JPS6287944A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS6287944A
JPS6287944A JP22805985A JP22805985A JPS6287944A JP S6287944 A JPS6287944 A JP S6287944A JP 22805985 A JP22805985 A JP 22805985A JP 22805985 A JP22805985 A JP 22805985A JP S6287944 A JPS6287944 A JP S6287944A
Authority
JP
Japan
Prior art keywords
optical
light
optical waveguide
adjacent layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22805985A
Other languages
Japanese (ja)
Other versions
JPH0616144B2 (en
Inventor
Hiroshi Sunakawa
寛 砂川
Chiaki Goto
後藤 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22805985A priority Critical patent/JPH0616144B2/en
Priority to EP86104707A priority patent/EP0198380B1/en
Priority to DE8686104707T priority patent/DE3686079T2/en
Priority to US06/849,450 priority patent/US4758062A/en
Publication of JPS6287944A publication Critical patent/JPS6287944A/en
Publication of JPH0616144B2 publication Critical patent/JPH0616144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to drive an optical scanner at a comparatively low voltage and to prevent the device from the generation of optical damage by forming a driving circuit for changing the refractive index of an optical waveguide layer and/or an adjacent layer so that wave-guided light is emitted to the outside of a laminate body by a mutual action with diffraction gratings. CONSTITUTION:In the driving circuit 21 of an optical scanner 20, a voltage V generated from a voltage generating circuit 22 is impressed between a selected electrode out of plural electrodes D1-Dn and the other electrodes through a driver 15 and the driver 15 is driven by the output of a shift register 23 and impresses voltages successive ly while increasing the electrodes to be selected one by one from the side of the elec trode D1. Voltages are successively and alternately impressed to the parts 01-P(n-1) of an adjacent layer 12 corresponding to gaps between respective electrodes, and when the refractive indexes of the parts on the adjacent layer 12 are increased, wave- guided light 14 is emitted from the optical waveguide layer 11 to the adjacent layer 12 side at the parts P1-P(n-1) and then emitted to the outside of the adjacent layer 12 by the diffracting action of the diffraction gratings G1-G(n-1). Consequently, the width of the waveguide can be expanded and the energy density of the wave-guided light can be set up to a small value, so that the optical waveguide can be prevented from the generation of optical damage.

Description

【発明の詳細な説明】 (発明の分野) 本発明は光走査装置、特に詳細には電界印加により光屈
折率を変える電気光学材料を用いて光走査を行なう光走
査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to an optical scanning device, and more particularly to an optical scanning device that performs optical scanning using an electro-optic material that changes the optical refractive index by applying an electric field.

(従来の技術) 周知の通り従来より、光走査式の記録装置や、読取装置
が種々提供されている。このような装置において記録光
おるいは読取光を1次元的に走査する光走査装置として
従来より、 ■例えばガルバノメータミラーやポリゴンミラー(回転
多面鏡)等の機械式光偏向器により光ビームを偏向走査
させるもの、 ■EOD (電気光学光偏向器)やAOD (音響光学
光偏向器)など固体光偏向素子を用いた光偏向器により
光ビームを偏向走査させるもの、■液晶素子アレイヤP
LZ丁アレイ等のシャッタアレイと線光源とを組み合わ
せ、シャッタアレイの各シャッタ素子に個別的に駆動回
路を接続し、画像信号に応じて、0N10FFを選択し
て同時に開くことにより線順次走査をさせるもの、ざら
には @LED等の発光素子を多数−列に並設し、各発光素子
に個別的に駆動回路を接続し、画像信号に応じてON、
10FFを選択して同時に発光させることにより線順次
走査させるもの等が知られている。
(Prior Art) As is well known, various types of optical scanning recording devices and reading devices have been provided. Conventionally, as an optical scanning device that scans recording light or reading light one-dimensionally in such devices, the light beam is deflected using a mechanical optical deflector such as a galvanometer mirror or a polygon mirror (rotating polygon mirror). A device that scans, ■ A device that deflects and scans a light beam using an optical deflector using a solid-state optical deflection element such as an EOD (electro-optic optical deflector) or an AOD (acousto-optic optical deflector), ■ A liquid crystal element arrayer P
A shutter array such as an LZ array is combined with a line light source, a drive circuit is individually connected to each shutter element of the shutter array, and 0N10FF are selected and opened simultaneously according to the image signal to perform line sequential scanning. In many cases, a large number of light emitting elements such as LEDs are arranged in rows, and a drive circuit is connected to each light emitting element individually to turn on and off according to image signals.
A device is known that performs line-sequential scanning by selecting 10 FFs and causing them to emit light at the same time.

ところが上記■の機械式光偏向器は振動に対して弱く、
また機械的耐久性も低く、その上調整が面倒で必るとい
う欠点を有している。さらに光ビームを振って偏向させ
るために光学系が大きくなり、記録装置や読取装置の大
型化を招くという問題もある。
However, the mechanical optical deflector described in ■ above is weak against vibrations.
It also has the disadvantage of low mechanical durability and requires troublesome adjustment. Furthermore, since the optical system is large in order to swing and deflect the light beam, there is also the problem that the recording device and the reading device become larger.

また■のEODやAODを用いる光走査装置におっても
、上記と同様に光ビームを(辰って偏向させるために、
装置が大型になりやすいという問題がある。特に上記E
ODヤAODは光偏向角が大きくとれないので、■の機
械式光偏向器を用いる場合よりもさらに光学系が大きく
なりがちである。
Also, in the case of an optical scanning device using an EOD or AOD as described in (2), in order to deflect the light beam (vertically),
There is a problem in that the device tends to be large. Especially the above E
Since OD and AOD cannot have a large optical deflection angle, the optical system tends to be even larger than when using a mechanical optical deflector (2).

一方■のシャッタアレイを用いる光走査装置にありては
、四光板を2枚使用する必要が必ることから、光源の光
利用効率が非常に低いという問題がある。
On the other hand, in the case of the optical scanning device using the shutter array (2), since it is necessary to use two four-light plates, there is a problem in that the light utilization efficiency of the light source is extremely low.

また■の発光素子を多数並段して用いる光走査装置にあ
っては、各発光素子の発光強度にバラツキが生じるため
、精密走査には不向きであるという問題がある。
Furthermore, an optical scanning device using a large number of light-emitting elements arranged in parallel has a problem in that it is not suitable for precise scanning because the light emission intensity of each light-emitting element varies.

