JPS6284288A - High-temperature baking furnace - Google Patents

High-temperature baking furnace

Info

Publication number
JPS6284288A
JPS6284288A JP22323785A JP22323785A JPS6284288A JP S6284288 A JPS6284288 A JP S6284288A JP 22323785 A JP22323785 A JP 22323785A JP 22323785 A JP22323785 A JP 22323785A JP S6284288 A JPS6284288 A JP S6284288A
Authority
JP
Japan
Prior art keywords
tube
furnace core
furnace
core tube
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22323785A
Other languages
Japanese (ja)
Inventor
深尾 隆久
木住野 邦夫
高木 司美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP22323785A priority Critical patent/JPS6284288A/en
Publication of JPS6284288A publication Critical patent/JPS6284288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Inorganic Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温焼成炉に関するものであシ、更に詳しくは
、炭素繊維等の焼成工程に適した高温焼成炉に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-temperature firing furnace, and more particularly to a high-temperature firing furnace suitable for firing carbon fibers and the like.

(従来の技術) 一般に、長繊維等の焼成工程には、いわゆる高温雰囲気
を作るための焼成、炉が必要であり、高温雰囲気の達成
には、炉口体の取シ扱いのしやすさ、温度調節のしやす
さを考慮して、電気抵抗加熱方式、!気誘導加熱方式等
が多く用いられている。
(Prior art) Generally, the firing process for long fibers requires a firing or furnace to create a so-called high-temperature atmosphere. Electric resistance heating method, considering the ease of temperature control! Air induction heating methods are often used.

例えば、第1図(但し、3〜?は除く)に示すような通
常の電気抵抗加熱炉に於ては、電極lは炉芯管−の上下
に炉芯管の軸方向に対して直角方向に並んでおり、各部
雰囲気温度を調節可能なように炉芯管長手方向に任意に
分割されていて、それぞれ分割部が独立に電源に接続さ
れている。電極/から炉芯管−へは熱は主に放射で伝達
するが、該電極の外側には放熱を抑えるための断熱材3
、さらに該断熱材および該電極端部の過熱防止のために
、外表面にはジャケットttが設けられ、冷却されてい
る。
For example, in a normal electric resistance heating furnace as shown in Fig. 1 (excluding numbers 3 to ?), the electrodes l are placed above and below the furnace core tube in a direction perpendicular to the axial direction of the furnace core tube. The furnace core tube is arbitrarily divided in the longitudinal direction so that the atmospheric temperature of each part can be adjusted, and each divided part is independently connected to a power source. Heat is mainly transmitted from the electrode to the furnace core tube by radiation, but there is a heat insulating material 3 on the outside of the electrode to suppress heat radiation.
Furthermore, in order to prevent the heat insulating material and the end of the electrode from overheating, a jacket tt is provided on the outer surface for cooling.

また、炉芯管コは被焼成物を各帯域毎にそれぞれ設足さ
れた温度において可及的定常的条件下で焼成することを
主な目的としておシ、該炉芯管の材質としては、加熱温
度によって各種のセラミック、グラファイト等が用いら
れる。
In addition, the main purpose of the furnace core tube is to fire the material to be fired at a temperature set for each zone under as steady a condition as possible, and the material of the furnace core tube is as follows: Various ceramics, graphite, etc. are used depending on the heating temperature.

被焼成物の焼成温度は前述のように各分割部の電極に印
加する電流値又は電圧値によって制御される。
As described above, the firing temperature of the object to be fired is controlled by the current value or voltage value applied to the electrodes of each divided portion.

ここで、ポリアクリロニトリル、セルロース、石炭ピッ
チ、石油ピッチ等を原料として炭素縁m全製造する場合
は、紡糸後、耐炎化処理あるいは不融化処理を行ない1
次いで炭化処理と続き、更に必要によυ黒鉛化処理が施
されるが、このうち炭化処理及び黒鉛化処理は通常不活
性雰囲気中で行なわれている。
When manufacturing carbon fibers using polyacrylonitrile, cellulose, coal pitch, petroleum pitch, etc. as raw materials, flameproofing treatment or infusibility treatment is performed after spinning.
Next, carbonization treatment is followed, and if necessary, υ graphitization treatment is performed. Of these, carbonization treatment and graphitization treatment are usually performed in an inert atmosphere.

