JPS6286881A - Light output device - Google Patents

Light output device

Info

Publication number
JPS6286881A
JPS6286881A JP22800885A JP22800885A JPS6286881A JP S6286881 A JPS6286881 A JP S6286881A JP 22800885 A JP22800885 A JP 22800885A JP 22800885 A JP22800885 A JP 22800885A JP S6286881 A JPS6286881 A JP S6286881A
Authority
JP
Japan
Prior art keywords
laser
layer
wavelength
waveguide
output device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22800885A
Other languages
Japanese (ja)
Inventor
Akimoto Serizawa
晧元 芹澤
Yoshikazu Hori
義和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22800885A priority Critical patent/JPS6286881A/en
Publication of JPS6286881A publication Critical patent/JPS6286881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To raise the conversion efficiency to the secondary harmonic waves by composing a photowaveguide made of nonlinear optical medium on the same substrate near the active region of a semiconductor laser. CONSTITUTION:A double hetero junction laser having an N-type clad layer 2, a laser active layer 3, and a P-type clad layer 4 is formed on an N-type compound semiconductor substrate 1. Clad layers 5, 6 made of ZnS solid solution and nonlinear optical medium waveguide layer 6 are formed on the same substrate 1 in contact with the laser. A film 8 which reflects the laser oscillation wavelength lambda0 and the wavelength of lambda0/2 is provided on the end 8' of the laser without contact with the layer 6. A film 9 which reflects lambda0 and passes the wavelength of lambda0/2 is formed on the end 9' of the waveguide 6 without contact with the laser. Then, the wavelength of lambda0 is reflected between resonator faces 8 and 9 repeatedly, only the light converted to the secondary harmonic wave passes the film 9 in the layer 6 to be output.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光出力装置、特に高効率な光源に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light output device, and in particular to a highly efficient light source.

従来の技術 第3図に2次高調波発生の基本構成の模式的斜視図を示
す。20は波長λ1 のレーザであり、21は非線形光
学媒体である。λ1の波長を有するレーザ光26がL 
z NbO3などの非線形光学媒体21に入射されると
媒体21中で入射した波長λ1の光の一部はλ2/2波
長の光に変換されて出射光24として放射される。しか
し、このような系における波長の変換効率は悪く、変換
効率として0.1チにも満たない値しか得られない。こ
の変換効率を上げるために種々の工夫がなされている。
BACKGROUND OF THE INVENTION FIG. 3 is a schematic perspective view of the basic configuration of second harmonic generation. 20 is a laser with wavelength λ1, and 21 is a nonlinear optical medium. The laser beam 26 having a wavelength of λ1 is
When the light enters a nonlinear optical medium 21 such as z NbO3, a part of the light having a wavelength λ1 that has entered the medium 21 is converted into light having a wavelength λ2/2 and is emitted as an output light 24. However, the wavelength conversion efficiency in such a system is poor, and the conversion efficiency is less than 0.1 inch. Various efforts have been made to increase this conversion efficiency.

この工夫としては、入射レーザ光のハイパワー化、非線
形媒体の導波路化、非線形光学定数の大きい物質の選択
、媒体11の端面22,23各々への無反射コーティン
グ、フィルターの形成などがあげられるが、画期的に変
換効率を上げることは未だ不十分である。
Examples of ways to do this include increasing the power of the incident laser beam, using a nonlinear medium as a waveguide, selecting a material with a large nonlinear optical constant, applying anti-reflection coating to each of the end faces 22 and 23 of the medium 11, and forming a filter. However, it is still insufficient to dramatically increase conversion efficiency.

発明が解決しようとする問題点 従って、本発明は変換効率の向上という課題を、光出力
装置の構成を工夫することで解決しようとするものであ
り、特にレーザと非線形光学媒体との結合効率を向上さ
せることおよび非線形光学媒体内での変換効率を上げよ
うとするものである。
Problems to be Solved by the Invention Therefore, the present invention attempts to solve the problem of improving conversion efficiency by devising the configuration of a light output device, and in particular, by improving the coupling efficiency between a laser and a nonlinear optical medium. The objective is to increase the conversion efficiency within nonlinear optical media.