上記のような事情に鑑み本出願人は、耐久性、耐娠勤性
に優れ、調整が容易で、光利用効率が高(、精密走査が
可能で、しかも小型に形成されうる光走査装置を提案し
たく特願昭60−74061@)。この光走査装置は、 少なくとも一方がエネルギー付加により光屈折率を変え
る材料からなり、互いに畜看された光導波層と通常は該
光導波層よりも小さい光屈折率を示す隣接層との積層体
と、 上記光導波層および/または隣接層に、光導波層内を進
む導波光の光路に治って股【ノられだ複数のエネルギー
付加手段と、 上記隣接層の上部の、少なくとも上記エネルギー付加手
段によるエネルギー付加箇所に対応する部分にそれぞれ
設【ブられた回折格子と、上記複数のエネルギー付加手
段を順次択一的に所定のエネルギー付加状態に設定し、
そのエネルギー付加箇所において導波光が前記回折格子
との相互作用により前記積層体の外に出射するように光
導波層および/または隣接層の光屈折率を変化させる駆
動回路とから構成され、 光導波層の光屈折率(nl)および/または隣接層の光
屈折率<nt、通常状態すなわちエネルギーが付加され
ていない状態ではnl〉nlの関係を持つ)を、その差
(nz  r+1)が小さくなるように、あるいはn2
≦nl となるように変化させて、光導波層中に閉じ込
められた導波光の部分15を変化させ、回折格子との相
互作用によって導波光を光導波層と隣接層との積層体か
ら外部へ取り出し、これを走査光として利用するように
したものである。
In view of the above-mentioned circumstances, the present applicant has developed an optical scanning device that has excellent durability and durability, is easy to adjust, has high light utilization efficiency (capable of precise scanning, and can be formed compactly). I would like to propose a special patent application 1986-74061@). This optical scanning device is a laminate consisting of an optical waveguide layer, at least one of which is made of a material whose optical refractive index changes upon energy addition, and an adjacent layer that exhibits an optical refractive index smaller than that of the optical waveguide layer, which are mutually matched. and a plurality of energy adding means arranged on the optical waveguide layer and/or the adjacent layer to extend along the optical path of the guided light traveling through the optical waveguide layer, and at least the energy adding means on the upper part of the adjacent layer. The diffraction gratings set respectively in the portions corresponding to the energy adding points by the method and the plurality of energy adding means are sequentially and selectively set to a predetermined energy adding state,
and a drive circuit that changes the optical refractive index of the optical waveguide layer and/or the adjacent layer so that the guided light exits the laminated body by interaction with the diffraction grating at the energy adding point, and the optical waveguide The difference (nz r+1) between the optical refractive index of a layer (nl) and/or the optical refractive index of an adjacent layer < nt, which has the relationship nl>nl in a normal state, that is, a state where no energy is added, becomes smaller. Like, or n2
≦nl, the portion 15 of the guided light confined in the optical waveguide layer is changed, and the guided light is transferred from the stack of the optical waveguide layer and the adjacent layer to the outside by interaction with the diffraction grating. This is taken out and used as scanning light.

より詳細に説明するならば、例えば第1図に示すように
この光走査装置が、基板10上に光導波層11、回折格
子Gをもつ隣接層12(−例として電気光学材料から形
成されているものとする)を有し、基板10の光屈折率
n3.光導波層11の光屈折率n2、電界を印加してい
ないときの隣接層12の光屈折率nlの間にnz >n
l 、n3の関係が成り立っているものとする。
To explain in more detail, for example, as shown in FIG. 1, this optical scanning device includes an optical waveguide layer 11 on a substrate 10, and an adjacent layer 12 having a diffraction grating G (for example, made of an electro-optic material). ), and the optical refractive index of the substrate 10 is n3. nz > n between the optical refractive index n2 of the optical waveguide layer 11 and the optical refractive index nl of the adjacent layer 12 when no electric field is applied.
It is assumed that the relationship between l and n3 holds true.

第1図で示した構成の場合、その電界非印加時の分散曲
線は第2図(a>のように表わされる。
In the case of the configuration shown in FIG. 1, the dispersion curve when no electric field is applied is expressed as shown in FIG. 2 (a>).

第2図(a>において縦軸は光の実効屈折率を、また横
軸は光導波層11の厚みを表わし、光導波層11の厚み
を王とすると、光導波層11の実効屈折率はn。ffで
おる。この時導波光14の界分布(電界分布)は、例え
ばTEoモードを仮定すると、第3図(a>のように表
わされる。第3図(a)は導波光が隣接層12ヤ基板1
0にわずかに浸み出しているものの、回折格子Gと相互
作用をするにはいたらず、導波光がほとんど外部へ漏れ
ずに光導波層11中を進行している状態を示している。
In FIG. 2 (a), the vertical axis represents the effective refractive index of light, and the horizontal axis represents the thickness of the optical waveguide layer 11. If the thickness of the optical waveguide layer 11 is defined as the thickness, the effective refractive index of the optical waveguide layer 11 is At this time, assuming the TEo mode, the field distribution (electric field distribution) of the guided light 14 is expressed as shown in Fig. 3 (a). Fig. 3 (a) shows that the guided light 14 is layer 12 substrate 1
0, but it does not interact with the diffraction grating G, indicating that the guided light is proceeding through the optical waveguide layer 11 without leaking to the outside.

次に、隣接層12に直接おるいは中間層を介して設けた
電極対(この第1図においては図示せず)の電極間に電
界を印加して、電極間間隙Pの部分における隣接層12
の光屈折率をn、からn1+△nへ増大させる。この時
、分散曲線は第2図(b)の1点鎖線で表わせられ、光
導波層11の実効屈折率n。ffは”effに増大する
。この時の導波光の電界分布は第3図(b)のように変
化し、隣接層12への導波光の浸み出し光が、回折格子
Gと十分相互作用するように増加する。その結果、図の
斜線部の浸み出し光が図の上方(回折格子Gの種類によ
っては下方又は上下双方)へ放射されながら進行し、遂
には、はとんどの導波光が外部へ取り出される。
Next, an electric field is applied between the electrodes of an electrode pair (not shown in FIG. 1) provided directly on the adjacent layer 12 or via an intermediate layer, so that the adjacent layer 12 is 12
increases the optical refractive index of n from n to n1+Δn. At this time, the dispersion curve is represented by the dashed line in FIG. 2(b), and the effective refractive index n of the optical waveguide layer 11. ff increases to "eff. At this time, the electric field distribution of the guided light changes as shown in FIG. As a result, the leaked light in the shaded area in the figure advances while being radiated upwards in the figure (downward or both, depending on the type of diffraction grating G), and eventually reaches most of the guided light. Wave light is extracted to the outside.