具体的には炭化処理の場合は、窒素雰囲気下200−二
〇00℃、黒鉛化処理の場合は窒素あるいはアルゴン雰
囲気下コSOO〜3000℃程度の条件で実施されてい
る。
Specifically, in the case of carbonization treatment, it is carried out at 200-2000°C in a nitrogen atmosphere, and in the case of graphitization treatment, it is carried out in a nitrogen or argon atmosphere at a temperature of about SOO-3000°C.

(発明が解決しようとする問題点) しかしながら、従来の高温焼成炉では、繊維の移動に伴
ない炉芯管内部KM業が持ち込まれ、高温雰囲気下での
酸素の存在によシ、被処理物である炭素繊維等や劣化が
著しく、更にはグラファイト製炉芯管を用いる場合は炉
芯管自体の劣化を生じる問題があった。
(Problems to be solved by the invention) However, in conventional high-temperature firing furnaces, KM work is carried out inside the furnace core tube as the fibers move, and due to the presence of oxygen in the high-temperature atmosphere, the workpiece In addition, when a graphite furnace core tube is used, there is a problem in that the furnace core tube itself deteriorates.

(問題点を解決するための手段) そこで1本発明者等は上記の問題点を解決すべく欽意検
討を行なった結果、少なくとも炉芯管の入口側端部付近
に炉芯管に対し反対方向に不活性気体を流通する帯域を
設けることによシ、炉芯管内部への酸素の流入を防げる
ことを見いだし、本発明に到達した。
(Means for Solving the Problems) Therefore, as a result of conducting a public opinion study in order to solve the above problems, the inventors of the present invention et al. It has been discovered that oxygen can be prevented from flowing into the furnace core tube by providing a zone in which an inert gas flows in the same direction, and the present invention has been achieved based on this discovery.

すなわち1本発明の目的は炉芯管内部に酸素が実質的に
存在しないようにした高温焼成炉を提供するものである
。そしてその目的は炉芯管。
That is, one object of the present invention is to provide a high-temperature firing furnace in which substantially no oxygen exists inside the furnace core tube. And its purpose is the hearth tube.

該炉芯管の外側に設けられた該炉芯管を加熱するための
加熱部及び該加熱部の熱の方散を防ぐだめの断熱制服か
ら構成された高温焼成炉であって、不活性気体導入口を
有する外筒と多孔性内部からなる二重管を少なくとも前
記炉芯管入口也11端部に設け、かつ該多孔性内筒が内
筒外表面から内筒内表面に向って前記炉芯管から遠ざか
る方向の貫通した多数の細孔を有することを特徴とする
高温焼成炉によシ容易に達成される。
A high-temperature firing furnace comprising a heating section for heating the furnace core tube provided outside the furnace core tube and an insulating uniform for preventing heat dissipation in the heating section, the furnace comprising an inert gas A double tube consisting of an outer tube having an inlet and a porous interior is provided at least at the inlet end of the furnace core tube 11, and the porous inner tube extends from the outer surface of the inner tube toward the inner surface of the inner tube. This can be easily achieved using a high-temperature firing furnace characterized by having a large number of pores extending through the core tube in a direction away from the core tube.

以下1本発明を図面を設いて詳しく説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の高温焼成炉の実施態様の−filを示
すもので、その縦断面図である。
FIG. 1 shows -fil of an embodiment of the high-temperature firing furnace of the present invention, and is a longitudinal sectional view thereof.

ここでlは加熱用発熱体、コは炉芯管、Jは断熱制、ダ
は炉体用ジャケットssは多孔性内筒、6は細孔、7は
外筒、lは不活性気体導入口、りは不活性気体導出口、
IOは繊維の移動方向をそれぞれ示す。
Here, l is the heating element, C is the furnace core tube, J is the insulation system, Da is the furnace jacket ss is the porous inner cylinder, 6 is the pore, 7 is the outer cylinder, and l is the inert gas inlet. , ri is an inert gas outlet,
IO indicates the direction of movement of the fibers.

