JPS6281431A - Resin molding and its production - Google Patents

Resin molding and its production

Info

Publication number
JPS6281431A
JPS6281431A JP22075885A JP22075885A JPS6281431A JP S6281431 A JPS6281431 A JP S6281431A JP 22075885 A JP22075885 A JP 22075885A JP 22075885 A JP22075885 A JP 22075885A JP S6281431 A JPS6281431 A JP S6281431A
Authority
JP
Japan
Prior art keywords
molding
resin molded
resin
molded product
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22075885A
Other languages
Japanese (ja)
Other versions
JPH0554856B2 (en
Inventor
Toshiaki Nakamaru
中丸 敏明
Keinosuke Isono
啓之介 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22075885A priority Critical patent/JPS6281431A/en
Publication of JPS6281431A publication Critical patent/JPS6281431A/en
Publication of JPH0554856B2 publication Critical patent/JPH0554856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the titled molding low in shrinkage and moderate in gas permeability and penetrability, antibacterial property and liquid tightness, by extracting a molding obtained by molding a specified resin composition with a solvent and thereby forming open cells in the molding. CONSTITUTION:100pts.wt. crystalline thermoplastic resin (A) such as PE is mixed with 50-200pts.wt. fibrous inorganic filler (B) such as MgO having a length/diameter ratio >=15 and 20-150pts.wt. organic compound (C) which is compatible with component A at a temperature higher than the melting point of component A, does not volatilize in a molding step and can show flow in a range of room temperature to the molding temperature (e.g., liquid paraffin) (the total of components A and B is 100pts.wt.) to obtain a uniform resin composition (D). Component D is molded by injection molding or the like to obtain a molding (E), to which is added a solvent (e.g., ketone) which is a good solvent for component C and a poor solvent for component A to remove component C contained in molding E by extraction to form fine open cells of a maximum pore diameter <=15mum in the molding.

Description

【発明の詳細な説明】 [産業上の利用分野コ 透過性を有する樹脂成形物及びその製造方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a transparent resin molded product and a method for manufacturing the same.

更に詳しくは結晶性熱可塑性樹脂(A)と無機繊維状充
填剤(B)と有機化合物(C)とを均一に混練した樹脂
組成物を射出成形法もしくは押出成形法にて成形L、し
かる後、該成形物を(C)の良溶媒で、(A>に対して
は貧溶媒である溶媒で(C)を抽出除去することにより
該成形物に微細な連通空孔を形成させる事を特徴とする
樹脂成形物の製造方法に関するものであり、得られた製
品は発水性であり、水溶液には液密性でありなから、通
気性を有L、一部の有機溶媒には浸透性を有しなから、
通気性を有する。
More specifically, a resin composition obtained by uniformly kneading a crystalline thermoplastic resin (A), an inorganic fibrous filler (B), and an organic compound (C) is molded by an injection molding method or an extrusion molding method, and then molded. , characterized in that fine communicating pores are formed in the molded product by extracting and removing (C) with a good solvent for (C) and a poor solvent for (A>). The product is water-repellent, liquid-tight to aqueous solutions, breathable, and permeable to some organic solvents. Because I don't have it,
Has breathability.

[従来の技術] 近年生活環境の改善を目的として、各種包装形態及び包
装資材の改良が成されている。例えば、除湿剤、芳香剤
、防虫剤、脱臭剤、消臭剤、乾燥剤等の包材には、従来
から和紙あるいは不織布、多孔質膜、開口部を有するガ
ラスまたはプラスチック容器、一部を通気性部材に置き
換えたガラスまたはプラスチック容器等が使用されてお
り生活環境の改善に役立てられている。
[Prior Art] In recent years, various packaging forms and packaging materials have been improved for the purpose of improving the living environment. For example, packaging materials for dehumidifiers, air fresheners, insect repellents, deodorizers, deodorants, desiccants, etc. have traditionally been made of Japanese paper or nonwoven fabric, porous membranes, glass or plastic containers with openings, and parts that are ventilated. Glass or plastic containers, etc., have been replaced with plastic parts and are being used to improve the living environment.

特開昭 59−232127号公報には、微多孔質壁を
有する容器及びその製造方法が開示されている。′前記
容器は、溶媒に難溶性の熱可塑性樹脂と溶媒に易溶性の
熱可塑性樹脂または化合物と更に必要に応じて適宜の無
機物とを含む樹脂組性物を成形L、その後、熱可塑性樹
脂又は化合物をその溶媒抽出除去してなる微多孔壁を有
する容器である。
JP-A-59-232127 discloses a container having a microporous wall and a method for manufacturing the same. 'The container is made by molding a resin composition containing a thermoplastic resin that is poorly soluble in a solvent, a thermoplastic resin or compound that is easily soluble in a solvent, and further an appropriate inorganic substance as necessary, and then molding This is a container with a microporous wall obtained by removing a compound by solvent extraction.

しかL、抽出除去される物質は熱可塑性樹脂又は化合物
等の高分子量物質であり、又明細書中にはこの抽出除去
される物質が、溶媒にて少なくとも一部が溶出され得る
成分と明記されている。
However, the substance to be extracted and removed is a high molecular weight substance such as a thermoplastic resin or a compound, and the specification clearly states that the substance to be extracted and removed is a component that can be at least partially eluted with a solvent. ing.

さらに抽出溶媒は高沸点の溶媒であり、又抽出時には、
その溶媒を60℃〜80℃に加温することが記載されて
いる。
Furthermore, the extraction solvent is a high boiling point solvent, and during extraction,
It is described that the solvent is heated to 60°C to 80°C.

また、特開昭 59−64640号公報には、多孔性シ
ートの製造方法として結晶性で熱可塑性であるポリマー
と、鉱油、ジオクチルフタレート、ミネラルスピリット
などの化合物とを溶融ブレンドL、溶液からシートを形
成して冷却L、相分離を起こさせた後、延伸糸、前記化
合物を除去する微孔質シートの製造方法が開示されてい
る。
Furthermore, Japanese Patent Application Laid-open No. 59-64640 describes a method for producing a porous sheet in which a crystalline thermoplastic polymer and a compound such as mineral oil, dioctyl phthalate, or mineral spirit are melt-blended L, and a sheet is produced from a solution. A method for producing a microporous sheet is disclosed in which the drawn yarn and the compound are removed after forming and cooling L to cause phase separation.

また、特公昭 5ト32171号公報には、多孔膜の製
造方法として無機微粉体、SP値8.4〜9.9の有機
液状体、とポリオレフィン樹脂とを混合した後溶融成形
L、その後、有機液状体を抽出する微孔性の多孔膜の製
造方法が開示されている。
In addition, Japanese Patent Publication No. 5-32171 describes a method for producing a porous film that involves mixing an inorganic fine powder, an organic liquid having an SP value of 8.4 to 9.9, and a polyolefin resin, followed by melt molding L; A method of manufacturing a microporous membrane for extracting organic liquids is disclosed.

[発明が解決しようとする問題点コ 従来の除湿剤、芳香剤、防虫剤、脱臭剤、消臭剤、乾燥
剤等の包材又は容器は、形状が複雑な為高価であり又薬
剤の寿命を制御する事が困難であるという欠点を有して
いた。
[Problems to be solved by the invention: Conventional packaging materials or containers for dehumidifiers, fragrances, insect repellents, deodorizers, deodorants, desiccants, etc. are expensive due to their complicated shapes, and the lifespan of the drugs is short. The disadvantage was that it was difficult to control.