また、第1図で示した構成において、隣接1ii12の
光屈折率をnlからn1+△n″に変化させたとき、こ
のnl+Δn”の値が、隣接層12の光屈折率の変化に
伴って変化する光導波層11の実効屈折率”’effと
等しくなるほどに大きくなると、その分散曲線は第2図
(C)の1点鎖線のようになり、導波光は導波モードか
ら放射モードへ変換し、光は隣接層12へ移行する。こ
のときの導波光の電界分布は第3図(C)のように変化
し、導波光は隣接層12へ多量に漏れ出し、回折格子G
と相互作用して図の上方(73よび/または下方)へ放
射されながら進行し、速やかに外部に取り出される。ま
た、隣接層12の光屈折率n1を光導波層11の光屈折
率n2と略等しいか又はnlよりも大きくなるように変
化させることによって、光導波層11内の導波光の全反
射条件を変化させて導波光を隣接層中に移動させ、更に
回折格子Gとの相互作用により、外部へ取り出すことが
できる。このようにして、電界を印加した場所で導波光
を外部に取り出すことができるから、上述の電極対を複
数、上記間隙Pが隣接層12に沿って1列に延びるよう
に設けておき、各電極対に順次択一的に電界を印加すれ
ば、隣接層12からは出射位置を変えながら光が出射す
るようになり、光走査がなされる。
Furthermore, in the configuration shown in FIG. 1, when the optical refractive index of the adjacent layer 1ii12 is changed from nl to n1+Δn'', the value of nl+Δn'' changes with the change in the optical refractive index of the adjacent layer 12. When the dispersion curve becomes large enough to be equal to the effective refractive index "'eff" of the optical waveguide layer 11, the dispersion curve becomes like the dashed line in FIG. 2(C), and the guided light converts from the guided mode to the radiation mode. , the light moves to the adjacent layer 12. At this time, the electric field distribution of the guided light changes as shown in FIG.
It interacts with the rays and moves upward (73 and/or downward) in the figure while being radiated, and is quickly taken out to the outside. Further, by changing the optical refractive index n1 of the adjacent layer 12 so that it is approximately equal to the optical refractive index n2 of the optical waveguide layer 11 or larger than nl, the conditions for total reflection of the guided light in the optical waveguide layer 11 are changed. The guided light can be moved into the adjacent layer by changing it, and further extracted to the outside through interaction with the diffraction grating G. In this way, the guided light can be extracted to the outside at the location where the electric field is applied, so a plurality of the above-mentioned electrode pairs are provided so that the gap P extends in a line along the adjacent layer 12, and each By sequentially and selectively applying an electric field to the electrode pair, light is emitted from the adjacent layer 12 while changing its emitting position, resulting in optical scanning.

なお前述のように隣接層12を電気光学材料から形成し
てその光屈折率を変化させる他、反対に先導波@11を
電気光学材料から形成してそこに電極対を設り、該光導
波層11の光屈折率を変化さぜる(低下させる)ように
してもよいし、ざらには光導波層11と隣接層12の双
方を電気光学材料から形成して双方に電極対を設け、双
方の光屈折率を変化させるようにしてもよい。
As mentioned above, in addition to forming the adjacent layer 12 from an electro-optic material to change its optical refractive index, conversely, the leading wave @ 11 is formed from an electro-optic material and an electrode pair is provided thereto to change the optical waveguide. The optical refractive index of the layer 11 may be changed (decreased), or in general, both the optical waveguide layer 11 and the adjacent layer 12 may be formed from an electro-optic material and electrode pairs may be provided on both. The optical refractive index of both may be changed.

またこの場合、回折格子Gの構造を集光性回折格子にし
ておくと、取り出された光は一点へ集光し、散逸を防ぐ
ことができる。
Further, in this case, if the structure of the diffraction grating G is a condensing diffraction grating, the extracted light can be condensed to one point and prevented from being dissipated.

上記構成の光走査装置は、単一の光源を使用するもので
めるから、前記り、EDアレイ等にみられる光源の発光
強度バラツキの問題が無く、精密走査が可能となり、光
源の光利用効率も高められる。
Since the optical scanning device with the above configuration uses a single light source, there is no problem with the variation in the light emission intensity of the light source that occurs in ED arrays, etc., and precision scanning is possible, making it possible to utilize the light of the light source. Efficiency can also be increased.

またこの光走査装置は、機械的作動部分を備えないから
耐久性、耐振動性に優れて調整も容易であり、ざらに光
ビームを大きく振らずに走査可能であるから、この装置
によれば、光走査系の大型化を回避し、光走査記録装置
あるいは読取装置を小型に形成することができる。
This optical scanning device also has excellent durability and vibration resistance because it does not have any mechanically operating parts, and is easy to adjust, and it is possible to scan without shaking the light beam roughly. Therefore, it is possible to avoid increasing the size of the optical scanning system and to form an optical scanning recording device or reading device in a small size.