多孔性内筒3は炉芯管コと連通して設けられており、被
焼成物である繊維は移動方向10に従い不活性気体導出
ロブより挿入され、多孔性内筒j、炉炉芯ココ順で移送
される。
The porous inner cylinder 3 is provided in communication with the furnace core, and the fibers to be fired are inserted through the inert gas guide lobe according to the moving direction 10, and the porous inner cylinder 3 is connected to the furnace core in this order. will be transferred.

不活性気体は外筒りに設けられた不活性気体導入口tか
ら導入され多孔性内筒!の細孔6により炉芯管に対し反
対方向に流通し、不活性気体導出ロブよシ系外へIl’
i出される。
The inert gas is introduced from the inert gas inlet t provided on the outer cylinder and into the porous inner cylinder! Flows in the opposite direction to the furnace core tube through the pores 6 of
i will be served.

ここで多孔性内筒3に設けられた細孔6は内筒外表面か
ら内筒内表面に向って炉芯管から遠ざかる方向の貫通し
たものであってかかる細孔6によシ多孔性内筒!内に導
入された不活性気体は炉芯管λから遠ざかるような方向
に流通するのである。
Here, the pores 6 provided in the porous inner cylinder 3 penetrate from the outer surface of the inner cylinder toward the inner surface of the inner cylinder in a direction away from the furnace core tube. Tube! The inert gas introduced into the furnace flows in a direction away from the furnace core tube λ.

細孔6の形状は不活性気体が炉芯管−から遠ざかるよう
な方向に流通するものであれば、特に限鼠されるもので
はないが1例えば内筒外表面から内筒内表面に同って炉
芯管コから遠ざかるように直線的に傾斜した形状、ある
いは内筒外表面から内筒内表面に至る途中で屈曲するよ
うな形状等が挙げられる。
The shape of the pores 6 is not particularly limited as long as the inert gas flows in a direction away from the furnace core tube. Examples include a shape that is linearly inclined away from the furnace core tube, or a shape that is bent on the way from the outer surface of the inner cylinder to the inner surface of the inner cylinder.

したがって、かかる不活性気体の流通により。Therefore, by the flow of such an inert gas.

多孔性内筒j内に一旦流入した酸素等を含有した外気は
不活性気体とともに系外へ排出され。
The outside air containing oxygen and the like once entered into the porous inner cylinder j is discharged out of the system together with the inert gas.

多孔性内筒ま内に実質的に不活性雰囲気に保持される。A substantially inert atmosphere is maintained within the porous inner cylinder.

このようにして、予じめ不活性雰囲気とした炉芯管コ内
には外部からの酸素等の流入がなく。
In this way, there is no inflow of oxygen or the like from the outside into the furnace core tube, which has been made into an inert atmosphere in advance.

酸素濃度が!; Oppm以下、好ましくは/ Opp
m以下、更に好ましくは!r ppm以下に維持される
Oxygen concentration! ; less than or equal to Oppm, preferably / Opp
m or less, more preferably! r maintained below ppm.

不活性気体としては、焼成工程中に被焼成物である繊維
を酸化あるいは燃焼させたり、炉内で反応したりしない
ものであれば特に限定されないが、入手の容易さ、操作
の簡便さ等を考慮すると窒素、あるいはアルゴンを使用
するのが好ましい。
The inert gas is not particularly limited as long as it does not oxidize or burn the fibers to be fired during the firing process or react in the furnace, but it may be suitable for ease of availability, ease of operation, etc. Considering this, it is preferable to use nitrogen or argon.

不活性気体の導入量は通常0.!; −’I T11y
hr 。
The amount of inert gas introduced is usually 0. ! ;-'I T11y
hr.

好ましくは/〜−m″/hrであるが、多孔性内筒!の
細孔6におけるガス流速が7〜t rn/aθC1好ま
しくは一〜iVθθCとなるように導入するのがよい。
The gas flow rate in the pores 6 of the porous inner cylinder is preferably 7 to - m''/hr, preferably 1 to iVθθC.