例えば、黴の発生を防ぐ事を目的とした除湿剤容器は、
潮解性薬剤を容器開口部近傍に底上げした容器と、吸収
した水分を受ける容器との二重槽造と成っている物■と
か、潮解性薬剤を多孔質シートで包装L、網目状開口部
を有する成形物に納める物■等がある。しかL、■につ
いては転倒により薬剤もしくは吸収した水分がこぼれ出
すという欠点があり、又二重構造である為に高価な物と
なる欠点があった。■については多孔質シートは耐水圧
が低く又強度が弱い為に吸収した水分が漏れ出す危険性
があり、又二重構造である為に高価な物となる欠点があ
った。
For example, a dehumidifier container designed to prevent the growth of mold,
A container with a double tank structure consisting of a container with a raised bottom near the opening of the container containing the deliquescent drug and a container that receives the absorbed moisture, or a container with a porous sheet for packaging the deliquescent drug with a mesh opening. There are things that can be stored in molded products. However, L and ■ have the disadvantage that the medicine or absorbed water spills out when they fall over, and they are expensive because they have a double structure. As for (2), the porous sheet has low water pressure resistance and low strength, so there is a risk of absorbed water leaking out, and the double structure makes it expensive.

又芳香剤容器は、香料を寒天又はワセリン等で固体化L
、部分的に開口部を有するガラスまたはプラスチック容
器に入れた物■とか香料を揮発性各課と混合して、部分
的に開口部を有するガラスまたはプラスチック容器に入
れた物■等がある。
In addition, the fragrance container is made by solidifying the fragrance with agar or petrolatum, etc.
There are two types: (1) which is placed in a glass or plastic container with a partial opening, and (2) where fragrance is mixed with volatile components and placed in a glass or plastic container with a partial opening (2).

■については固体化の為の工程が繁雑であり高価な物と
なり、又薬剤の寿命を制御する事が困難であるという欠
点があった。■については転倒により容器ないの薬剤が
欠点があり、又芳香剤の適度あ揮散を行わせる為に開口
部の形状が複雑であり高価な物となる欠点があった。
As for (2), the solidification process is complicated and expensive, and it is difficult to control the lifespan of the drug. As for (2), there is a drawback that the container does not contain the chemical because it may fall over, and the shape of the opening is complicated and expensive in order to ensure proper volatilization of the aromatic agent.

上記のような製品の包材又は容器としては適度の通気性
と強い耐水性と形状保持性とを兼ね備える多孔質体が要
望されている。
As packaging materials or containers for the above-mentioned products, there is a demand for porous bodies that have appropriate air permeability, strong water resistance, and shape retention.

このような要望に対し従来の多孔質体には下記のごとく
重大な欠点が合った。
In response to these demands, conventional porous materials have the following serious drawbacks.

通気性、形状保持性を有する多孔質体として焼結体が上
げられるが、孔径の範囲が0.5μm〜50μmと大き
く気体はほとんど抵抗なく通過するが、液体用容器とし
ては漏れがおき使用不能であり内容物は固体あるいは粒
径の大きなか顆粒に限られ、又製造上の欠点として形状
の自由度が狭く、コストが高いという欠点があった。
A sintered body is used as a porous body that has air permeability and shape retention, but the pore diameter ranges from 0.5 μm to 50 μm, allowing gas to pass through with almost no resistance, but it cannot be used as a container for liquids due to leakage. The contents are limited to solids or granules with a large particle size, and the manufacturing disadvantages include a narrow degree of freedom in shape and high cost.

一方、上記特開昭 59−232127号公報に示され
た方法にて作成した容器は被抽出物が常温で固体の高分
子物質であるため孔の形成が不明確であり高い透過能を
有する程度に抽出するには、高温、長時間等工程的にき
びしい条件が必要であり、透過能を有する製品を連続し
て得ることは非常に困難であった 一方、上記特開昭 59−64640号公報には、ポリ
マーにブレンドした特定の化合物を除去する微孔質シー
トの製造方法が開示されているが、射出成形、ブロー成
形による成形物に関する開示がなく、又延伸工程により
微孔を存在させるころを特徴とする等製法に大きな限定
があった。
On the other hand, in the container prepared by the method disclosed in JP-A No. 59-232127, the pore formation is unclear because the material to be extracted is a polymer substance that is solid at room temperature, and the container has only a high permeability. However, it was extremely difficult to continuously obtain a product with permeation ability, as it was difficult to continuously obtain a product with permeation ability. discloses a method for producing a microporous sheet that removes a specific compound blended with a polymer, but does not disclose a molded product by injection molding or blow molding, and also does not disclose a method for producing a microporous sheet by removing a specific compound blended with a polymer. There were major limitations on the manufacturing method.

一方、上記特開昭 58−32171号公報に示されら
方法で作成された多孔質膜は水湿潤性であり耐水圧が低
いという欠点があった。
On the other hand, the porous membrane prepared by the method disclosed in JP-A-58-32171 has the disadvantage of being water-wettable and having low water pressure resistance.

多孔質成形物の抽出処理後におきる寸法収縮は無機微粉
体の添加では、10%以上起きるという問題があった。
There is a problem in that dimensional shrinkage of porous molded articles after extraction treatment occurs by 10% or more when inorganic fine powder is added.

このため本発明は、溶媒の処理による寸法収縮が少ない
、適度の通気性、浸透性、又は、除菌性と液密性とを兼
ね備えた樹脂成形物を提供することを目的としている。
Therefore, an object of the present invention is to provide a resin molded article that exhibits little dimensional shrinkage due to solvent treatment, has appropriate air permeability, permeability, or has both sterilization and liquid tightness.

[問題点を解決するための手段] 本発明によれば、除湿剤、芳香剤、防虫剤、脱臭剤、消
臭剤、乾燥剤等の活性薬剤の包装形態を安価にかつ簡便
にできる。さらに、連通空孔の最大径及び空孔率を調整
することにより、活性薬剤の寿命が制御できる。さらに
気体は透過するが液体及び固体を密封状態に保つことが
できる。
[Means for Solving the Problems] According to the present invention, active agents such as dehumidifiers, fragrances, insect repellents, deodorizers, deodorants, desiccants, etc. can be packaged inexpensively and easily. Furthermore, by adjusting the maximum diameter and porosity of the open pores, the lifetime of the active agent can be controlled. Furthermore, gases can pass through it, but liquids and solids can remain sealed.

本発明の樹脂成形物は、下記の工程で製造される。The resin molded article of the present invention is manufactured by the following steps.

1)結晶性熱可塑性樹脂(A)100重量部及び、無機
繊維状充填剤(B)50〜200重量部及び、(A)の
溶融温度以上で(A)に相溶L、かつ成形工程で実質的
に揮散しない、常温から成形温度の範囲で実質的に流動
性を有する有機化合物(C)を(A)と(B)の和を1
00重量部としたとき20〜150重量部からなる均一
なん溶融体を作る。その際、必要に応じ0〜1重量部の
カップリング剤を添加してもよい。
1) 100 parts by weight of the crystalline thermoplastic resin (A), 50 to 200 parts by weight of the inorganic fibrous filler (B), and L which is compatible with (A) at a temperature higher than the melting temperature of (A) and in the molding process. An organic compound (C) that does not substantially volatilize and has substantially fluidity in the range from room temperature to molding temperature is added to the sum of (A) and (B) to 1
A homogeneous melt consisting of 20 to 150 parts by weight is prepared. At that time, 0 to 1 part by weight of a coupling agent may be added if necessary.

2)該溶融体を冷却し既知の方法にてペレットとし射出
成形法、もしくは押出成形法にて任意の形状に成形する
。この時樹脂の組成及び冷却温度を調節することにより
、溶融体の中で結晶性熱可塑性樹脂の球晶が無機繊維状
充填剤をとりこみなから生成L、その進行に伴い液状有
機化合物が球晶よりはじき出され、固液分離が起き結晶
性熱可塑性樹脂の球晶が無機繊維状充填剤をとりこんで
連結され、その間隙に液状有機化合物が存在する構造が
発現する。
2) The melt is cooled, made into pellets by a known method, and molded into an arbitrary shape by injection molding or extrusion molding. At this time, by adjusting the composition of the resin and the cooling temperature, spherulites of the crystalline thermoplastic resin take in the inorganic fibrous filler in the melt, forming L, and as the process progresses, the liquid organic compound becomes spherulites. The solid-liquid separation occurs, and the spherulites of the crystalline thermoplastic resin take in the inorganic fibrous filler and are connected, creating a structure in which the liquid organic compound exists in the gaps.