上記の光走査装置においては前述したように、エネルギ
ー付加により光屈折率を変える材料として電気光学材料
が好適に用いられ、したがってこの場合エネルギー付加
手段としては電極対が、また駆動回路としては複数の電
極対間に順次択一的に電界を印加する回路が用いられる
が、このような構成をとる装置として前記特願昭60−
74061号に具体的に開示されている装置は、1つの
N極対を構成する各電極を、積層体を水平に配置したと
きに間隙を間において互いに水平方向に対向するように
(つまり前記第1図においては紙面の表裏方向に)配置
したものである。ところがこの開示例のような構成をと
る場合、所望の光屈折率変化を得るために電極対に数百
V程度の高電圧を印加しなければならず、したがって強
力な駆動回路が必要になるという難点があった。つまり
光を積層体外に取り出すのに十分な大きざに電極間間隙
を設定すると、電極間距離が大きくなり、そのため上述
のように高電圧を印加する必要が生じるのである。
As mentioned above, in the above-mentioned optical scanning device, an electro-optic material is suitably used as a material that changes the optical refractive index by adding energy. Therefore, in this case, an electrode pair is used as the energy adding means, and a plurality of A circuit is used that selectively applies an electric field between a pair of electrodes, and a device having such a configuration is disclosed in the above-mentioned Japanese Patent Application No. 1983-
The device specifically disclosed in No. 74061 is such that the electrodes constituting one N-pole pair are horizontally opposed to each other with a gap in between when the laminate is horizontally arranged (that is, the In Figure 1, they are arranged in the front and back directions of the paper. However, when adopting a configuration like the disclosed example, it is necessary to apply a high voltage of several hundred volts to the electrode pair in order to obtain the desired change in the optical refractive index, and therefore a powerful drive circuit is required. There was a problem. In other words, if the gap between the electrodes is set to be large enough to extract light from the laminate, the distance between the electrodes becomes large, which makes it necessary to apply a high voltage as described above.

また積層体からの光取出し効率を高めるためには、光導
波層の導波路幅を電極間間隙部分に収まるように設定す
ることが望ましいが、上記のように印加電圧の問題が有
るから、前記開示例の装置においては電極間間隙を大き
く設定することができず、したがって導波路幅は必然的
に小さなものとなってしまう。このように導波路幅が小
さいと導波光のエネルギー密度が高くなり、光導波層が
光損傷を受ける恐れが有る。
In addition, in order to increase the light extraction efficiency from the laminate, it is desirable to set the waveguide width of the optical waveguide layer so that it fits within the gap between the electrodes, but as mentioned above, there is a problem with the applied voltage. In the device of the disclosed example, the inter-electrode gap cannot be set large, and therefore the waveguide width inevitably becomes small. When the waveguide width is small in this way, the energy density of the guided light increases, and there is a risk that the optical waveguide layer may be optically damaged.

(発明の目的) そこで本発明は、前述の特願昭60−74061号に示
されるように電気光学材料からなる光導波層および/ま
たは隣接層の光屈折率を変えることによって光走査を行
なう光走査装置において、比較的低電圧で駆動可能で、
しかも上記光損傷の問題を生じることのない光走査装置
を提供することを目的とするものでおる。
(Objective of the Invention) Therefore, as shown in the above-mentioned Japanese Patent Application No. 60-74061, the present invention aims to provide a method for performing optical scanning by changing the optical refractive index of an optical waveguide layer and/or an adjacent layer made of an electro-optic material. In scanning devices, it can be driven with relatively low voltage,
Moreover, it is an object of the present invention to provide an optical scanning device that does not cause the above-mentioned optical damage problem.

(発明の構成) 本発明の光走査装置は、先に述べたように少なくとも一
方がエネルギー付加により光屈折率を変える材料からな
る光導波層と隣接層との積層体と、複数のエネルギー付
加手段と、回折格子と、各エネルギー付加手段を順次択
一的に所定のエネルギー付加状態に設定する駆動回路と
からなる光走査装置において、 上記材料として前述のような電気光学材料を用い、 光導波層および/または隣接層に、該光導波層内を進む
導波光の光路に沿って、互いの間に間隙をおいて並ぶよ
うに複数の電極を設けてこれをエネルギー付加手段(電
界印加手段)とし、そして駆動回路は、上記複数の電極
のうちの互いに隣り合う2つの電極間に順次択一的に電
界を印加するように形成したことを特徴とするものであ
る。
(Structure of the Invention) As described above, the optical scanning device of the present invention includes a laminate of an optical waveguide layer and an adjacent layer, at least one of which is made of a material that changes the optical refractive index by adding energy, and a plurality of energy adding means. In an optical scanning device comprising a diffraction grating, and a drive circuit that sequentially and selectively sets each energy adding means to a predetermined energy adding state, an electro-optic material as described above is used as the material, and an optical waveguide layer is provided. And/or a plurality of electrodes are provided in the adjacent layer so as to be arranged with gaps between them along the optical path of the guided light traveling in the optical waveguide layer, and these electrodes are used as energy adding means (electric field applying means). , and the drive circuit is characterized in that it is formed so as to sequentially and selectively apply an electric field between two adjacent electrodes of the plurality of electrodes.

(実施態様) 以下、図面に示す実施態様に基づいて本発明の詳細な説
明する。
(Embodiments) Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第4図は本発明の一実施態様による光走査装置20を示
すものであり、また第5図はその要部の断面形状を示し
ている。基板10の上には、光導波層11と該光導波層
11に密着した隣接層12とからなる積層体13が設け
られている。なお隣接層12は、前述した電気光学材料
から形成されている。そして前述のように光導波層11
内を光が進行しうるように光導波層11、隣接層12、
基板10はそれぞれ、前記関係 n2 >nl Sn3 を満たす材料から形成されている。なお前述の通り、n
2 s n3はそれぞれ光導波層11、基板10の光屈
折率、nlは隣接層12の電界非印加時の光屈折率であ
る。このような光導波層11、隣接層12、基板10の
材料の組合せとしては例えば、(Nbz0!  : K
3 L !z Nb5015 ニガラス〕、(Nb20
!l  :L!N1)03 ニガラス〕等が挙げられる
FIG. 4 shows an optical scanning device 20 according to an embodiment of the present invention, and FIG. 5 shows a cross-sectional shape of a main part thereof. A laminate 13 consisting of an optical waveguide layer 11 and an adjacent layer 12 in close contact with the optical waveguide layer 11 is provided on the substrate 10 . Note that the adjacent layer 12 is formed from the electro-optic material described above. Then, as described above, the optical waveguide layer 11
an optical waveguide layer 11, an adjacent layer 12, so that light can travel therein;
Each of the substrates 10 is made of a material that satisfies the relationship n2 >nl Sn3. As mentioned above, n
2 s n3 is the optical refractive index of the optical waveguide layer 11 and the substrate 10, respectively, and nl is the optical refractive index of the adjacent layer 12 when no electric field is applied. For example, a combination of materials for the optical waveguide layer 11, the adjacent layer 12, and the substrate 10 is (Nbz0!: K
3L! z Nb5015 Nigaras], (Nb20
! l :L! N1)03 Nigaras] and the like.