また上述したように細孔6は不活性気体を系外へ導出す
るように炉芯管−から遠ざかるような方向に傾斜もしく
は屈曲されるが、その傾斜角度は内筒の中心線方向に対
しio−goo、好ましくは20−13”となるように
傾斜させる。
Further, as mentioned above, the pores 6 are inclined or bent in a direction away from the furnace core tube so as to lead the inert gas out of the system, but the angle of inclination is io -goo, preferably 20-13''.

また不活性気体導出口側付近と炉芯管側付近の傾斜角度
は上記範囲内である限シ、変化させてもよい。
Further, the inclination angles near the inert gas outlet side and near the furnace core tube side may be varied as long as they are within the above ranges.

不活性気体導出口9の断面積を多孔性内筒りの断面積よ
りも小さくすると、流入する酸素を官有した外気の流入
量を抑えることができるので好ましい。具体的には内筒
の径が/S〜301に対し、4出口の径′f;r:il
〜10mとするのがよい。
It is preferable to make the cross-sectional area of the inert gas outlet 9 smaller than the cross-sectional area of the porous inner cylinder, since this makes it possible to suppress the amount of outside air containing oxygen flowing in. Specifically, the diameter of the inner cylinder is /S~301, and the diameter of the 4 outlets 'f;r:il
It is preferable to set it to ~10m.

本発明の二重管は各炉芯毎に設けてもよいが。The double tube of the present invention may be provided for each furnace core.

2個以上の炉芯管に共通したものも用いることができる
It is also possible to use one that is common to two or more furnace core tubes.

本発明においてはかかる構造の二重骨を少なくとも炉芯
管入口側端部に設けることにより、炉芯管内の酸素濃度
を十分低@度で保持できるが、炉芯管の両端にそれぞれ
設置すると、その効果がよシ向上するので炉芯管両端に
設置するのが好ましい。
In the present invention, by providing double ribs with such a structure at least at the inlet end of the furnace core tube, the oxygen concentration within the furnace core tube can be maintained at a sufficiently low level. However, if they are installed at both ends of the furnace core tube, It is preferable to install them at both ends of the furnace core tube, as this will improve the effect.

また、炉芯管は炉の規模に応じて必要本数を設ければよ
く、その形状も円形、角形に限定されるものではない。
Further, the required number of furnace core tubes may be provided depending on the scale of the furnace, and the shape thereof is not limited to circular or square.

(効 果) 本発明によれば、炉芯管内に酸素が実質的に存在しない
ような状態に保持できるので、炭素繊維等の焼成の際に
繊維強度等の劣化を防止され%制特性の炭素繊維等る得
ることができる。
(Effects) According to the present invention, since it is possible to maintain a state in which substantially no oxygen exists in the furnace core tube, deterioration of fiber strength etc. is prevented during firing of carbon fibers, etc. fiber etc. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高温焼成炉の一例の概略縦断面図であ
る。 /;加熱用発熱体  ユ;炉芯管 3;断熱材      亭;炉本体用ジャケットS;多
孔性内筒   6:細孔
FIG. 1 is a schematic vertical cross-sectional view of an example of a high-temperature firing furnace of the present invention. /; Heat generating element for heating; Furnace core tube 3; Heat insulating material; Furnace body jacket S; Porous inner tube 6: Pore

Claims (3)