従来の方法では第3図に示すように端面23ではλ1 
波長の光は反射し、λ1/2波長は透過するフィルタを
形成することで効率を上げることができるが、端面22
に対してはλ1 波長は高透過率でなくてはならず、端
面24より反射してきたλ1波長の光はレーザ側に抜け
てしまう欠点があった。
In the conventional method, as shown in FIG.
Efficiency can be increased by forming a filter that reflects light with a wavelength of λ1/2 and transmits light with a wavelength of λ1/2.
For this purpose, the λ1 wavelength must have a high transmittance, and there is a drawback that the λ1 wavelength light reflected from the end face 24 passes through to the laser side.

そこで、本発明は光源部と光導波路部を一体化構成とす
ることによって効率を上げようとするものである。
Therefore, the present invention aims to improve efficiency by integrating the light source section and the optical waveguide section.

問題点を解決するための手段 本発明は、同−基体上に、ダブルヘテロ接合構造を有す
る半導体レーザの活性領域に近接して、非線型光学媒体
よりなる光導波路を有する2次高調波発生装置を構成し
、レーザ部と接しない導波路端部には、1次波を反射し
2次波を透過する膜を構成し導波路と接しないレーザ端
部には1次波。
Means for Solving the Problems The present invention provides a second harmonic generation device having an optical waveguide made of a nonlinear optical medium on the same substrate in close proximity to the active region of a semiconductor laser having a double heterojunction structure. At the end of the waveguide that does not come into contact with the laser section, a film that reflects the primary wave and transmits the secondary wave is constructed, and at the end of the laser that does not come into contact with the waveguide, the film reflects the primary wave.

2次波ともに反射する膜を形成したものである。A film is formed that reflects both secondary waves.

さらに、レーザのクラッド部および非線型光学媒体より
なる光導波路のクラッド部を1次レーザ波に相当するバ
ンドギャップよりも大きいバンドギャップの半導体にて
構成するものである。加えて、この吸収を減少させる方
法として、レーザクラッド部を間接遷移型半導体で構成
したり、バンドギャップの大きい材料をもってきたり、
導波路部を■−■族化合物半導体にて構成することによ
って実現するものである。さらに、レーザ活性層を量子
井戸構造にすることによっても吸収量を減少させること
ができるものである。
Furthermore, the cladding portion of the laser and the cladding portion of the optical waveguide made of the nonlinear optical medium are made of a semiconductor having a bandgap larger than the bandgap corresponding to the primary laser wave. In addition, methods to reduce this absorption include configuring the laser cladding part with an indirect transition type semiconductor, using a material with a large band gap,
This is realized by constructing the waveguide section from a ■-■ group compound semiconductor. Furthermore, the amount of absorption can also be reduced by forming the laser active layer into a quantum well structure.

作   用 本発明は半導体レーザと非線形光学媒体をレーザ共振器
内にモノリシックに構成することが基本原理であり、こ
のとき2次高調波の吸収を減少させる方策として、吸収
係数の小さい材料を配置する構造に工夫をこらしたもの
であり、2次高調波への変換効率の大幅向上、非線形導
波路の短絡化。
Function The basic principle of the present invention is to monolithically configure a semiconductor laser and a nonlinear optical medium within a laser resonator, and in this case, as a measure to reduce absorption of second harmonics, a material with a small absorption coefficient is arranged. The structure has been devised, greatly improving the conversion efficiency to second harmonics and shortening the nonlinear waveguide.

高出力、高信頼性化を図ることができる。High output and high reliability can be achieved.