なお先導波路については、例えばティー タミール(T
、Tam1 r)編「インテグレイテッドオブティクス
(Integrated  0ptiC8)J  (ト
ピックス イン アプライド フィジックス(Topl
cs  in  AppliedPhys i cs)
第7巻)スプリンガ−フエアラーグ(St)r i n
ger−Ver I act)刊(1975);西原、
春名、栖原共著[光集積回路1オーム社刊(1985)
等の成著に詳細な記述がある。また光導波層11、隣接
層12、木板10はそれぞれ一例として厚さ0.5〜1
0μm、1〜50μm、1μm以上に形成されるが、こ
れに限られるものではない。
Regarding the leading wavepath, for example, T.
, Tam1 r) ed. “Integrated Obtics (Integrated 0ptiC8) J (Topics in Applied Physics (Topl)
cs in AppliedPhys i cs)
Volume 7) Springer Verlag (St) r i n
ger-Ver I act) (1975); Nishihara,
Co-authored by Haruna and Suhara [Optical Integrated Circuits 1 Ohm Publishing (1985)]
There are detailed descriptions in the works of . The optical waveguide layer 11, the adjacent layer 12, and the wooden board 10 each have a thickness of 0.5 to 1, for example.
The thickness is formed to be 0 μm, 1 to 50 μm, or 1 μm or more, but is not limited thereto.

隣接層12の表面には複数の細長い電極01.D2、D
3〜□nが、互いの間に微小間隙をおいて1列に並設さ
れている。またこれらの電極D1、D2、D3〜Dnの
間において隣接層12の表面には、回折格子G1、G2
、G3〜G(n−1>が設けられている。なお電極D1
〜Dnの大きさは例えば0.05〜0.2調×3〜5馴
程度、また互いの間隔は0.2#程度に設定される。そ
して各電極D1〜Dnは、基板10上に形成されたドラ
イバ15に接続されている。なおこのドライバ15は、
基板10とは独立して設けられてもよい。
On the surface of the adjacent layer 12, a plurality of elongated electrodes 01. D2, D
3 to □n are arranged in a row with a small gap between them. Furthermore, on the surface of the adjacent layer 12 between these electrodes D1, D2, D3 to Dn, there are diffraction gratings G1, G2.
, G3 to G(n-1>).
The size of ~Dn is set, for example, to about 0.05 to 0.2 x 3 to 5, and the interval between them is set to about 0.2 #. Each electrode D1 to Dn is connected to a driver 15 formed on the substrate 10. Note that this driver 15 is
It may be provided independently of the substrate 10.

−力光導波層11には、電極D1〜□nの並び方向の延
長上において、導波路レンズ16が形成されており、ま
た基板10には光導波層11内の上記導波路レンズ16
に向けてレーザビーム14′を射出する半導体レーザ1
7が取り付けられている。そして積層体13の上方、す
なわち隣接層12に対向する位置には被走査体25が配
され、この被走査体25と積層体13との間には、電極
D1〜[)nの並び方向と直角な方向に光を集束させる
シリンドリカルレンズ26が配されている。
- On the optical waveguide layer 11, a waveguide lens 16 is formed on the extension of the direction in which the electrodes D1 to □n are arranged, and on the substrate 10, the waveguide lens 16 in the optical waveguide layer 11 is formed.
A semiconductor laser 1 that emits a laser beam 14' toward
7 is installed. A scanned body 25 is disposed above the stacked body 13, that is, at a position facing the adjacent layer 12, and between the scanned body 25 and the stacked body 13, there is a space between the scanned body 25 and the stacked body 13 in the direction in which the electrodes D1 to [)n are arranged. A cylindrical lens 26 is arranged to focus light in a perpendicular direction.

第6図は上記光走査装置20の駆動回路21を示すもの
でおる。以下この第6図も参照して、光走査装置20の
作動について説明する。まず前述の半導体レーザ17が
駆動され、レーザビーム14′が光導波層11内に射出
される。このレーザビーム14′は導波路レンズ16に
よって平行光14とされ、この光14は光導波M11内
を電極D1〜Dnの並び方向に進行する(第4図参照)
。そして複数の電極D1〜[)nのうちの選択された電
極と、その他の電極との間には、電圧発生回路22から
発生された電圧Vが、前記ドライバ15を介して印加さ
れる。ここでこのドライバ15は、クロック信号CLK
に同期して作動するシフトレジスタ23の出力を受けて
作動し、上述の選択される電極を電極D1の側から順次
1つずつ増ヤしながら、電圧印加を行なう。
FIG. 6 shows the drive circuit 21 of the optical scanning device 20. The operation of the optical scanning device 20 will be described below with reference to FIG. 6 as well. First, the aforementioned semiconductor laser 17 is driven, and a laser beam 14' is emitted into the optical waveguide layer 11. This laser beam 14' is converted into parallel light 14 by the waveguide lens 16, and this light 14 travels within the optical waveguide M11 in the direction in which the electrodes D1 to Dn are arranged (see FIG. 4).
. A voltage V generated from the voltage generation circuit 22 is applied via the driver 15 between the selected electrode of the plurality of electrodes D1 to [)n and the other electrodes. Here, this driver 15 uses a clock signal CLK.
It operates in response to the output of the shift register 23 which operates in synchronization with the electrode D1, and applies voltage to the selected electrodes one by one from the electrode D1 side.