3)液状有機化合物を間隙に含む無機繊維状充填剤と結
晶性熱可塑性樹脂の微細な球晶とでなる集合体は、さら
に冷却されることにより構造が強固に固定される。
3) The structure of the aggregate consisting of the inorganic fibrous filler containing the liquid organic compound in the interstices and the fine spherulites of the crystalline thermoplastic resin is firmly fixed by further cooling.

4)この構造が固定された成形物は結晶性熱可塑性樹脂
及び無機繊維状充填剤に対し難溶でかつ液状有機化合物
の良溶媒を用いて抽出処理を施すことにより、液状有機
化合物を除去しさらに乾燥して無機繊維状充填剤と結晶
性熱可塑性樹脂の微細な球晶との集合体でなる微多孔質
樹脂成形物となる。
4) The molded product with this fixed structure is difficult to dissolve in the crystalline thermoplastic resin and inorganic fibrous filler, and the liquid organic compound can be removed by extraction treatment using a good solvent for the liquid organic compound. Further drying results in a microporous resin molded product consisting of an aggregate of an inorganic fibrous filler and fine spherulites of a crystalline thermoplastic resin.

5)結晶性熱可塑性樹脂の球晶は外周部に非晶部を伴っ
ており、溶媒を乾燥で除去する過程で非晶部が変形しな
から球晶の中心間距離が接近するのを防ぐ為に、無機繊
維状充填剤が球晶間距離を維持することにより4)で出
来た間隙及び成形物の寸法を維持する。
5) Spherulites of crystalline thermoplastic resin have an amorphous part on the outer periphery, and in the process of removing the solvent by drying, the amorphous part is not deformed and the distance between the centers of the spherulites is prevented from becoming close. Therefore, the inorganic fibrous filler maintains the interspherulite distance, thereby maintaining the gap created in step 4) and the dimensions of the molded product.

本発明において使用することのできる結晶性熱可塑性樹
脂の好ましい例はポリエチレン、ポリプロピレン;好ま
しくはアイソタクチックポリプロピレンのホモ重合体、
ポリ4−メチルペンテン−1、ポリブテン−1、ポリア
ミド;好ましくはナイロン6又はナイロン66、ポリエ
ステル;好ましくはポリエチレンテレフタレート、ポリ
塩化ビニリデン、ポリカーボネート、ポリアセタール、
ポリスルホン、テトラフルオロエチレン−エチレン共重
合体である。
Preferred examples of crystalline thermoplastic resins that can be used in the present invention are polyethylene, polypropylene; preferably isotactic polypropylene homopolymers,
Poly4-methylpentene-1, polybutene-1, polyamide; preferably nylon 6 or nylon 66, polyester; preferably polyethylene terephthalate, polyvinylidene chloride, polycarbonate, polyacetal,
Polysulfone, tetrafluoroethylene-ethylene copolymer.

以上に例示したような結晶性熱可塑性樹脂の2種以上の
混合物も又使用できる。
Mixtures of two or more crystalline thermoplastic resins such as those exemplified above can also be used.

本発明において使用することのできる無機繊維状充填剤
は長さが直径の15倍以上であることが好ましい。具体
的には、チタン酸カリウム繊維(ティスモ 大塚化学製
)、メタケイ酸カルシウム針状結晶(NYAD  NY
CO社製)、酸化マグネシウム繊維(MOS  宇部興
産製)である。しかしなから、アスベスト、アタパルジ
ャイト、ガラス繊維、カーボン繊維も使用に適する。
The length of the inorganic fibrous filler that can be used in the present invention is preferably 15 times or more the diameter. Specifically, potassium titanate fiber (Tismo Otsuka Chemical), calcium metasilicate needle crystal (NYAD NY
(manufactured by CO) and magnesium oxide fiber (MOS manufactured by Ube Industries). However, asbestos, attapulgite, glass fibers, and carbon fibers are also suitable for use.

無機充填剤には使用目的によりその形態が大きく分けて
、繊維状、板状、針状、薄片状、球状、不定形がある。
Inorganic fillers are roughly divided into shapes depending on the purpose of use, and include fibrous, plate-like, needle-like, flaky, spherical, and irregular shapes.

本発明の樹脂成形物の寸法収縮を少なくする目的で、比
較検討を重ねた結果、板状、薄片状、球状、不定形では
寸法収縮を少なくする効果が乏しいことがわかった。一
方、繊維状、針状の場合は寸法収縮を少なくする効果が
顕著であり更に強度及び透気度及び透湿度の向上も併せ
て達せられた。
As a result of repeated comparative studies for the purpose of reducing the dimensional shrinkage of the resin molded products of the present invention, it was found that plate-like, flaky, spherical, and irregular shapes are not effective in reducing dimensional shrinkage. On the other hand, in the case of fibers and needles, the effect of reducing dimensional shrinkage was remarkable, and furthermore, the strength, air permeability, and moisture permeability were also improved.

無機繊維状充填剤の使用割合は、好ましくは、結晶性熱
可塑性樹脂100重量部に対して、50〜200重量部
であり、好ましくは、70〜180重量部である。無機
繊維状充填剤の割合が50重量部を下回ると寸法収縮の
防止効果及び補強効果が乏しく、200重量部を越える
と混練及び成形が困難になる。
The proportion of the inorganic fibrous filler used is preferably 50 to 200 parts by weight, preferably 70 to 180 parts by weight, based on 100 parts by weight of the crystalline thermoplastic resin. If the proportion of the inorganic fibrous filler is less than 50 parts by weight, the effect of preventing dimensional shrinkage and reinforcing effect will be poor, and if it exceeds 200 parts by weight, kneading and molding will become difficult.

本発明において使用することのできる液状有機化合物は
、常温から成形温度の範囲において実質的に流動性を示
L、成形時に実質的に揮発しないことが必要であり、か
つ使用する結晶性熱可塑性樹脂の融点以上において、結
晶性熱可塑性樹脂と相溶することか必要である。具体的
には沸点が180℃以上、混合物の場合は初留点が18
0℃以上であり、好ましくは沸点又は初留点が200℃
である。上記の特性を示す液状有機化合物として炭素数
が11〜80の範囲の単−物質又は混合物の炭化水素で
あり、中でも、流動パラフィン、ポリブテン、ナフテン
系オイルである。しかしなから、フタルサンエステル、
リン酸エステル、脂肪酸エステル、アルキルエポキシス
テアレイト、エポキシ化大豆油、4.5エポキシテトラ
ヒドロフタル酸ジイソデシル、塩素化パラフィン、ポリ
エステル系可塑剤、パーフロロカーボン、ポリエチレン
グリコールも使用に適する。
The liquid organic compound that can be used in the present invention must exhibit substantial fluidity in the range from room temperature to molding temperature, must not substantially volatilize during molding, and must be compatible with the crystalline thermoplastic resin used. It is necessary to be compatible with the crystalline thermoplastic resin above the melting point of the resin. Specifically, the boiling point is 180℃ or higher, and in the case of a mixture, the initial boiling point is 18
0°C or higher, preferably a boiling point or initial boiling point of 200°C
It is. Liquid organic compounds exhibiting the above-mentioned characteristics include hydrocarbons having a carbon number ranging from 11 to 80, either as a single substance or as a mixture, and among them, liquid paraffin, polybutene, and naphthenic oil. However, phthalsan ester,
Also suitable for use are phosphoric acid esters, fatty acid esters, alkyl epoxy stearates, epoxidized soybean oil, diisodecyl 4.5 epoxytetrahydrophthalate, chlorinated paraffins, polyester plasticizers, perfluorocarbons, and polyethylene glycols.