実施例 本発明の第1の実施例の断面構造図を第1図に示す。n
型化合物半導体基体上1に、n型クラッド層2を形成し
、レーザ活性層3をその上に形成する゛。活性層3上に
はP型クラッド層4が形成される。このダブルヘテロ接
合型レーザ部に接して同一基体1上にクラッド層6、非
線形光学媒体よりなる光導波層6、更にクラッド層7を
形成する。
Embodiment A cross-sectional structural diagram of a first embodiment of the present invention is shown in FIG. n
An n-type cladding layer 2 is formed on a compound semiconductor substrate 1, and a laser active layer 3 is formed thereon. A P-type cladding layer 4 is formed on the active layer 3. A cladding layer 6, an optical waveguide layer 6 made of a nonlinear optical medium, and a cladding layer 7 are formed on the same substrate 1 in contact with this double heterojunction laser section.

8および9はレーザ部発振波長λ。の波長に対しては反
射し、λ。/2の波長に対しては透過できる膜を形成す
る場合によっては8部はλ。/2の波長もほとんど反射
させる膜を形成する。レーザ部は端面8′と端面10あ
るいは端面9′との間で共振器を形成する。また、共振
器としてグレーディングで形成することも可能である。
8 and 9 are laser unit oscillation wavelengths λ. It is reflected for a wavelength of λ. In some cases, 8 parts are λ to form a film that is transparent to wavelengths of /2. A film is formed that reflects most of the wavelengths of /2. The laser section forms a resonator between the end face 8' and the end face 10 or end face 9'. It is also possible to form a resonator by grading.

このレーザ部は電流が注入されることによってλ。波長
のレーザ光を発生する。その光は非線形媒質導波層6に
導入される。導波層6中に導入されたλ。の光の一部は
λ。/2波長の光に変換される。このように変換された
2次高調波は主に膜9を通して外部に取り出される。モ
ニター用としてまた、両面よりとり出す必要のあるとき
は前述のように端面8′の反射膜を制御することによっ
て端面8′部からも取り出すことができる。
This laser section has a current of λ due to the injection of current. Generates laser light of the same wavelength. The light is introduced into the nonlinear medium waveguide layer 6. λ introduced into the waveguide layer 6. Part of the light is λ. /converted into light of 2 wavelengths. The second harmonics converted in this way are mainly extracted to the outside through the membrane 9. For monitoring purposes, when it is necessary to take out from both sides, it can also be taken out from the end face 8' by controlling the reflective film on the end face 8' as described above.

また、チェレンコフ放射を利用する場合にはクラッド層
7あるいは6および基板1を通して外部に2次高調波を
取り出す。このようにλ。波長のレーザ部と非線形媒質
部6とが共振器面8,9間に一体化されて形成されるこ
とによって、前述のように3部より6部に注入されたλ
。波長の光のうち、媒質部6で2次高調波に変換されな
かったλ。波長光は端面9′で反射されて両度導波路e
中を通過する間に2次高調波に変換され、さらにλ。
Furthermore, when using Cerenkov radiation, second harmonics are extracted to the outside through the cladding layer 7 or 6 and the substrate 1. Thus λ. Since the wavelength laser section and the nonlinear medium section 6 are integrated and formed between the resonator surfaces 8 and 9, the λ injected from the 3rd section to the 6th section as described above is
. Of the wavelengths of light, λ is not converted into second harmonics in the medium section 6. The wavelength light is reflected by the end face 9' and passes through the double waveguide e.
While passing through the medium, it is converted into a second harmonic and further λ.

波長で残った光は反射点となる端面8′および1゜で反
射されて2次高調波に変換される。
The remaining light at the wavelength is reflected at the end face 8' and 1°, which serve as reflection points, and is converted into second harmonics.