つまり最初は1番目の電極D1が電位■で2番目以下の
電極D2〜Dnが電位O(ゼロ)、次は1.2番目の電
極D1、D2が電位■で3番目以下の電極D3〜Dnf
fi電位O1次は1.2.3番目の電極D1、D2、D
3が電位Vで4番目以下の電極D4〜Dnが電位O・・
・・・・となるように電圧印加がなされる。このように
電圧印加がなされると、隣接層12の、電極間間隙に対
応する部分P1〜P(n−1>に順次択一的に電界が加
えられ(第5図参照)、その部分の隣接層12の光屈折
率が高くなる。すると前述したように光(導波光)14
は、上記の部分P1〜P (n−1)において、光導波
層11から隣接層12側に出射し、回折格子01〜G(
n−1>の回折作用により隣接層12外に出射する。つ
まり最初は回折格子G1から、次は回折格子G2から、
・・・・・・・・・回折格子G(n−1>の次は元に戻
って回折格子G1から、と光14の出射位置が順次変化
するので、被走査体25はこの出射した光14により、
第4図の矢印X方向に走査されるようになる(なお光出
射位置が、回折格子G1→G2→−・・−G (n−1
) →G (n−2> ・−・−・−01と変化するよ
うに、電極01〜()nへの電圧印加を制御してもよい
)。そして上記のようにして主走査を行なうとともに、
クロック信号CLKによって該主走査と同期をとって被
走査体25を第4図の矢印Y方向に移動させて副走査を
行なえば、この被走査体25は2次元的に走査されるこ
とになる。
In other words, at first, the first electrode D1 is at potential ■, and the second and lower electrodes D2 to Dn are at potential O (zero), then the 1.2nd electrodes D1 and D2 are at potential ■, and the third and lower electrodes D3 to Dnf.
fi potential O1 order is 1.2.3rd electrode D1, D2, D
3 is the potential V, and the fourth and subsequent electrodes D4 to Dn are the potential O...
A voltage is applied so that... When a voltage is applied in this way, an electric field is sequentially and selectively applied to portions P1 to P (n-1>) of the adjacent layer 12 corresponding to the interelectrode gap (see FIG. 5), and The optical refractive index of the adjacent layer 12 increases.Then, as mentioned above, the light (waveguide light) 14
is emitted from the optical waveguide layer 11 to the adjacent layer 12 side in the above portions P1 to P (n-1), and the diffraction gratings 01 to G(
The light is emitted to the outside of the adjacent layer 12 due to the diffraction effect of n-1>. In other words, first from diffraction grating G1, then from diffraction grating G2,
......The output position of the light 14 changes sequentially, from the diffraction grating G(n-1>) back to the original diffraction grating G1, so the scanned object 25 receives this emitted light. According to 14,
It is scanned in the direction of the arrow X in FIG.
) →G (The voltage application to the electrodes 01 to ()n may be controlled so that the voltage changes as n-2> ・−・−・−01). Then, while performing main scanning as described above,
If the object 25 to be scanned is moved in the direction of the arrow Y in FIG. 4 for sub-scanning in synchronization with the main scanning using the clock signal CLK, the object 25 to be scanned will be scanned two-dimensionally. .

なお本実11M態様において、回折格子01〜G(n−
1>は、光導波層11内の導波光14の進行方向に光1
4を集束させる集光回折格子として形成されており、ま
た隣接層12と被走査体25との間には光14を上記進
行方向と直角な方向に集束させるシリンドリカルレンズ
26が配されているので、回折格子01〜G(n−1>
から出射した光14は、被走査体25上の一点に集束さ
れる。上記集光回折格子は、光導波層11内の光14の
進行方向に格子パターン(グリッドパターン)を並設し
、そして各パターンのピッチを変化させてなるものでお
り、それにより上述のような集束作用を有するものとな
っている。
In addition, in the present 11M embodiment, the diffraction gratings 01 to G(n-
1> means that the light 1 is directed in the traveling direction of the guided light 14 in the optical waveguide layer 11.
A cylindrical lens 26 is arranged between the adjacent layer 12 and the object to be scanned 25 to focus the light 14 in a direction perpendicular to the traveling direction. , diffraction gratings 01 to G (n-1>
The light 14 emitted from is focused on one point on the object to be scanned 25 . The above-mentioned condensing diffraction grating is made by arranging grating patterns (grid patterns) in parallel in the direction of propagation of the light 14 in the optical waveguide layer 11 and changing the pitch of each pattern. It has a focusing effect.

また、半導体レーザ17を光導波層11に直接結合せず
に、レンズやカプラープリズム、グレーティングカプラ
等を介して光導波層11に光を入射させるようにしても
よい。また半導体レーザ17は光導波層の形成時に、こ
れと一体に作られてもよい。
Further, the semiconductor laser 17 may not be directly coupled to the optical waveguide layer 11, but the light may be made to enter the optical waveguide layer 11 via a lens, a coupler prism, a grating coupler, or the like. Furthermore, the semiconductor laser 17 may be formed integrally with the optical waveguide layer when it is formed.

走査光を発生する光源は上述の半導体レーザ11に限ら
ず、その他例えばガスレーザや固体レーザ等が用いられ
てもよい。
The light source that generates the scanning light is not limited to the above-mentioned semiconductor laser 11, but other sources such as a gas laser or a solid laser may also be used.

以上述べた光走査装@20においては電極D1〜Dnを
、光導波層11内の導波光14の進行方向に沿って配置
しているから、各電極D1〜[)nの長さを十分に長く
すれば、電極間距離を短く設定しても走査光取出し部分
の面積を十分大きくとることができる。このように各電
極01〜[)n間の距離を小ざく設定すれば、隣接層1
2の光屈折率を所定値変化させるために印加する電圧が
低くて済む。
In the optical scanning device @20 described above, the electrodes D1 to Dn are arranged along the traveling direction of the guided light 14 in the optical waveguide layer 11, so the length of each electrode D1 to [)n is set sufficiently. If it is made longer, the area of the scanning light extraction portion can be made sufficiently large even if the distance between the electrodes is set short. If the distance between each electrode 01 to [)n is set small in this way, the adjacent layer 1
The voltage applied to change the optical refractive index of No. 2 by a predetermined value may be low.

また上述のように各電極D1〜Dnを長く形成すること
ができるから、導波光14のエネルギー密度を小さくす
るために導波光14の導波路幅を広く設定しても、走査
光取出し効率を高く保つことができる。
Furthermore, since each electrode D1 to Dn can be formed long as described above, even if the waveguide width of the guided light 14 is set wide to reduce the energy density of the guided light 14, the scanning light extraction efficiency can be increased. can be kept.