しかしなから、上に例示した結晶性熱可塑性樹脂及び液
状有機化合物のすべてを任意の組合せで用いことができ
るのではなく、液状有機化合物は結晶性熱塑性樹脂と該
樹脂の溶融温度以上で相溶するものから選ばれる必要が
ある。
However, not all of the crystalline thermoplastic resins and liquid organic compounds exemplified above can be used in any combination, and the liquid organic compounds are compatible with the crystalline thermoplastic resin at a temperature higher than the melting temperature of the resin. It is necessary to choose from among those that do.

本発明において使用に適する結晶性熱可塑性樹脂と有機
液状体との組合せの例、及び使用に適する溶媒の例を表
1に示す。
Table 1 shows examples of combinations of crystalline thermoplastic resins and organic liquids suitable for use in the present invention, and examples of solvents suitable for use.

−19= 有機液状体の使用割合は、好ましくは、結晶性熱可塑性
樹脂と無機繊維状充填剤とを加えた重量を100とした
とき20〜150重景部であり、好ましくは、25〜1
00重量部である。有機液状体の割合が20重量部以下
であると、成形物が実質的に気体もしくは液体を透過し
ないものになってしまい、又150重量部以上であると
、任意の形状に射出成形もしくは押出成形が困難である
又成形出来たとしても強度が極端に弱いものしか出来な
い。
-19= The usage ratio of the organic liquid is preferably 20 to 150 parts by weight, preferably 25 to 1 parts by weight when the weight of the crystalline thermoplastic resin and the inorganic fibrous filler is 100 parts.
00 parts by weight. If the proportion of the organic liquid is less than 20 parts by weight, the molded product will become substantially impermeable to gas or liquid, and if it is more than 150 parts by weight, injection molding or extrusion molding into any shape will be impossible. It is difficult to mold, and even if it can be molded, it can only be molded with extremely low strength.

溶融体の混合にあたっては、既知の混練機、例えば、単
軸押出機、2軸押出機、バンバリーミキサ−、ニーダ−
等で行う。該溶融体は既知の装置を用いて、一旦冷却し
ペレット状の樹脂成形物を得る。但L、押出成形法にお
いては混練機からダイス等をへて直接シート又はチュー
ブ等に成形できる場合がある。
For mixing the melt, a known kneader such as a single-screw extruder, twin-screw extruder, Banbury mixer, or kneader is used.
etc. The melt is once cooled using a known device to obtain a resin molded product in the form of pellets. However, in the extrusion molding method, it may be possible to directly mold the material into a sheet or tube through a die or the like from a kneader.

射出成形法もしくは押出成形法は、それぞれの成形法に
適する流動性を有する樹脂成形物を用意L、シリンダ一
温度を該樹脂組成物の可塑化温度に保つことが好ましい
。該樹脂組成物の可塑化温度は結晶性熱可塑性樹脂単体
の可塑化温度より低くなる傾向にあり成形機のシリンダ
ーを加温する電力の軽減になることも特徴である。
In the injection molding method or the extrusion molding method, it is preferable to prepare a resin molded product having fluidity suitable for each molding method and maintain the cylinder temperature at the plasticizing temperature of the resin composition. The plasticizing temperature of the resin composition tends to be lower than the plasticizing temperature of the crystalline thermoplastic resin alone, and is also characterized by reducing the power required to heat the cylinder of the molding machine.

又一定品質の微多孔質成形物を得るには、冷却の条件が
非常に重要になる。すなわち、本発明では結晶性熱可塑
性樹脂の球晶を形成させ、その間隙を連通空孔とするも
のであるから、最も結晶化速度が大きい条件で冷却する
ことが重要である。
In addition, cooling conditions are very important in order to obtain a microporous molded product of constant quality. That is, in the present invention, since spherulites of the crystalline thermoplastic resin are formed and the gaps between the spherulites are used as communicating pores, it is important to cool the resin under conditions that give the highest crystallization rate.

本発明に適する冷却温度は無機繊維状充填剤及び液状有
機化合物の含有量、目的とする空孔率、最大孔径により
調節しなければならないが、該樹脂組成物の融点からそ
れよりも150℃低い温度の間で調節することが好まし
い。冷却温度が低すぎると、成形物が実質的に気体もし
くは液体を透過しないものになってしまい、又高すぎる
と成形が困難となる。
The cooling temperature suitable for the present invention must be adjusted depending on the content of the inorganic fibrous filler and liquid organic compound, the desired porosity, and the maximum pore diameter, and is 150° C. lower than the melting point of the resin composition. It is preferred to adjust between temperatures. If the cooling temperature is too low, the molded product becomes substantially impermeable to gas or liquid, and if the cooling temperature is too high, molding becomes difficult.

成形後、液状有機化合物の良溶媒で結晶性熱可塑性樹脂
に対して難溶性の溶媒を用いて結晶性熱可塑性樹脂の球
晶と無機繊維状充填剤の間隙に存在する有機液状体を抽
出除去し微多孔質成形物を得る。上記性質を満足する溶
媒としては種々のものが考えられるが、液状有機化合物
の抽出力、毒性、引火性、回収の容易さ、樹脂成形物か
らの除去の容易さ等を考慮して決定すべきである。上記
の性質を満足する溶媒としては、ハロゲン化炭化水素、
例えば、塩化メチレン、ジクロルメタン。
After molding, the organic liquid present in the gap between the spherulites of the crystalline thermoplastic resin and the inorganic fibrous filler is extracted and removed using a good solvent for the liquid organic compound that is poorly soluble in the crystalline thermoplastic resin. A microporous molded product is obtained. Various solvents can be considered that satisfy the above properties, but they should be determined taking into consideration the extraction power of liquid organic compounds, toxicity, flammability, ease of recovery, ease of removal from resin moldings, etc. It is. Solvents that satisfy the above properties include halogenated hydrocarbons,
For example, methylene chloride, dichloromethane.

パークロルエチレン、1,1.1−)リクロルエタン、
等の塩素化炭化水素、又はトリクロロフルオロメタン(
フレオン−11)、トリクロロトリフルオロエタン(フ
レオン−113)等のフッ化炭化水素がある。好ましく
゛は、フッ化炭化水素であり、さらに好ましくは、トリ
クロロトリフルオロエタン(フレオン−113)である
。又ハロゲン化炭化水素は常温においても、有機液状体
の溶解力が非常に高いので、抽出処理は加温せずに行う
ことが可能であり、生産面において大きな利点となる。
perchlorethylene, 1,1.1-)lychloroethane,
chlorinated hydrocarbons such as trichlorofluoromethane (
There are fluorinated hydrocarbons such as Freon-11) and trichlorotrifluoroethane (Freon-113). Preferred is a fluorinated hydrocarbon, and more preferred is trichlorotrifluoroethane (Freon-113). Furthermore, since halogenated hydrocarbons have a very high ability to dissolve organic liquids even at room temperature, the extraction process can be carried out without heating, which is a great advantage in terms of production.

しかしなから灯油、メチルエチルケトン、アセトン、シ
クロヘキサノン、水も使用することができる。
However, kerosene, methyl ethyl ketone, acetone, cyclohexanone and water can also be used.

