫々熱処理用のジエツト気流を吹き当て、しか
もその帯状材料に吹き当たつたジエツト気流を帯
状材料の幅方向の側方から引き抜く(引抜口44
あるいは45から引抜かれる)ことによつて帯状
材料から上記ジエツト気流の方向と反対の方向
(矢印43の方向)に向かうガスの流れが生じな
いように構成しているから(帯状材料においてジ
エツト気流の吹き当てられない空白部分ができな
いようにしているから)、上記帯状材料1は表裏
の全面(帯状材料1の所定の温度変化をもたらす
のに必要な区間XあるいはYの全面)の殆んど
100%が上記ジエツト気流に晒され、上記ジエツ
ト気流と帯状材料との間の熱伝達率も極めて高く
(従来のものに比べ約倍加)することのできる特
長がある。これにより帯状材料1の温度を所定温
度にまで変化させるに要する時間を従来のものに
比べ数分の1にすることができ、またその結果熱
処理の為の炉長(前記帯状材料の所定の温度変化
をもたらすのに必要な区間の長さ)も従来に比べ
数分の1にすることができ、従つて上記熱処理用
の設備に要する費用を低減させまたスペースもわ
ずか(数分の1)で足り、更にまた省エネルギー
上の効果も生ずる等、極めて高い有益度が発揮さ
れる。 更に本発明にあつては、帯状材料に吹き付ける
ジエツト気流10の強さを帯状材料1の移動方向
において表裏交互に強さを違えているから、この
帯状材料1を進行させるときにはあたかもローラ
で支えているかのように定まつた位置で波状に曲
げながら進行させることのできる特徴があり、こ
れによつて進行途中で帯状材料1が不規則にフラ
ツタリングしたりカヌーイングすることを押える
ことができ、帯状材料1が周囲の炉内金物などに
触れて疵付くことを防止し得る利点がある。しか
もこの進行中においては上記のように帯状材料を
波形にすることができるから、帯状材料の幅方向
の曲がりも常に規制しながら進行させることがで
き、この曲がりの為に帯状材料の中央部や縁部が
炉内金物などに触れて疵が発生することをも防止
できる利点がある。 更に本発明にあつては、上記の如く帯状材料1
を波形に曲げながら進行させるようにしたもので
あつても、その操作は上記ジエツト気流の強さを
上記の如く強弱違えることによつて行なうもので
あるから、前述の帯状材料の表裏両面の全面にジ
エツト気流が吹き当たつて高い熱伝達率が得られ
る点にはいささかの影響もなく、前記の如き高い
有益度をそのままに維持できる効果もある。 更に本発明にあつて、ジエツト気流10の吹出
面積を広くすることによりこのジエツト気流10
が帯状材料1に及ぼす力を強くしてこれを波形に
させるようにした場合には、ジエツト気流10を
強く吹き付ける(大きい熱処理効果が得られる)
箇所において帯状材料1を一層むらなく均一に熱
処理することのできる効果がある。 更に、ジエツトノズルを高圧室に連通させてそ
のノズルから吹出されるジエツト気流の圧力を高
くして帯状材料を波形にさせる場合には、その高
圧室の圧力を変えることにより種々異なつた帯状
材料でも夫々に最も適した曲げ状態にさせること
のできる特長がある。
[Table] As is clear from Table 1, the present example shows marked improvement in all items shown in No. 1 to No. 8 compared to Conventional Examples 1 and 2. Next, FIG. 4 showing a different example of the plenum chamber 8e will be described. In this figure, the plenum chamber 8e is divided into a plurality of high pressure chambers 8a and low pressure chambers 8b, and the pressure of the gas blown out from the nozzle is directed in the direction of movement of the strip material 1e, alternating the height on the front and back sides of the strip material 1e. This shows an example in which the material 1e is bent into a wave shape. In this case, the blowout area of the jet air flow 10e may be constant over the entire nozzle plate 9e, or may be different as in the case of the nozzle plate 9 described above. It should be noted that the same reference numerals as those in the previous figure are appended with an alphanumeric letter "e" for parts that are functionally the same or equivalent to those in the previous figure, and redundant explanations are omitted. (Also, in the following figure, the same idea is given with an alphanumeric f and redundant explanation will be omitted.) Next, in FIG. In the case shown by the two-dot chain line, the nozzle plate 9f of the strip material 1f
This figure shows an example in which the portion C adjacent to the portion C receives a large blowing force of the jet air flow 10f and bends as shown by the solid line. As described above, in this invention, the strip material 1
When a jet air stream for heat treatment is applied to the material while it is being moved, the entire front and back surfaces of the material are covered with a center plane locus (indicated by reference numeral 41 in Fig. 1) of the movement locus of the waveform of the material. ) from the direction perpendicular to the strip material (the direction shown by the arrow 42), and the jet air flow that has been blown onto the strip material is pulled out from the side in the width direction of the strip material (pulling). Mouth 44
45) so that a gas flow in the direction opposite to the direction of the jet air flow (in the direction of arrow 43) does not occur from the strip material. (This is to prevent blank areas that cannot be sprayed), the strip material 1 is coated on most of the front and back surfaces (the entire surface of section X or Y necessary to bring about a predetermined temperature change of the strip material 1).