【特許請求の範囲】[Claims] (1)炉芯管、該炉芯管の外側に設けられた該炉芯管を
加熱するための加熱部及び該加熱部の熱の放散を防ぐた
めの断熱材層から構成された高温焼成炉であつて、不活
性気体導入口を有する外筒と多孔性内筒からなる二重管
を少なくとも前記炉芯管入口側端部に設け、かつ該多孔
性内筒が内筒外表面から内筒内表面に向つて前記炉芯管
から遠ざかる方向の貫通した多数の細孔を有することを
特徴とする高温焼成炉。
(1) A high-temperature firing furnace composed of a furnace core tube, a heating section provided outside the furnace core tube for heating the furnace core tube, and a heat insulating material layer for preventing heat dissipation in the heating section. A double tube consisting of an outer tube having an inert gas inlet and a porous inner tube is provided at least at the inlet end of the furnace core tube, and the porous inner tube extends from the outer surface of the inner tube to the inner tube. A high-temperature firing furnace characterized by having a large number of pores penetrating toward the inner surface in a direction away from the furnace core tube.
(2)二重管の炉芯管側とは反対側の端部に設けられた
開口部の断面積が二重管内筒の断面積より小さいことを
特徴とする特許請求の範囲第1項記載の高温焼成炉。
(2) Claim 1, characterized in that the cross-sectional area of the opening provided at the end of the double tube opposite to the furnace core tube side is smaller than the cross-sectional area of the inner cylinder of the double tube. high-temperature firing furnace.
(3)不活性気体が窒素もしくはアルゴンであることを
特徴とする特許請求の範囲第1項記載の高温焼成炉。
(3) The high-temperature firing furnace according to claim 1, wherein the inert gas is nitrogen or argon.
JP22323785A 1985-10-07 1985-10-07 High-temperature baking furnace Pending JPS6284288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22323785A JPS6284288A (en) 1985-10-07 1985-10-07 High-temperature baking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22323785A JPS6284288A (en) 1985-10-07 1985-10-07 High-temperature baking furnace

Publications (1)

Publication Number Publication Date
JPS6284288A true JPS6284288A (en) 1987-04-17

Family

ID=16794946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22323785A Pending JPS6284288A (en) 1985-10-07 1985-10-07 High-temperature baking furnace

Country Status (1)

Country Link
JP (1) JPS6284288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002879A1 (en) * 2012-06-27 2014-01-03 三菱レイヨン株式会社 Carbonization furnace for manufacturing carbon fiber bundles and method for manufacturing carbon fiber bundles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002879A1 (en) * 2012-06-27 2014-01-03 三菱レイヨン株式会社 Carbonization furnace for manufacturing carbon fiber bundles and method for manufacturing carbon fiber bundles
CN104395514A (en) * 2012-06-27 2015-03-04 三菱丽阳株式会社 Carbonization furnace for manufacturing carbon fiber bundles and method for manufacturing carbon fiber bundles
JP5704241B2 (en) * 2012-06-27 2015-04-22 三菱レイヨン株式会社 Carbonization furnace for producing carbon fiber bundles and method for producing carbon fiber bundles
TWI507578B (en) * 2012-06-27 2015-11-11 Mitsubishi Rayon Co Carbide furnace for fabricating carbon fiber bundle and fabricating method of carbon fiber bundle
US9267080B2 (en) 2012-06-27 2016-02-23 Mitsubishi Rayon Co., Ltd. Carbonization furnace for manufacturing carbon fiber bundle and method for manufacturing carbon fiber bundle

Similar Documents

Publication Publication Date Title
US4820905A (en) Carbonizing furnace
JPS6284288A (en) High-temperature baking furnace
US3632979A (en) Converter for producing controlled atmosphere for heat treating
JPS6311448B2 (en)
SU1440358A3 (en) Sintering furnace
CN212247122U (en) Electric heating system of box type multipurpose furnace
JPS6284289A (en) High-temperature baking furnace
US2147071A (en) Electric furnace
JPS61195274A (en) Device used for direct current arc furnace
JPH11304364A (en) External heat type rotary kiln
JPH076866A (en) Heater element
CN212576323U (en) Novel heating furnace wire
SU964401A1 (en) Heat insulation of vacuum electric furnaces
JP2891498B2 (en) Dehydration sintering furnace
JPS59137722A (en) Method and device for igniting gassy fuel
CN215217155U (en) Smelting electric furnace for smelting metal lithium and alloy thereof
JPH047078B2 (en)
JPS60108686A (en) High-temperature calciner
JPS6336038Y2 (en)
JPS5996691A (en) Resistance heating furnace
JPH06236794A (en) Heating pipe industrial furnace, industrial furnace and heating of furnace
JPH0429357Y2 (en)
JPS60209018A (en) Manufacture of carbon fiber
JP2951426B2 (en) Optical fiber drawing method
SU1196657A1 (en) Furnace lining with internal heat recuperation