抽出に要する時間は有機液状体の含有量、成形物の形状
、該樹脂成形物の空孔率により異なるがその時間は30
秒〜20分であり、好ましくは1分〜15分である。処
理時間が短すぎると残留不純物が多くなり空孔率が低く
なり、長ずざると溶媒使用量からみた経済性、及び生産
面での問題が生じる。抽出の方法は、浸漬法、シャワー
法、蒸気洗浄法、超音波洗浄法、煮沸洗浄法等があるが
、溶媒の蒸発によるロスを出来るだけ抑えかつ効率よく
処理が行えるように決定すべきである。
The time required for extraction varies depending on the content of the organic liquid, the shape of the molded product, and the porosity of the resin molded product, but the time is approximately 30%.
The time is from seconds to 20 minutes, preferably from 1 minute to 15 minutes. If the treatment time is too short, residual impurities will increase and the porosity will be low; if the treatment time is too long, problems will arise in terms of economy in terms of the amount of solvent used and production. Extraction methods include immersion, showering, steam cleaning, ultrasonic cleaning, boiling cleaning, etc., but the method should be determined in such a way that losses due to solvent evaporation can be minimized and the process can be performed efficiently. .

樹脂成形物の形状は使用する用途によりいかようにも選
択できる。実質的に気体もしくは液体を透過させる性能
を有する部位の肉厚は0.05mm〜5mmが好ましい
。下式で定義される空孔率は5%〜50%であることが
好ましい。樹脂成形物の多孔質性をゆうする部位は成形
物全体である必要はなく、少なくとも一部が、その性質
を有しておれば良い。
The shape of the resin molded product can be selected in any way depending on the intended use. The thickness of the portion having the ability to substantially permeate gas or liquid is preferably 0.05 mm to 5 mm. The porosity defined by the following formula is preferably 5% to 50%. The portion of the resin molded product that exhibits porosity does not need to be the entire molded product, but it is sufficient that at least a portion thereof has this property.

ここでいう空孔率とは、下式で定義されるものである。The porosity here is defined by the following formula.

成形物に付着した抽出溶媒は、低沸点溶媒の場合、取り
立てて乾燥工程を必要とせず、自然乾燥で行うことがで
きるが必要であれば、乾燥工程を設け、乾燥処理を行っ
ても良い。
If the extraction solvent attached to the molded product is a low boiling point solvent, it can be naturally dried without requiring a special drying step, but if necessary, a drying step may be provided to perform the drying treatment.

なお、用途により該成形物表面を親水化する必要がある
時は、上記工程の後に、コロナ処理、プラズマ処理、酸
化剤処理、界面活性剤処理を施して表面を親水化するこ
とも可能である。
If it is necessary to make the surface of the molded product hydrophilic depending on the application, it is also possible to make the surface hydrophilic by performing corona treatment, plasma treatment, oxidizing agent treatment, or surfactant treatment after the above steps. .

また上記成形物の最大孔径は15μm以下である必要が
る。ここでいう最大孔径の測定方法は粒径が均一なポリ
スチレンラテックス[ユニホームラテックス パーティ
クルズ ダウケミカル社製]を固形分濃度0.1wt%
に希釈した液を 100m1通過させ、下式により補足
効率を求める。
Further, the maximum pore diameter of the molded product must be 15 μm or less. The method for measuring the maximum pore size here is to use polystyrene latex with a uniform particle size [Uniform Latex Particles, manufactured by Dow Chemical Company] with a solid content concentration of 0.1 wt%.
Let 100ml of the diluted solution pass through, and calculate the supplementation efficiency using the formula below.

C−C。C-C.

補足効率(%)=、    cp   X100粒径の
小さいラテックスからこの補足効率を求め、この値が始
めて100%になった時の粒径をもって成形物の最大孔
径とする。
Supplemental efficiency (%) = cp

また本発明による成形物を走査電子顕微鏡で観察したと
ころ、表面には微細孔が存在しており、又断面には結晶
性熱可塑性樹脂の球晶と無機繊維状充填剤とがからみあ
った集合体で構成され、あたかも超微粒子からなる焼結
体のような構造を呈しており、多くの商略を有すること
が観察された。
Furthermore, when the molded product according to the present invention was observed with a scanning electron microscope, it was found that micropores were present on the surface, and the cross section was composed of aggregates in which spherulites of crystalline thermoplastic resin and inorganic fibrous filler were entangled. It was observed that it has a structure similar to a sintered body made of ultrafine particles, and has many commercial strategies.

[実施例] 以下に本発明を実施例及び、比較例により更に詳述する
[Examples] The present invention will be explained in more detail below using Examples and Comparative Examples.

的中に示した樹脂成形物の物性は次の方法によって測定
したものである。
The physical properties of the resin molded products shown were measured by the following method.

成形物の形状・外径14mm、肉厚1mm 、長さ26
mmのパイプ状に射出成形用金型を 用いて成形した。これに抽出処 理を施して試料とした。
Shape of molded product: outer diameter 14 mm, wall thickness 1 mm, length 26
It was molded into a pipe shape of mm using an injection mold. This was extracted and used as a sample.

透気度   二上記試料の両端を閉じその一方より 0
 、8 k g / c m2の清浄圧縮空気を導入し
側面肉厚部を透過した 空気を水中で補集しその体積を 測定し下式により透気度を求め た。
Air permeability 0 Close both ends of the above sample and open from one side
, 8 kg/cm2 of clean compressed air was introduced, the air that permeated through the thick side wall was collected in water, its volume was measured, and the air permeability was determined using the following formula.

耐水圧   :上記試料の両端を閉じ試内部に水を満た
L、一方より 1 k g / c m”の高圧エアー
を送り成形物の側 面より漏れる水の有無を目視で 確認した。
Water pressure resistance: Both ends of the sample were closed, the inside of the sample was filled with water, and high-pressure air of 1 kg/cm'' was applied from one side to visually check for the presence of water leaking from the side of the molded product.

圧縮強度  二上記試料を軸と垂直に直径10mmの丸
棒で押し潰したときの破壊 強度を測定した。
Compressive Strength 2. The breaking strength was measured when the above sample was crushed with a round rod having a diameter of 10 mm perpendicular to the axis.

寸法収縮率 :上記試料の抽出処理前後の長さの変化を
測定し下式により寸法 収縮率を求めた。
Dimensional shrinkage rate: The change in length of the sample before and after the extraction process was measured, and the dimensional shrinkage rate was determined using the following formula.

実施例 I Ml・20なるポリプロピレン(チッソ株式会社製rK
−1800」) 100重量部、アスペクト比=20の
メタケイ酸カルシウム針状結晶(NYCO社製「NYA
D−GJ)70重量部、初留点286°Cの流動パラフ
ィン(出光興産株式会社製「KP−15J ) 85重
量部とを2軸押用機にて混合混練L、水冷しペレットを
作成した。次いで射出成形機を用いてシリンダ一温度を
 190℃の調節して成形した。この際、金型温度は温
調機を用いて90°C±5°Cに調節した。
Example I Ml.20 polypropylene (rK manufactured by Chisso Corporation)
-1800'') 100 parts by weight, acicular crystals of calcium metasilicate with an aspect ratio of 20 (NYA
D-GJ) 70 parts by weight and 85 parts by weight of liquid paraffin (manufactured by Idemitsu Kosan Co., Ltd. "KP-15J") with an initial boiling point of 286 °C were mixed and kneaded in a twin-screw extruder L, and water-cooled to create pellets. Next, molding was performed using an injection molding machine with the cylinder temperature adjusted to 190°C.At this time, the mold temperature was adjusted to 90°C±5°C using a temperature controller.

離型後、成形物をトリクロロトリフルオロエタン(旭硝
子株式会社製「フロンソルブ」)に3分間、攪しなから
浸漬L、更に、新しいトリクロロトリフルオロエタン て流動パラフィンを抽出除去した後、40°Cのオーブ
ンで10分間乾燥した。
After releasing the mold, the molded product was immersed in trichlorotrifluoroethane (Fronsolve, manufactured by Asahi Glass Co., Ltd.) for 3 minutes without stirring, and after extracting and removing liquid paraffin with fresh trichlorotrifluoroethane, it was heated at 40°C. It was dried in an oven for 10 minutes.