100% of the material is exposed to the jet air flow, and the heat transfer coefficient between the jet air flow and the strip material is extremely high (approximately double that of conventional materials). As a result, the time required to change the temperature of the strip material 1 to a predetermined temperature can be reduced to a fraction of that of the conventional method. The length of the section required to bring about the change can be reduced to a fraction of that of the conventional method, thus reducing the cost of the heat treatment equipment and requiring only a fraction of the space (a fraction of the time). It is highly beneficial as it not only provides energy saving benefits, but also produces energy saving effects. Furthermore, in the present invention, since the strength of the jet airflow 10 blown onto the strip-shaped material is different from front to back alternately in the moving direction of the strip-shaped material 1, when the strip-shaped material 1 is advanced, it is as if it were supported by rollers. It has the characteristic of being able to advance while bending in a wave-like manner at a fixed position as if it were a metal strip. This has the advantage that the material 1 can be prevented from coming into contact with surrounding furnace hardware and the like and becoming scratched. Moreover, during this process, the strip material can be made into a corrugated shape as described above, so the bending of the strip material in the width direction can be controlled at all times. It also has the advantage of preventing scratches from occurring due to the edges coming into contact with hardware in the furnace. Furthermore, in the present invention, as described above, the strip material 1
Even if the material is made to advance while being bent into a waveform, the operation is performed by varying the strength of the jet airflow as described above, so that the entire surface of both the front and back of the above-mentioned strip material is There is no effect on the fact that a high heat transfer coefficient can be obtained by blowing the jet air stream onto the air, and there is also the effect that the above-mentioned high degree of usefulness can be maintained as it is. Furthermore, in the present invention, by widening the blowing area of the jet air flow 10, the jet air flow 10
If the force exerted on the strip material 1 is increased to make it wave-shaped, the jet air stream 10 is strongly blown (a large heat treatment effect can be obtained).
This has the effect that the strip-shaped material 1 can be heat-treated more evenly and uniformly at certain locations. Furthermore, if the jet nozzle is connected to a high pressure chamber and the pressure of the jet air flow blown out from the nozzle is increased to make the strip material into a corrugated shape, the pressure of the jet nozzle in the high pressure chamber can be changed to create a corrugated shape for various strip materials. It has the feature that it can be bent into the most suitable bending state.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は縦
断面図、第2図は―線断面図、第3図は―
線断面図、第4図はプレナムチヤンバーの異な
る例を示す縦断面図、第5図はノズルプレートの
異なる例を示す縦断面図。 1…帯状材料、9…ノズルプレート、10…ジ
エツト気流、8a…高圧室。
The drawings show an embodiment of the present application, and FIG. 1 is a longitudinal sectional view, FIG. 2 is a sectional view along the line, and FIG. 3 is a sectional view along the line.
4 is a longitudinal sectional view showing different examples of the plenum chamber, and FIG. 5 is a longitudinal sectional view showing different examples of the nozzle plate. DESCRIPTION OF SYMBOLS 1... Strip material, 9... Nozzle plate, 10... Jet air flow, 8a... High pressure chamber.