このように導波路6を通過するたびごとに2次高調波に
変換される。従って、第2図のように個別に配置されて
いる場合はλ。波長光は1往復1か2次高調波に変換さ
れないのに比較して2次高調波への変換効率を大巾に上
げることができる。
In this way, each time it passes through the waveguide 6, it is converted into a second harmonic. Therefore, if they are individually arranged as shown in FIG. Compared to wavelength light that is not converted into first or second harmonics in one round trip, the efficiency of conversion into second harmonics can be greatly increased.

さらに、変換効率を向上させるためにはレーザ部および
導波路部での吸収損失や散乱損失を下げる必要がある。
Furthermore, in order to improve conversion efficiency, it is necessary to reduce absorption loss and scattering loss in the laser section and waveguide section.

特に、レーザ部においては活性領域3はλ。波長にとっ
ては吸収が大きい層となる。
In particular, in the laser section, the active region 3 is λ. This layer has high absorption for the wavelength.

しかも、クラッド層2,4においても一般的なレーザに
おいては活性層で規定されるλ。波長に対してλ。/2
の波長に相当するようなバンドギャップの大きい物質で
構成されている例はない。従ってクラッド層はできる限
りバンドギャップの大きい物質や組成を選択する必要が
ある。さらにクラッド層として直接遷移形半導体層より
も間接遷移型半導体を用いた方のが吸収を小さくするこ
とができる。
Moreover, in the cladding layers 2 and 4 as well, λ is defined by the active layer in a typical laser. λ versus wavelength. /2
There is no example of a material composed of a material with a large band gap corresponding to the wavelength of . Therefore, it is necessary to select a material and composition with as large a band gap as possible for the cladding layer. Furthermore, absorption can be reduced by using an indirect transition type semiconductor as the cladding layer rather than a direct transition type semiconductor layer.

一例として、GaAs系材料を例にとると、GaAjI
を基板1とし活性層3としてGaAs 、クラッド層2
.4として、AlxGa 1−エAsでできるだけXを
太きく L、AlAs層に近づける方が損失が小さくな
る。また、ZnSア、5e1−ア、Znzcd1−zS
などの■−■族半導体やこれらの固溶体を用いると更に
損失を小さくすることができる。■−v族半導体におい
てもInP、GaP、AIPを含む固溶体や、窒化物を
含む固溶体などを使用することができる。非線形材料と
しては必ずしも単結晶膜である必要はなく、LiNbO
3,LiTaO3,PZT、PLZT  など酸化物系
材料も使用可能であるが反射面9′を共振器面として使
うことなど考慮すると単結晶膜が望ましい。これらを考
慮すると、クラッド層6,7および非線形媒体よりなる
導波層eとして、ZnS 、CdS 、Zn5e 。
Taking GaAs-based materials as an example, GaAjI
The substrate 1 is made of GaAs, the active layer 3 is made of GaAs, and the cladding layer 2 is made of GaAs.
.. 4, the loss will be smaller if X is made as thick as possible in AlxGa1-AirAs and brought closer to the AlAs layer. In addition, ZnS a, 5e1-a, Znzcd1-zS
The loss can be further reduced by using a ■-■ group semiconductor such as or a solid solution thereof. (2) In the case of V-group semiconductors, solid solutions containing InP, GaP, AIP, solid solutions containing nitrides, etc. can be used. The nonlinear material does not necessarily have to be a single crystal film, but LiNbO
3. Although oxide materials such as LiTaO3, PZT, and PLZT can be used, a single crystal film is preferable in consideration of the fact that the reflective surface 9' is used as a resonator surface. Taking these into consideration, ZnS, CdS, and Zn5e are used as the cladding layers 6 and 7 and the waveguide layer e made of a nonlinear medium.

CdSeを固溶体化したものおよび本体■−■族層が有
効であり、ZnS−GaP、Zn5e−GaAsなどI
I −V[と■−■の固溶体なども有効である。
Solid solution of CdSe and main body ■-■ group layer are effective, and I
Solid solutions of I-V[ and ■-■ are also effective.