得られた成形物の物性を表2に示す。Table 2 shows the physical properties of the molded product obtained.

比較例 1− Ml・20なるポリプロピレン(ヂッソ株式会社製rK
−1800J ) 100重量部,平均粒径5μmの炭
酸−28= カルシウム(日東粉化株式会社製r N F −400
J )70重量部、初留点286℃の流動パラフィン(
出光興産株式会社製r KP−15J ) 115重量
部とを実施例1と同様に成形、抽出、乾燥した。得られ
た成形物の物性を表2に示す。
Comparative Example 1- Ml 20 polypropylene (rK manufactured by Jisso Co., Ltd.
-1800J) 100 parts by weight, carbonate-28=calcium with an average particle size of 5 μm (manufactured by Nitto Funka Co., Ltd. rNF-400
J) 70 parts by weight, liquid paraffin with an initial boiling point of 286°C (
115 parts by weight of KP-15J (manufactured by Idemitsu Kosan Co., Ltd.) were molded, extracted and dried in the same manner as in Example 1. Table 2 shows the physical properties of the molded product obtained.

比較例 2 MI・20なるポリプロピレン(チッソ株式会社製「に
−1800J ) 100重量部初留点286℃の流動
パラフィン(出光興産株式会社製r KP−15J )
 50重量部とを実施例 1と同様に成形、抽出、乾燥
した。
Comparative Example 2 MI-20 polypropylene (Ni-1800J manufactured by Chisso Corporation) 100 parts by weight Liquid paraffin with an initial boiling point of 286°C (R KP-15J manufactured by Idemitsu Kosan Co., Ltd.)
50 parts by weight was molded, extracted and dried in the same manner as in Example 1.

得られた成形物の物性を表2に示す。Table 2 shows the physical properties of the molded product obtained.

実施例 2〜7 表3に示す成分及び割合の樹脂組成物を2軸押比機にて
混合混練L、水冷しペレットを作成した。
Examples 2 to 7 Resin compositions having the components and proportions shown in Table 3 were mixed and kneaded using a twin-screw press ratio machine and cooled in water to form pellets.

然るのち表4に示す、成形条件及び抽出条件で行う以外
は、実施例 1と同様にして成形物を得た。
Thereafter, a molded product was obtained in the same manner as in Example 1, except that the molding conditions and extraction conditions shown in Table 4 were used.

得られた成形物の物性を表5に示す。Table 5 shows the physical properties of the obtained molded product.

表2 空孔率と最大孔径と物性値 表4 成形条件及び抽出条件 表5 成形物の物性 [発明の効果] 上記のように本発明は、結晶性熱可塑性樹脂と無機繊維
状充填剤と液状有機化合物とを溶融混合した後、射出成
形法もしくは押出成形法にて任意の形状に成形するもの
であって、その際の冷却温度を制御することにより、発
現する結晶性熱可塑性樹脂の球晶の大きささを決定L、
その後液状有機化合物の良溶媒で処理して、結晶性熱可
塑性樹脂の球晶と無機繊維状充填剤との間隙に存在する
液状有機化合物を抽出除去L、結晶性熱可塑性樹脂の球
晶と無機繊維状充填剤との間隙に空間を存在させ、その
連通空孔を用いて気体もしくは液体を通過させるもので
あるから、透過性能が良好な微多孔質結晶性熱可塑性樹
脂成形物である。又該成形物は無機繊維状充填剤が結晶
性熱可塑性樹脂の球晶とからみあっているため、抽出工
程において収縮率が小さい成形物が得ることができる。
Table 2 Porosity, maximum pore diameter, and physical property values Table 4 Molding conditions and extraction conditions Table 5 Physical properties of molded product [Effects of the invention] As described above, the present invention combines a crystalline thermoplastic resin, an inorganic fibrous filler, and a liquid After melt-mixing with an organic compound, it is molded into an arbitrary shape by injection molding or extrusion molding, and by controlling the cooling temperature at that time, the spherulites of the crystalline thermoplastic resin that develops are formed. Determine the size of L,
After that, the liquid organic compound present in the gap between the spherulites of the crystalline thermoplastic resin and the inorganic fibrous filler is extracted and removed by treatment with a good solvent of the liquid organic compound, and the spherulites of the crystalline thermoplastic resin and the inorganic It is a microporous crystalline thermoplastic resin molded product with good permeability because a space is provided in the gap with the fibrous filler and the communicating pores are used to allow gas or liquid to pass through. Furthermore, since the inorganic fibrous filler is entangled with the spherulites of the crystalline thermoplastic resin, a molded article with a small shrinkage rate can be obtained in the extraction step.

それゆえ得られた製品は、気化性の芳香剤、防虫剤、防
錆剤、防黴剤、消臭剤等の気化性薬剤や除湿剤、脱臭剤
の包装、現在各種の焼結体を用いて液体を移動させてい
る物等に応用することが可能である。
Therefore, the products obtained are packaging for vaporizable air fresheners, insect repellents, rust preventives, antifungal agents, deodorizers, dehumidifiers, deodorizers, etc., and are currently available in various sintered bodies. It can be applied to objects that move liquids by moving.

特許出願人    磯 野 啓 之 介−35=Patent applicant Keisuke Isono-35=

Claims (23)