Claims (1)

【特許請求の範囲】 1 帯状材料をその長手方向に移動させ得るよう
にしてる送り装置と、帯状材料の移動軌跡の表裏
両面における夫々の全面に対向させて、夫々の面
に熱処理用のジエツト気流を吹き付け得るように
配設してある複数のジエツトノズルを備え、しか
もそれらのジエツトノズルは、夫々ジエツト気流
を後述の波形の状態で移動する帯状材料の移動軌
跡における中心面軌跡に垂直に向かう方向に吹き
当て得るよう構成してあり、更にそれらのジエツ
トノズルは、帯状材料に対するジエツト気流の吹
付強さの違いにより上記帯状材料を一定の位置で
波形にさせながら進行させ得るよう帯状材料の進
行方向において表裏交互にジエツト気流の吹出状
態を異ならしめてあり、一方、上記移動過程にあ
る帯状材料の幅方向の側方位置には、上記帯状材
料に吹き当たつたジエツト気流を帯状材料の幅方
向の側方に引き抜くようにした引抜口を設けて上
記帯状材料の表面から上記中心面軌跡に垂直に向
かう方向とは反対の方向に向かう気流を生じさせ
ないような状態で、帯状材料の表裏における夫々
の全面に対し上記中心面軌跡に垂直に向かう方向
に上記ジエツト気流を吹き当てて帯状材料の熱処
理をし得るようにしてあることを特徴とする熱処
理装置。 2 帯状材料をその長手方向に移動させ得るよう
にしてある送り装置と、帯状材料の移動軌跡の表
裏両面に対向させて、夫々配設してあるプレナム
チヤンバーとを備え、上記夫々のプレナムチヤン
バーは、高圧室と、低圧室とが上記帯状材料の進
行方向に沿つて交互に形成されるように、かつ両
プレナムチヤンバー相互間においては高圧室と低
圧室とが相対向して形成されるように仕切られて
おり、更に上記の仕切りにより形成された高圧室
及び低圧室において、移動する帯状材料と対向す
る面には夫々室内に連通させたジエツトノズルを
配設し、かつそれらのノズルは、帯状材料に対し
熱処理用のジエツト気流を、後述の波形の状態で
移動する帯状材料の移動軌跡における中心面軌跡
に垂直に向かう方向に吹き当て得るように構成し
てあり、一方、上記移動過程にある帯状材料の幅
方向の側方位置には上記帯状材料に吹き当たつた
ジエツト気流を帯状材料の幅方向の側方に引き抜
くようにした引抜口を設けて上記高圧室に備えら
れたジエツトノズル及び低圧室に備えられたジエ
ツトノズルから吹き出される夫々のジエツト気流
の帯状材料に対する吹付強さの違いにより上記帯
状材料を一定の位置で波形にさせながら進行させ
ると共に、上記帯状材料の表面から上記中心面軌
跡に垂直に向かう方向とは反対の方向に向かう気
流を生じさせないような状態で、帯状材料の表裏
における夫々の全面に対し上記中心面軌跡に垂直
に向かう方向に上記ジエツト気流を吹き当てて帯
状材料の熱処理をし得るようにしてあることを特
徴とする熱処理装置。
[Claims] 1. A feeding device capable of moving the strip-shaped material in its longitudinal direction, and a jet air flow for heat treatment on each surface of the strip-shaped material so as to be opposed to each other on both the front and back sides of the movement locus of the strip-shaped material. The jet nozzle is provided with a plurality of jet nozzles arranged so as to spray jet air, and each of the jet nozzles blows jet air in a direction perpendicular to the central plane locus of the moving locus of the strip material moving in a waveform state as described below. Furthermore, these jet nozzles are arranged alternately on the front and back sides in the traveling direction of the strip-shaped material so that the strip-shaped material can be made to advance while waving at a certain position due to the difference in the blowing strength of the jet air flow against the strip-shaped material. On the other hand, at the lateral positions in the width direction of the strip-shaped material in the moving process, the jet airflow that has blown onto the strip-shaped material is directed to the sides in the width direction of the strip-shaped material. A pull-out opening is provided so that the material can be pulled out, and airflow from the surface of the material strip in a direction opposite to the direction perpendicular to the center plane locus is not generated. A heat treatment apparatus characterized in that the jet air stream is blown in a direction perpendicular to the locus of the center plane to heat-treat the strip-shaped material. 2 A feeding device capable of moving the strip-shaped material in its longitudinal direction, and a plenum chamber disposed to face both the front and back sides of the movement locus of the strip-shaped material, and each of the above-mentioned plenum chambers The bar is formed such that high-pressure chambers and low-pressure chambers are formed alternately along the traveling direction of the strip material, and high-pressure chambers and low-pressure chambers are formed opposite to each other between both plenum chambers. Furthermore, in the high-pressure chamber and low-pressure chamber formed by the above-mentioned partitions, jet nozzles communicating with the chamber are respectively arranged on the surfaces facing the moving strip material, and these nozzles , the jet air flow for heat treatment can be applied to the strip material in a direction perpendicular to the central plane locus in the movement locus of the strip material moving in a waveform state as described below; A jet nozzle provided in the high-pressure chamber is provided with a pull-out port at a lateral position in the width direction of the strip-shaped material so as to draw out the jet airflow that has blown onto the strip-shaped material laterally in the width direction of the strip-shaped material. The jet air flow blown out from the jet nozzle provided in the low-pressure chamber has a different blowing strength against the strip-shaped material, so that the strip-shaped material is made to advance in a waveform at a certain position, and the jet air flow is blown from the surface of the strip-shaped material to the center of the strip-shaped material. The jet airflow is blown in a direction perpendicular to the center plane locus on each of the front and back surfaces of the strip-shaped material, without producing an airflow in the opposite direction to the direction perpendicular to the plane locus. A heat treatment apparatus characterized in that it is capable of heat treating a strip-shaped material.
JP7446781A 1981-05-18 1981-05-18 Heat treatment device Granted JPS579834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7446781A JPS579834A (en) 1981-05-18 1981-05-18 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7446781A JPS579834A (en) 1981-05-18 1981-05-18 Heat treatment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13718774A Division JPS5162107A (en) 1974-11-28 1974-11-28 Netsushorihoho oyobi netsushorisochi

Publications (2)

Publication Number Publication Date
JPS579834A JPS579834A (en) 1982-01-19
JPS629168B2 true JPS629168B2 (en) 1987-02-26

Family

ID=13548082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7446781A Granted JPS579834A (en) 1981-05-18 1981-05-18 Heat treatment device

Country Status (1)

Country Link
JP (1) JPS579834A (en)

Also Published As

Publication number Publication date
JPS579834A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
EP0182050B1 (en) Strip cooling apparatus for continuous annealing furnace
EP2495343B1 (en) Gas jet cooling device for continuous annealing furnace
JP4593976B2 (en) Gas jet cooling device for steel plate in continuous annealing furnace
US2693353A (en) Forced circulation cooling apparatus for continuous strip furnaces
US4401484A (en) Method for heat treatment of metal strips
JPS62116724A (en) Strip cooler for continuous annealing furnace
JPS629168B2 (en)
JPS605827A (en) Heat treating furnace for metallic strip
US4288261A (en) Method for the heat treatment of aluminum strip
US2199472A (en) Method and apparatus for annealing strip
JP4331982B2 (en) Steel strip cooling device
JPS6254188B2 (en)
JP3572983B2 (en) Continuous heat treatment furnace and cooling method in continuous heat treatment furnace
JPS5848641A (en) Continuous heat treating furnace
KR910001608B1 (en) Support device for moving metal strip
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
US2279917A (en) Continuous furnace
JP3420368B2 (en) Metal strip cooling system
JP4564765B2 (en) Thermal crown control device
KR20000058044A (en) Device for Exchanging Heat with a Flat Product
JPH0563527B2 (en)
JPH07138657A (en) Method and apparatus for heat-treating continuously running metal belt material
JPS6043893B2 (en) Metal strip heat treatment equipment
JPS6254187B2 (en)
JP3893629B2 (en) Heating furnace operation method