なお隣接層12から出射した光14を1点に集束させる
には、前述のように回折格子01〜G (n−1)を集
光回折格子とするとともにシリンドリカルレンズ26を
配置する他、第7図に示すように光走査装置20と被走
査体25との間に、例えばセルフォックレンズアレイ等
からなり2次元方向に集束作用を有するレンズアレイ3
0を設けるようにしてもよい。また第8図に示すように
隣接層12の上に、各回折格子01〜G(n−1>に対
向する位置にレンズL1、L2、L3〜L (n−1>
が設けられたレンズアレイ層31を設けるようにしても
よい。
Note that in order to focus the light 14 emitted from the adjacent layer 12 to one point, in addition to using the diffraction gratings 01 to G (n-1) as a focusing diffraction grating as described above and arranging the cylindrical lens 26, As shown in the figure, between the optical scanning device 20 and the object to be scanned 25, there is provided a lens array 3, which is made of, for example, a SELFOC lens array and has a focusing effect in two-dimensional directions.
0 may be provided. Further, as shown in FIG. 8, lenses L1, L2, L3 to L (n-1>
A lens array layer 31 may be provided.

この場合上記レンズL1〜L(n−1>は、第8図に示
されるように通常の凸レンズ状としてもよいし、またア
レイ層材料の屈折率に分布を与えてなる屈折率分布型レ
ンズとしてもよい。さらには以上述べたような集光回折
格子の格子パターンにざらに曲りを与えることにより、
2次元方向に集束作用を有するようにした集光回折格子
のみを用いて光14を集束させるようにしてもよい。な
おこのような集光回折格子については、例えば電子通信
学会技術研究報告0QC83−84の47〜54ページ
等に詳しく記載されている。また隣接層12から出射す
る光14を以上説明のようにして集束させることは必ず
しも必要では無く、場合によっては平行光、あるいは拡
散光によって被走査体25を走査するようにしてもよい
In this case, the lenses L1 to L(n-1> may be in the shape of a normal convex lens as shown in FIG. 8, or may be a gradient index lens in which the refractive index of the array layer material is distributed. Furthermore, by giving a rough curve to the grating pattern of the condensing diffraction grating as described above,
The light 14 may be focused using only a focusing diffraction grating that has a focusing effect in two-dimensional directions. Note that such a condensing diffraction grating is described in detail, for example, on pages 47 to 54 of Technical Research Report 0QC83-84 of the Institute of Electronics and Communication Engineers. Further, it is not necessarily necessary to focus the light 14 emitted from the adjacent layer 12 as described above, and the object to be scanned 25 may be scanned with parallel light or diffused light depending on the case.

以上説明した実施態様においては、光導波層11と隣接
層12どの積層体13は基板10上に設けられているが
、特にこのような基板10を用いず、光導波層11が直
接空気に接するようにしても横わないし、ざらには光導
波層11の両表面に隣接層12を積層して、光導波層1
1の上下両側に走査光を出射させ、2つの被走査面を同
時に走査することも可能である。
In the embodiment described above, the optical waveguide layer 11, the adjacent layer 12, and the laminate 13 are provided on the substrate 10, but such a substrate 10 is not used, and the optical waveguide layer 11 is in direct contact with air. Even if you do this, it will not lie horizontally, and in general, the adjacent layers 12 are laminated on both surfaces of the optical waveguide layer 11, and the optical waveguide layer 1
It is also possible to emit scanning light on both the upper and lower sides of 1 and scan two scanned surfaces at the same time.

また本発明の光走査装置は、前記型[!D1〜Dnを複
数列並べて、複数の走査光を同時に取出し可能に形成す
ることもできる。
Further, the optical scanning device of the present invention has the above-mentioned type [! It is also possible to arrange a plurality of rows of D1 to Dn so that a plurality of scanning lights can be extracted at the same time.

(発明の効果) 以上詳細に説明した通り本発明の光走査装置は、単一の
光源を使用するものであるから、前記LEDアレイ等に
みられる光源の発光強度バラツキの問題が無く、精密走
査が可能となり、光源の光利用効率も高められる。また
本発明の光走査装置は機械的作動部分を備えないから耐
久性、耐(辰勤性に優れて調整も容易であり、ざらに光
ビームを大きく振らずに走査可能であるから、本発明装
置によれば、光走査系の大型化を回避し、光走査記録装
置おるいは読取装置を小型に形成することができる。
(Effects of the Invention) As explained in detail above, since the optical scanning device of the present invention uses a single light source, there is no problem of variations in the light emission intensity of the light source seen in the LED array, etc., and precision scanning is possible. This makes it possible to improve the light utilization efficiency of the light source. Furthermore, since the optical scanning device of the present invention does not include any mechanically operating parts, it has excellent durability and durability, and is easy to adjust, and can scan without shaking the light beam roughly. According to the apparatus, it is possible to avoid increasing the size of the optical scanning system and make the optical scanning recording device or reading device small.

しかも本発明の光走査装置は、走査光取出し部分の面積
は十分大きくした上でN極間距離を小さくすることがで
きるから、低電圧で駆動可能であり、したがって強力な
駆動回路が不要で安価に形成され、しかも消費電力も低
減される。そして走査光取出し部分である電極間間隙部
分は、導波光進行方向と直角な方向に自由に長く形成可
能でのるから、導波路幅を広くして導波光のエネルギー
密度を小さく設定し、先導波路の光損傷を防止すること
かできる。
Moreover, the optical scanning device of the present invention can be driven with low voltage because the area of the scanning light extraction part can be made sufficiently large and the distance between the north poles can be made small, so a powerful driving circuit is not required and the cost is low. , and power consumption is also reduced. The gap between the electrodes, which is the scanning light extraction part, can be freely formed to be long in the direction perpendicular to the direction of propagation of the guided light. It is possible to prevent optical damage to the wave path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の光走査の仕組みを説明する説明図
、 第2図は第1図の構成の分散曲線を示すグラフ、第3図
は第1図の構成における導波光の電界分布を示す概念図
、 第4図は本発明の一実施態様による光走査装置を示す斜
視図、 第5図は上記実t#、態様装置の要部を示す側断面図、 第6図は上記光走査装置の電気回路を示すブロック図、 第7図、第8図はそれぞれ、本発明の第2実施態様、第
3実施態様による光走査装置を示す側面図で必る。 10・・・巣板       11・・・光導波層12
・・・隣接層      13・・・積層体14・・・
光        15・・・ドライバ16・・・導波
路レンズ   17・・・半導体レーザ20・・・光走
査装置    21・・・駆動回路22・・・電圧発生
回路   23・・・シフトレジスタ25・・・被走査
体    26・・・シリンドリカルレンズD1〜□n
・・・電極
Fig. 1 is an explanatory diagram explaining the optical scanning mechanism of the device of the present invention, Fig. 2 is a graph showing the dispersion curve of the configuration of Fig. 1, and Fig. 3 is a graph showing the electric field distribution of guided light in the configuration of Fig. 1. FIG. 4 is a perspective view showing an optical scanning device according to an embodiment of the present invention; FIG. 5 is a side sectional view showing essential parts of the above-mentioned actual device; 7 and 8 are side views showing optical scanning devices according to the second and third embodiments of the present invention, respectively. 10... Nest plate 11... Optical waveguide layer 12
...Adjacent layer 13...Laminated body 14...
Light 15... Driver 16... Waveguide lens 17... Semiconductor laser 20... Optical scanning device 21... Drive circuit 22... Voltage generation circuit 23... Shift register 25... Target Scanning body 26... Cylindrical lens D1~□n
···electrode

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも一方が電界印加により光屈折率を変え
る電気光学材料からなり、互いに密着された光導波層と
電界非印加時は該光導波層よりも小さい光屈折率を示す
隣接層との積層体と、 前記光導波層および/または隣接層に、該光導波層内を
進む導波光の光路に沿つて、互いの間に間隙をおいて設
けられた複数の電極と、 前記隣接層の表面の、前記間隙に対応する部分にそれぞ
れ設けられた回折格子と、 前記複数の電極のうちの互いに隣り合う2つの電極間に
順次択一的に電界を印加し、その電界の印加箇所におい
て前記導波光が前記回折格子との相互作用により前記積
層体の外に出射するように前記光導波層および/または
隣接層の光屈折率を変化させる駆動回路とからなる光走
査装置。
(1) Lamination of an optical waveguide layer, at least one of which is made of an electro-optical material that changes its optical refractive index when an electric field is applied, and an adjacent layer that exhibits a smaller optical refractive index than the optical waveguide layer when no electric field is applied. a plurality of electrodes provided on the optical waveguide layer and/or the adjacent layer with gaps therebetween along the optical path of the guided light traveling through the optical waveguide layer; and a surface of the adjacent layer. An electric field is sequentially and selectively applied between the diffraction gratings provided in the portions corresponding to the gaps and two adjacent electrodes of the plurality of electrodes, and the electric field is applied at the application point of the electric field. An optical scanning device comprising: a drive circuit that changes the optical refractive index of the optical waveguide layer and/or the adjacent layer so that the wave light exits the stacked body by interaction with the diffraction grating.
(2)前記回折格子が、前記光導波層から前記隣接層内
に入射した光を、集束するように出射させる集光回折格
子であることを特徴とする特許請求の範囲第1項記載の
光走査装置。
(2) The light according to claim 1, wherein the diffraction grating is a condensing diffraction grating that outputs the light incident from the optical waveguide layer into the adjacent layer in a focused manner. scanning device.
(3)前記積層体の外側に、出射した光を集束させる集
束光学系が設けられていることを特徴とする特許請求の
範囲第1項から第2項いずれか1項記載の光走査装置。
(3) The optical scanning device according to any one of claims 1 to 2, wherein a focusing optical system for focusing the emitted light is provided outside the laminate.
JP22805985A 1985-04-08 1985-10-14 Optical scanning device Expired - Lifetime JPH0616144B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22805985A JPH0616144B2 (en) 1985-10-14 1985-10-14 Optical scanning device
EP86104707A EP0198380B1 (en) 1985-04-08 1986-04-07 Light beam scanning apparatus and read-out or recording apparatus using the same
DE8686104707T DE3686079T2 (en) 1985-04-08 1986-04-07 READING OR RECORDING DEVICE USING A LIGHT BEAM SENSOR.
US06/849,450 US4758062A (en) 1985-04-08 1986-04-08 Light beam scanning apparatus, and read-out apparatus and recording apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22805985A JPH0616144B2 (en) 1985-10-14 1985-10-14 Optical scanning device

Publications (2)

Publication Number Publication Date
JPS6287944A true JPS6287944A (en) 1987-04-22
JPH0616144B2 JPH0616144B2 (en) 1994-03-02

Family

ID=16870549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22805985A Expired - Lifetime JPH0616144B2 (en) 1985-04-08 1985-10-14 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH0616144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168123A (en) * 2017-03-01 2022-11-04 ポイントクラウド インコーポレイテッド Modular three-dimensional optical sensing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642412U (en) * 1992-11-25 1994-06-07 関東自動車工業株式会社 Luggage door lamp mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168123A (en) * 2017-03-01 2022-11-04 ポイントクラウド インコーポレイテッド Modular three-dimensional optical sensing system

Also Published As

Publication number Publication date
JPH0616144B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US5233673A (en) Output steerable optical phased array
EP0198380B1 (en) Light beam scanning apparatus and read-out or recording apparatus using the same
US8199178B1 (en) Linear array of two dimensional dense-packed spatial light modulator
US4816912A (en) Laser-beam printer with improved optical deflector
JPH1039346A (en) Electro-optic element
US4551737A (en) Optical data pattern generation device comprising phosphor member
JP3160289B2 (en) Scanning device
JPS6287944A (en) Optical scanner
JPS6287943A (en) Optical scanner
KR100754064B1 (en) Scanning equipment using a diffractive optical modulator
JPH04507012A (en) Multi-channel integrated light modulator for laser printers
JP2603086B2 (en) Optical waveguide device
JPS61232424A (en) Optical scanning device
JPH01107213A (en) Optical waveguide element
JPS6283729A (en) Light scanning device
US5048936A (en) Light beam deflector
JPS62246015A (en) Optical scanning device
JPS61232426A (en) Optical scanning and recording device
JPS61232425A (en) Optical scanning and reading device
JPS6287945A (en) Optical scanner
JPS62244022A (en) Optical scanning and recording device
JPS62244021A (en) Optical scanner
JPS62244023A (en) Optical scanning reader
JPH05107496A (en) Light spot diameter variable optical scanning device
JPS62238537A (en) Two-dimensional optical deflecting device