【特許請求の範囲】[Claims] (1)結晶性熱可塑性樹脂(A)100重量部及び、無
機繊維状充填剤(B)50〜200重量部及び、(A)
の溶融温度以上で(A)に相溶し、かつ成形工程で実質
的に揮散しない、常温から成形温度の範囲で実質的に流
動性を有する有機化合物(C)を(A)と(B)の和を
100としたとき20〜150重量部からなる均一な樹
脂組成物を射出成形法もしくは押出成形法にて成形し、
しかる後、該成形物を(C)の良溶媒で、(A)に対し
ては貧溶媒である溶媒で(C)を抽出除去することによ
り該成形物に微細な連通空孔を形成させる事を特徴とす
る樹脂成形物。
(1) 100 parts by weight of crystalline thermoplastic resin (A), 50 to 200 parts by weight of inorganic fibrous filler (B), and (A)
An organic compound (C) that is compatible with (A) above the melting temperature of (A) and does not substantially volatilize during the molding process, and has substantial fluidity in the range of room temperature to molding temperature, is added to (A) and (B). A uniform resin composition consisting of 20 to 150 parts by weight when the sum of 100 is molded by an injection molding method or an extrusion molding method,
After that, fine communicating pores are formed in the molded product by extracting and removing (C) with a solvent that is a good solvent for (C) and a poor solvent for (A). A resin molded product featuring:
(2)結晶性熱可塑性樹脂が、ポリエチレン、ポリプロ
ピレン、ポリ4−メチルペンテン−1、ポリブテン−1
、ポリアミド、ポリエステル、ポリ塩化ビニリデン、ポ
リカーボネート、ポリアセタール、ポリスルホン、テト
ラフルオロエチレン−エチレン共重合体の群から選ばれ
た少なくとも1種の物質又は2種以上の混合物である特
許請求の範囲第1項の樹脂成形物。
(2) The crystalline thermoplastic resin is polyethylene, polypropylene, poly4-methylpentene-1, polybutene-1
, polyamide, polyester, polyvinylidene chloride, polycarbonate, polyacetal, polysulfone, and tetrafluoroethylene-ethylene copolymer. Resin molding.
(3)無機繊維状充填剤の長さをL、直径をDとしたと
きL/Dが15以上である事を特徴とする特許請求の範
囲第1項〜第2項の樹脂成形物。
(3) The resin molded product according to claims 1 and 2, wherein L/D is 15 or more, where L is the length and D is the diameter of the inorganic fibrous filler.
(4)無機繊維状充填剤がチタン酸カリウム、メタケイ
酸カルシウム、酸化マグネシウムの群から選ばれた少な
くとも1種の物質又は2種以上の混合物である特許請求
の範囲第1項〜第3項の樹脂成形物。
(4) Claims 1 to 3, wherein the inorganic fibrous filler is at least one substance or a mixture of two or more selected from the group of potassium titanate, calcium metasilicate, and magnesium oxide. Resin molding.
(5)有機化合物の初留点又は沸点が180℃以上であ
る事を特徴とする特許請求の範囲第1項〜第4項の樹脂
成形物。
(5) The resin molded product according to claims 1 to 4, wherein the organic compound has an initial boiling point or boiling point of 180°C or higher.
(6)有機化合物が流動パラフィン、液状ポリブテン、
ナフテン系オイル、フタル酸エステル、リン酸エステル
、脂肪酸エステル、アルキルエポキシステアレート、エ
ポキシ化大豆油、4・5エポキシテトラヒドロキシフタ
ル酸ジイソデシル、塩素化パラフィン、ポリエステル系
可塑剤、ポリエチレングリコール、パーフロロカーボン
の群から選ばれた少なくとも1種の物質又は2種以上の
混合物である特許請求の範囲第1項〜第5項の樹脂成形
物。
(6) The organic compound is liquid paraffin, liquid polybutene,
naphthenic oil, phthalate ester, phosphate ester, fatty acid ester, alkyl epoxy stearate, epoxidized soybean oil, diisodecyl 4/5 epoxytetrahydroxyphthalate, chlorinated paraffin, polyester plasticizer, polyethylene glycol, perfluorocarbon. The resin molded article according to any one of claims 1 to 5, which is at least one substance selected from the group consisting of at least one substance or a mixture of two or more substances.
(7)有機化合物を抽出除去する溶媒がハロゲン化炭化
水素、ケトン、シクロヘキサノン、水、灯油の群から選
ばれた少なくとも1種の物質又は2種以上の混合物であ
る特許請求の範囲第1項〜第6項の樹脂成形物。
(7) The solvent for extracting and removing organic compounds is at least one substance or a mixture of two or more selected from the group of halogenated hydrocarbons, ketones, cyclohexanone, water, and kerosene. The resin molded article of Section 6.
(8)成形物の実質的に気体もしくは液体を透過する部
位の肉厚が0.05〜5mmであり、かつ空孔率が5〜
50%である特許請求の範囲第1項〜第7項の樹脂成形
物。
(8) The wall thickness of the part of the molded product that is substantially permeable to gas or liquid is 0.05 to 5 mm, and the porosity is 5 to 5 mm.
50% of the resin molded product according to claims 1 to 7.
(9)成形物の実質的に気体もしくは液体を透過する部
位において該樹脂成形物の微細な連通空孔の最大孔径が
15μm以下である特許請求の範囲第1項〜第7項いず
れか記載の樹脂成形物。
(9) The resin molding according to any one of claims 1 to 7, wherein the maximum pore diameter of the fine communicating pores of the resin molding is 15 μm or less in a portion of the molding that substantially permeates gas or liquid. Resin molding.
(10)特許請求の範囲第1項の樹脂成形物を内径14
mm、肉厚1mmのパイプ状に射出成形した成形物の軸
と垂直方向の圧縮強度が2kg以上であり、透気度が1
ml/cm^2・min以上であり、耐水圧が1kg/
cm^2以上である特許請求の範囲第1項〜第9項の樹
脂成形物。
(10) The resin molded product according to claim 1 has an inner diameter of 14
mm, the compressive strength in the direction perpendicular to the axis of the injection molded pipe with a wall thickness of 1 mm is 2 kg or more, and the air permeability is 1 mm.
ml/cm^2・min or more, and water pressure resistance is 1kg/
The resin molded article according to claims 1 to 9, which has a diameter of cm^2 or more.
(11)特許請求の範囲第1項の樹脂成形物から有機化
合物を抽出除去しても該樹脂成形物の寸法収縮率が5%
以内である特許請求の範囲第1項〜第9項いずれか記載
の樹脂成形物。
(11) Even if the organic compound is extracted and removed from the resin molded product according to claim 1, the dimensional shrinkage rate of the resin molded product is 5%.
The resin molded article according to any one of claims 1 to 9, which is within the range of claims 1 to 9.
(12)結晶性熱可塑性樹脂(A)100重量部及び、
無機繊維状充填剤(B)50〜200重量部及び、(A
)の溶融温度以上で(A)に相溶し、かつ成形工程で実
質的に揮散しない、常温から成形温度の範囲で実質的に
流動性を有する有機化合物(C)を(A)と(B)の和
を100としたとき20〜150重量部からなる均一な
樹脂組成物を射出成形法もしくは押出成形法にて任意の
形状に成形し、しかる後、該成形物を(C)の良溶媒で
、(A)に対しては貧溶媒である溶媒で(C)を抽出除
去することにより該成形物に微細な連通空孔を形成させ
る事を特徴とする樹脂成形物の製造方法。
(12) 100 parts by weight of crystalline thermoplastic resin (A) and
50 to 200 parts by weight of inorganic fibrous filler (B) and (A
), an organic compound (C) which is compatible with (A) above the melting temperature of (A) and which does not substantially volatilize during the molding process and has substantially fluidity in the range from room temperature to molding temperature is added to (A) and (B). ) A uniform resin composition consisting of 20 to 150 parts by weight is molded into an arbitrary shape by injection molding or extrusion molding, and then the molded product is mixed with a good solvent of (C). A method for producing a resin molded article, which comprises forming fine communicating pores in the molded article by extracting and removing (C) with a solvent that is a poor solvent for (A).
(13)射出成形工程もしくは押出成形工程において金
型温度及び又は溶融樹脂が通過する雰囲気の温度を制御
することにとり均一な樹脂組成物から固・液分離によっ
て形成される連通空孔の孔径の大きさを制御する事を特
徴とする特許請求の範囲第12項の樹脂成形物の製造方
法。
(13) In the injection molding process or extrusion molding process, by controlling the mold temperature and/or the temperature of the atmosphere through which the molten resin passes, the diameter of the communicating pores formed by solid/liquid separation from a uniform resin composition can be increased. 13. The method for manufacturing a resin molded article according to claim 12, characterized in that the thickness is controlled.
(14)結晶性熱可塑性樹脂が、ポリエチレン、ポリプ
ロピレン、ポリ4−メチルペンテン−1、ポリブテン−
1、ポリアミド、ポリエステル、ポリ塩化ビニリデン、
ポリカーボネート、ポリアセタール、ポリスルホン、テ
トラフルオロエチレン−エチレン共重合体の群から選ば
れた少なくとも1種の物質又は2種以上の混合物である
特許請求の範囲第12項〜第13項の樹脂成形物の製造
方法。
(14) The crystalline thermoplastic resin is polyethylene, polypropylene, poly4-methylpentene-1, polybutene-1,
1. Polyamide, polyester, polyvinylidene chloride,
Production of a resin molded article according to claims 12 to 13, which is at least one substance or a mixture of two or more substances selected from the group of polycarbonate, polyacetal, polysulfone, and tetrafluoroethylene-ethylene copolymer. Method.
(15)無機繊維状充填剤の長さをL、直径をDとした
とL/Dが15以上である事を特徴とする特許請求の範
囲第12項〜第14項の樹脂成形物の製造方法。
(15) Production of a resin molded product according to claims 12 to 14, characterized in that L/D is 15 or more, where L is the length and D is the diameter of the inorganic fibrous filler. Method.
(16)無機繊維状充填剤がチタン酸カリウム、メタケ
イ酸カルシウム、酸化マグネシウムの群から選ばれた少
なくとも1種の物質又は2種以上の混合物である特許請
求の範囲第12項〜第15項の樹脂成形物の製造方法。
(16) Claims 12 to 15, wherein the inorganic fibrous filler is at least one substance or a mixture of two or more selected from the group of potassium titanate, calcium metasilicate, and magnesium oxide. A method for manufacturing resin molded products.
(17)有機化合物の初留点又は沸点が180℃以上で
ある事を特徴とする特許請求の範囲第12項〜第16項
の樹脂成形物の製造方法。
(17) The method for producing a resin molded article according to claims 12 to 16, wherein the organic compound has an initial boiling point or boiling point of 180°C or higher.
(18)有機化合物が流動パラフィン、液状ポリブテン
、ナフテン系オイル、フタル酸エステル、リン酸エステ
ル、脂肪酸エステル、アルキルエポキシステアレート、
エポキシ化大豆油、4・5エポキシテトラヒドロキシフ
タル酸ジイソデシル、塩素化パラフィン、ポリエステル
系可塑剤、ポリエチレングリコール、パーフロロカーボ
ンの群から選ばれた少なくとも1種の物質又は2種以上
の混合物である特許請求の範囲第12項〜第17項の樹
脂成形物の製造方法。
(18) The organic compound is liquid paraffin, liquid polybutene, naphthenic oil, phthalate ester, phosphate ester, fatty acid ester, alkyl epoxy stearate,
A patent claim that is at least one substance or a mixture of two or more selected from the group of epoxidized soybean oil, diisodecyl 4,5-epoxytetrahydroxyphthalate, chlorinated paraffin, polyester plasticizer, polyethylene glycol, and perfluorocarbon. A method for producing a resin molded article according to items 12 to 17.
(19)有機化合物を抽出除去する溶媒がハロゲン化炭
化水素、ケトン、シクロヘキサノン、水、灯油の群から
選ばれた少なくとも1種の物質又は2種以上の混合物で
ある特許請求の範囲第12項〜第18項の樹脂成形物の
製造方法。
(19) The solvent for extracting and removing organic compounds is at least one substance or a mixture of two or more selected from the group of halogenated hydrocarbons, ketones, cyclohexanone, water, and kerosene. The method for producing a resin molded product according to item 18.
(20)成形物の実質的に気体もしくは液体を透過する
部位の肉厚が0.05〜5mmであり、かつ空孔率が5
〜54%である特許請求の範囲第12項〜第19項の樹
脂成形物の製造方法。
(20) The wall thickness of the part of the molded material that is substantially permeable to gas or liquid is 0.05 to 5 mm, and the porosity is 5
20. The method for producing a resin molded article according to claims 12 to 19, wherein the resin molded product has a content of 54%.
(21)成形物の実質的に気体もしくは液体を透過する
部位において該樹脂成形物の微細な連通空孔の最大孔径
が15μm以下である特許請求の範囲第12項〜第20
項の樹脂成形物の製造方法。
(21) Claims 12 to 20, wherein the maximum pore diameter of the fine communicating pores of the resin molding is 15 μm or less in a portion of the molding that substantially permeates gas or liquid.
2. Method for manufacturing resin molded products.
(22)特許請求の範囲第1項の樹脂成形物を内径14
mm、肉厚1mmのパイプ状に射出成形した成形物の軸
と垂直方向の圧縮強度が2kg以上であり、透気度が1
ml/cm^2・min以上であり、耐水圧が1kg/
cm^2以上である特許請求の範囲第12項〜第21項
の樹脂成形物。
(22) The resin molded product according to claim 1 has an inner diameter of 14
mm, the compressive strength in the direction perpendicular to the axis of the injection molded pipe with a wall thickness of 1 mm is 2 kg or more, and the air permeability is 1 mm.
ml/cm^2・min or more, and water pressure resistance is 1kg/
The resin molded article according to claims 12 to 21, which has a diameter of cm^2 or more.
(23)特許請求の範囲第1項の樹脂成形物から有機化
合物を抽出除去しても該樹脂成形物の寸法収縮率が5%
以内である特許請求の範囲第12項〜第22項の樹脂成
形物の製造方法。
(23) Even if the organic compound is extracted and removed from the resin molded product according to claim 1, the dimensional shrinkage rate of the resin molded product is 5%.
The method for manufacturing a resin molded article according to claims 12 to 22, which is within the range of claims 12 to 22.
JP22075885A 1985-10-03 1985-10-03 Resin molding and its production Granted JPS6281431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22075885A JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22075885A JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Publications (2)