第2の実施例の断面構造図を第2図に示す。第2図は非
線形導波路部6をレーザ活性層3上にもクラッド層4を
はさんで全面に構成したものである。番号第2図におい
て、第1図と同一のものは第1図と同じ番号を記してい
る。活性層3で発した波長λ。の光は導波路eと結合し
て導波路6層内に導入される。このような構成では2次
高調波は活性層3で吸収されることが少なく吸収損失を
下げることができる。成長層の順番を逆にして非線形導
波路層をレーザ活性層部3の下側(基板側)に構成する
のも同様である。
A cross-sectional structural diagram of the second embodiment is shown in FIG. In FIG. 2, a nonlinear waveguide section 6 is constructed over the entire surface of the laser active layer 3 with a cladding layer 4 interposed therebetween. Numbers In FIG. 2, the same parts as in FIG. 1 are designated by the same numbers as in FIG. 1. Wavelength λ emitted from active layer 3. The light is coupled with the waveguide e and introduced into the waveguide layer 6. With such a configuration, second harmonics are less likely to be absorbed by the active layer 3, and absorption loss can be reduced. The same can be said of reversing the order of the growth layers and configuring the nonlinear waveguide layer below the laser active layer section 3 (on the substrate side).

さらに活性層でのλ。波長の吸収損失を下げる方法とし
て、活性層をできる限り薄くするだけでなく超格子構造
にすることによって可能となる。
Furthermore, λ in the active layer. As a method of reducing wavelength absorption loss, it is possible to not only make the active layer as thin as possible but also to make it have a superlattice structure.

発明の効果 本発明のようにレーザと2次高調波発生装置とを一体化
構成にすること、端面フィルタを選択すること、非線形
材料を選択すること、クラッド層を選択すること、構成
を工夫することなどによって、 1.2次高調波への変換効率を大巾に上げることができ
る。
Effects of the invention As in the present invention, the laser and the second harmonic generator are integrated, the end filter is selected, the nonlinear material is selected, the cladding layer is selected, and the structure is devised. By doing this, the conversion efficiency to the 1.2nd harmonic can be greatly increased.

2、非線形導波路部の長さを短くできる。2. The length of the nonlinear waveguide section can be shortened.

3、格子整合をとることが可能でエピタキシャル成長で
構成でき高出力、高信頼性が可能である0 などのすぐれた効果を有する光出力装置を得ることがで
きるものである。
3. It is possible to obtain a light output device having excellent effects such as 0, which can achieve lattice matching, can be constructed by epitaxial growth, and can provide high output and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光出力装置の断面図、第2
図は本発明能の実施例の光出力装置の断面図、第3図は
従来の光出力装置の構成を示す斜視図である。 1・・・・・・化合物半導体基板、2・・・・・・n型
クラフト層、3・・・・・・レーザ活性層、4,6・・
・・・・クラッド層、6・・・・・・非線形導波層、8
.e・・・・・・膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 1 is a sectional view of a light output device according to an embodiment of the present invention, and FIG.
The figure is a sectional view of a light output device according to an embodiment of the present invention, and FIG. 3 is a perspective view showing the configuration of a conventional light output device. DESCRIPTION OF SYMBOLS 1... Compound semiconductor substrate, 2... N-type kraft layer, 3... Laser active layer, 4, 6...
...Clad layer, 6...Nonlinear waveguide layer, 8
.. e...Membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)同一基体上にダブルヘテロ接合構造を有する半導
体レーザの活性領域に近接して、非線型光学媒体よりな
る光導波路を有する2次高調波発生装置を構成し、前記
レーザと接しない導波路端部には、1次波を反射し2次
波を透過する膜を構成し、前記導波路と接しないレーザ
端部には1次波、2次波ともに反射する膜を形成するこ
とを特徴とする光出力装置。
(1) Constructing a second harmonic generation device having an optical waveguide made of a nonlinear optical medium close to the active region of a semiconductor laser having a double heterojunction structure on the same substrate, and a waveguide not in contact with the laser. A film that reflects the primary wave and transmits the secondary wave is formed at the end, and a film that reflects both the primary wave and the secondary wave is formed at the end of the laser not in contact with the waveguide. A light output device.
(2)レーザのクラッド部および非線型光学媒体よりな
る光導波路のクラッド部を、1次レーザ波に相当するバ
ンドギャップよりも大きいバンドギャップの半導体にて
構成してなる特許請求の範囲第1項記載の光出力装置。
(2) Claim 1, wherein the cladding part of the laser and the cladding part of the optical waveguide made of the nonlinear optical medium are made of a semiconductor with a bandgap larger than the bandgap corresponding to the primary laser wave. The light output device described.
(3)レーザのクラッド部を間接遷移型半導体にて構成
してなる特許請求の範囲第1項記載の光出力装置。
(3) The light output device according to claim 1, wherein the cladding portion of the laser is made of an indirect transition type semiconductor.
(4)III−V族化合物半導体からなる基体上に、III−
V族化合物半導体より構成されるレーザ部とII−IV族化
合物半導体の非線型光学媒体よりなる光導波路を形成し
た特許請求の範囲第1項記載の光出力装置。
(4) On a substrate made of a III-V compound semiconductor,
2. The optical output device according to claim 1, wherein a laser section made of a group V compound semiconductor and an optical waveguide made of a nonlinear optical medium made of a group II-IV compound semiconductor are formed.
(5)レーザ部の活性領域を量子井戸構造としてなる特
許請求の範囲第1項記載の光出力装置。
(5) The light output device according to claim 1, wherein the active region of the laser section has a quantum well structure.
JP22800885A 1985-10-14 1985-10-14 Light output device Pending JPS6286881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22800885A JPS6286881A (en) 1985-10-14 1985-10-14 Light output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22800885A JPS6286881A (en) 1985-10-14 1985-10-14 Light output device

Publications (1)

Publication Number Publication Date
JPS6286881A true JPS6286881A (en) 1987-04-21

Family

ID=16869730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22800885A Pending JPS6286881A (en) 1985-10-14 1985-10-14 Light output device

Country Status (1)

Country Link
JP (1) JPS6286881A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361173U (en) * 1986-10-08 1988-04-22
JPS63269133A (en) * 1987-04-28 1988-11-07 Matsushita Electric Ind Co Ltd Light source for optical pickup
JPH01134984A (en) * 1987-11-19 1989-05-26 Mitsubishi Electric Corp Semiconductor laser device
JPH01172936A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Manufacture of optical wavelength converting element
JPH01175286A (en) * 1987-12-28 1989-07-11 Canon Inc Semiconductor laser element
JPH01287628A (en) * 1988-05-16 1989-11-20 Matsushita Electric Ind Co Ltd Generation of second harmonic wave light
EP0343591A2 (en) * 1988-05-26 1989-11-29 Matsushita Electric Industrial Co., Ltd. Visible laser source
JPH01313980A (en) * 1988-06-14 1989-12-19 Canon Inc Second harmonic wave generating device
US5179566A (en) * 1988-09-01 1993-01-12 Seiko Epson Corporation Light-generating device and method of fabricating same
JPH0575189A (en) * 1991-09-11 1993-03-26 Fuji Photo Film Co Ltd Laser diode pumping solid laser
US5237636A (en) * 1991-06-14 1993-08-17 Fuji Photo Film Co., Ltd. Optical wavelength converting apparatus
EP0654874A1 (en) * 1993-11-22 1995-05-24 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
US6496299B2 (en) 1994-09-14 2002-12-17 Matsushita Electric Industrial Co., Ltd. Method for stabilizing output of higher harmonic waves and short wavelength laser beam source using the same
WO2003073147A1 (en) * 2002-02-21 2003-09-04 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Beam-guiding and/or frequency-converting optical system and method for producing the same
WO2008085273A1 (en) * 2006-12-21 2008-07-17 Coherent, Inc. Frequency-doubled edge-emitting semiconductor lasers
JP2012195395A (en) * 2011-03-16 2012-10-11 Fujitsu Ltd Hybrid optical device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514538Y2 (en) * 1986-10-08 1993-04-19
JPS6361173U (en) * 1986-10-08 1988-04-22
JPS63269133A (en) * 1987-04-28 1988-11-07 Matsushita Electric Ind Co Ltd Light source for optical pickup
JPH01134984A (en) * 1987-11-19 1989-05-26 Mitsubishi Electric Corp Semiconductor laser device
JPH01172936A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Manufacture of optical wavelength converting element
JPH01175286A (en) * 1987-12-28 1989-07-11 Canon Inc Semiconductor laser element
JPH01287628A (en) * 1988-05-16 1989-11-20 Matsushita Electric Ind Co Ltd Generation of second harmonic wave light
EP0343591A2 (en) * 1988-05-26 1989-11-29 Matsushita Electric Industrial Co., Ltd. Visible laser source
JPH01313980A (en) * 1988-06-14 1989-12-19 Canon Inc Second harmonic wave generating device
US5179566A (en) * 1988-09-01 1993-01-12 Seiko Epson Corporation Light-generating device and method of fabricating same
US5237636A (en) * 1991-06-14 1993-08-17 Fuji Photo Film Co., Ltd. Optical wavelength converting apparatus
JPH0575189A (en) * 1991-09-11 1993-03-26 Fuji Photo Film Co Ltd Laser diode pumping solid laser
EP0654874A1 (en) * 1993-11-22 1995-05-24 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
US6496299B2 (en) 1994-09-14 2002-12-17 Matsushita Electric Industrial Co., Ltd. Method for stabilizing output of higher harmonic waves and short wavelength laser beam source using the same
WO2003073147A1 (en) * 2002-02-21 2003-09-04 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Beam-guiding and/or frequency-converting optical system and method for producing the same
WO2008085273A1 (en) * 2006-12-21 2008-07-17 Coherent, Inc. Frequency-doubled edge-emitting semiconductor lasers
US7433374B2 (en) 2006-12-21 2008-10-07 Coherent, Inc. Frequency-doubled edge-emitting semiconductor lasers
JP2012195395A (en) * 2011-03-16 2012-10-11 Fujitsu Ltd Hybrid optical device

Similar Documents

Publication Publication Date Title
US5384797A (en) Monolithic multi-wavelength laser diode array
JPS6286881A (en) Light output device
EP0322847B1 (en) Second harmonic wave generating device having active layer and second harmonic wave generating layer on same substrate
US4665527A (en) Distributed feedback semiconductor laser
JPS5939083A (en) Light emitting surface type semiconductor laser
JP3146505B2 (en) Integrated semiconductor laser device
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
KR970004500B1 (en) Semiconductor laser device
JP3006553B2 (en) Semiconductor integrated polarization mode converter
JPH04206791A (en) Semiconductor laser device
JP3215477B2 (en) Semiconductor distributed feedback laser device
JPH0410582A (en) Semiconductor optical element
US5337399A (en) Wavelength conversion element
JPH02221941A (en) Cherenkov radiation type secondary higher harmonic generation device
JPH04111488A (en) Semiconductor laser
JPS63164379A (en) Photo output device
JPH04212938A (en) Wavelength converting element
JPH0566439A (en) Light wavelength conversion device
JP2005079541A (en) Semiconductor optical amplifier and its manufacturing method
JPH0548198A (en) Semiconductor second harmonic light emitting device
JP2903017B1 (en) Optical amplifier
JP3075822B2 (en) Semiconductor distributed feedback laser device
JPH0667236A (en) Wavelength conversion element
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JP2009135555A (en) Semiconductor optical amplifier, and manufacturing method thereof