Publication Number Publication Date
JPS6281431A true JPS6281431A (en) 1987-04-14
JPH0554856B2 JPH0554856B2 (en) 1993-08-13

Family

ID=16756081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22075885A Granted JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Country Status (1)

Country Link
JP (1) JPS6281431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002678A1 (en) 2000-06-30 2002-01-10 Tonen Chemical Corporation Method for producing thermoplastic resin micro-porous film
JP2006083194A (en) * 2004-09-14 2006-03-30 Nitto Denko Corp Method for producing porous membrane
JP2008111139A (en) * 2008-01-31 2008-05-15 Toray Ind Inc Method for producing polyacetal resin-based molded product
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316077A (en) * 1976-07-29 1978-02-14 Nippon Oil Co Ltd Method of producing porous film
JPS5335122A (en) * 1976-09-14 1978-04-01 Toshiba Corp Oiling electric machine tank
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS58179243A (en) * 1982-04-13 1983-10-20 Teijin Ltd Production of porous polyester formed product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316077A (en) * 1976-07-29 1978-02-14 Nippon Oil Co Ltd Method of producing porous film
JPS5335122A (en) * 1976-09-14 1978-04-01 Toshiba Corp Oiling electric machine tank
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS58179243A (en) * 1982-04-13 1983-10-20 Teijin Ltd Production of porous polyester formed product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002678A1 (en) 2000-06-30 2002-01-10 Tonen Chemical Corporation Method for producing thermoplastic resin micro-porous film
JP2006083194A (en) * 2004-09-14 2006-03-30 Nitto Denko Corp Method for producing porous membrane
JP4562074B2 (en) * 2004-09-14 2010-10-13 日東電工株式会社 Battery separator manufacturing method
JP2008111139A (en) * 2008-01-31 2008-05-15 Toray Ind Inc Method for producing polyacetal resin-based molded product
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0554856B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JP3979521B2 (en) Heat-resistant microporous membrane
JPH0450339B2 (en)
KR920005672B1 (en) Microporous sheet material method of making and articles made therewith
US4539256A (en) Microporous sheet material, method of making and articles made therewith
US5183607A (en) Polymer membranes for separation process
JP2757918B2 (en) Microporous article and method for producing the same
AU736329B2 (en) Porous polyvinylidene fluoride resin membrane and process for preparing the same
KR0134195B1 (en) Particle-filled microporous materials
KR100579684B1 (en) Microporous Materials Containing Cross-Linked Oil
JPH01101340A (en) Oriented microporous article
JPS6211506A (en) Hollow fiber
KR20050025186A (en) Expanded polystyrene bead having functional skin layer, manufacturing process thereof, and functional eps product and manufacturing process thereof using the same
JPS6190705A (en) Hollow yarn membrane and its production
JPS62201642A (en) Carrier for adsorptive substance and its production
KR101560175B1 (en) Porous, free-flowing hydrophobic particles charged with an aqueous fluid with compatibilizer additive
JPS6281431A (en) Resin molding and its production
DE2134779A1 (en) Resin microporous agent and its manufacture
JPH0235918A (en) Polypropylene porous hollow yarn membrane and its manufacture
JPH06184349A (en) Interconnected porous body and its production
JP2021038165A (en) Antibacterial member
JPH062841B2 (en) Porous permeable polyethylene film
JP6716810B2 (en) Resin composition, resin molded product obtained by molding and processing the same, and method for producing resin composition
JP4734748B2 (en) Breathable stretched film
KR20210005631A (en) Blow-molded container and manufacturing method thereof
KR101904674B1 (en) Functional plastic bag and method for producing the plastic bag

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees